

Use of CFD as a Design Tool for Scale-Up of Fluidized-bed Reactors

Ranjeeth Kalluri, Jing Huang, Aqil Jamal, Brian Turk and Raghubir Gupta Center for Energy Technology, RTI International, Research Triangle Park, NC

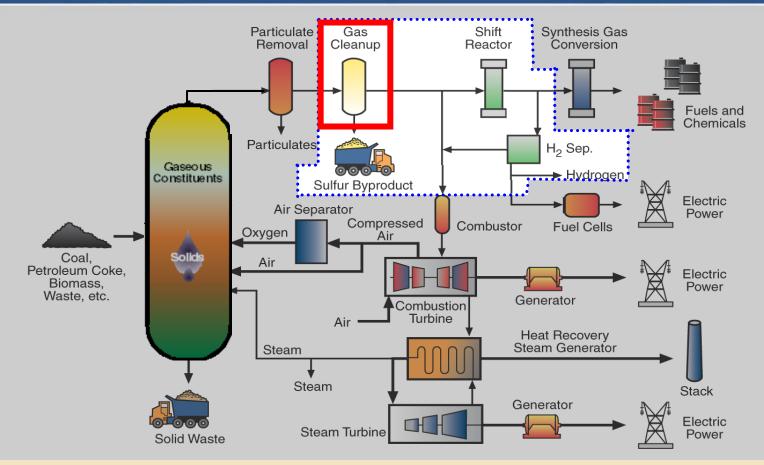
NETL 2010 Workshop on Multiphase Flow Science

RTI views CFD as a Critical Design Tool

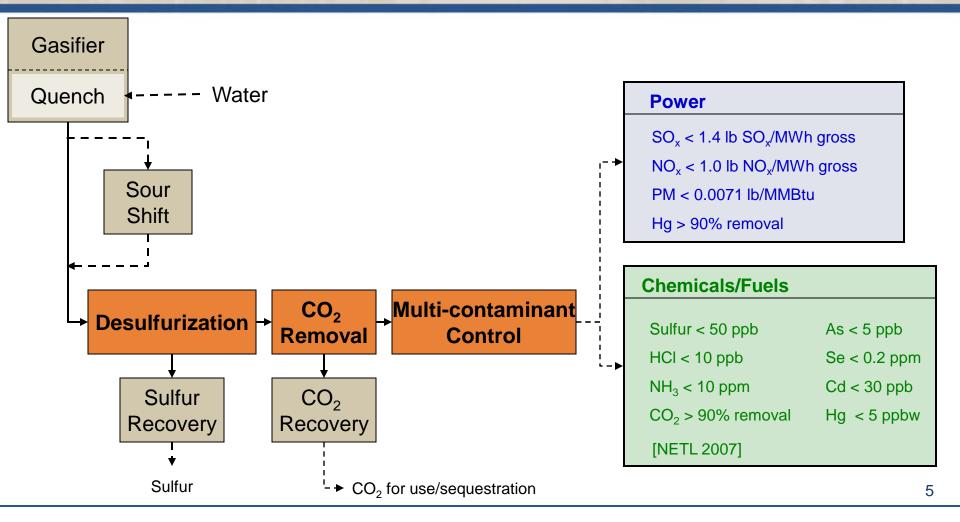
- RTI has an extensive pipeline of fluidized-bed processes
- Many technologies are entering pilot-scale and commercial-scale demonstration • phases

Commercial scale

CFD modeling offers tremendous benefits for RTI's scale-up and commercialization efforts

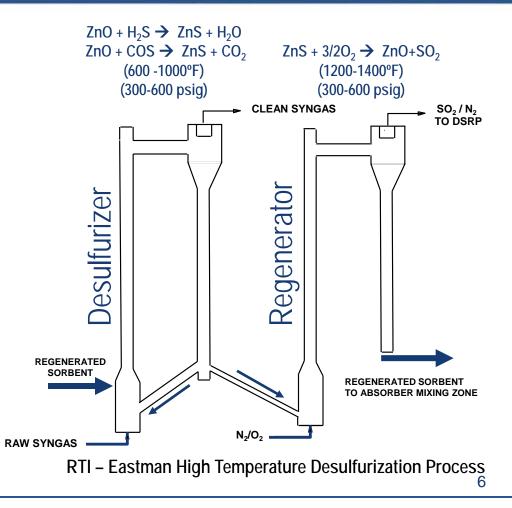

RTI's Fluidized-bed Reactor Technologies

- High temperature desulfurization process (HTDP)
- Dry carbonate CO₂ capture
- Transport reactor-based Sabatier process for CO₂ reuse
- SNG production with catalytic gasification in transport reactor
- Hydrogen production using steam-iron process
- Syngas clean-up using 'Therminator' technology
- Chemical looping combustion
- Co-gasification (Coal & Biomass)
- Catalytic biomass pyrolysis


Integrated Gasification Combined Cycle (IGCC)

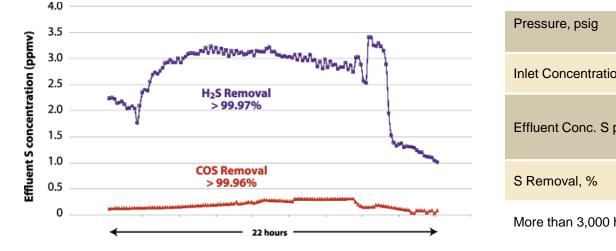
R&D objective: Platform of warm syngas cleaning technologies providing improved efficiency, environmental performance, and cost

Process Integration – Modular Approach



High Temperature Desulfurization Process (HTDP)

- Dual loop transport reactor system
- Similar to FCC process design
- Patented ZnO-based attritionresistant sorbent (RTI-3)
- High temperature sulfur (H₂S and COS) removal



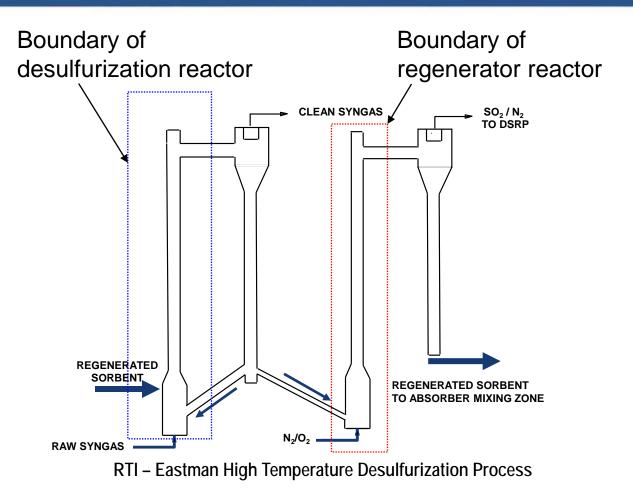
Pilot Plant Field Testing

Extensive pilot plant tests completed at Eastman Chemical Company with coal-derived syngas.

- High Temperature Desulfurization Process (HTDP)
 - >99.9% total sulfur removal (H₂S and COS) for >3,000 hours
 - Low attrition rates ~31 lb/million lb circulated

300	450	600
8,661	7,023	8,436
5.9 0.4–9.3	10.7 2.4–20.6	5.7 3.3–18.1
99.93	99.82	99.90
	8,661 5.9 0.4–9.3	8,661 7,023 5.9 10.7 0.4–9.3 2.4–20.6

More than 3,000 hours of syngas operation


50 MW_e Protoype Unit of Warm Syngas Clean-up Technology

RTI and DOE/NETL's Computational and Basic Sciences Group are using CFD modeling to assist in the design of HTPD for 50 MWe Prototype Unit

8

NETL's CFD Modeling Approach: Separate Desulfurization and Regeneration Reactor Models

9

Comparison of NETL's Models Predictions with Pilot Plant Data

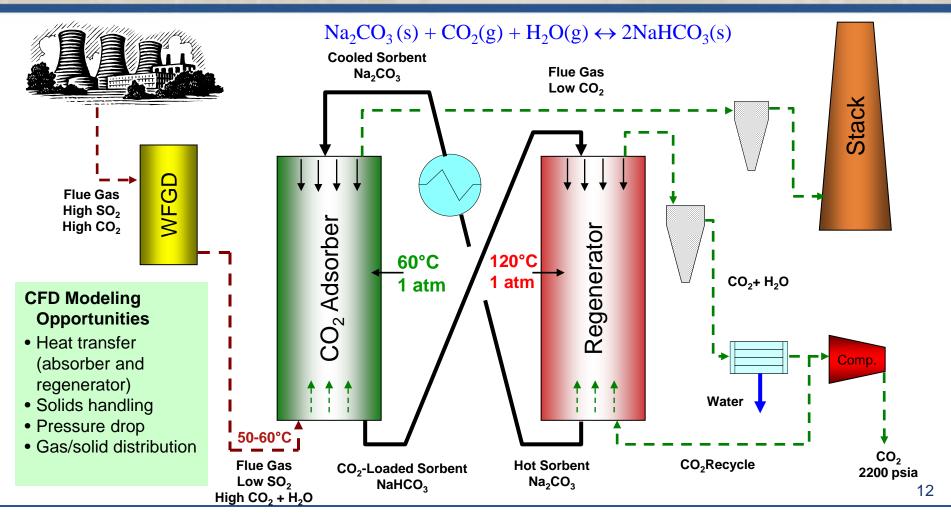
Desulfurization Reactor

Tag	Descriptor	Unit	Measurement	CFD Predicted	
TIC-212	Mixing Zone T	۴F	829	862	
TIC-228	Riser Zone T	۴F	856	865	
PDT- 210	Mixing Zone Dp	in. H ₂ O	36	12	
PDT-215	Transition Dp	in. H ₂ O	30	23	
PDT-220	Riser Dp	in. H ₂ O	20	26	

- Acceptable agreement between measured and predicted pressure drop values
- Agreement between measured and predicted temperature values are less favorable.
 - thermal boundary condition of the reactor walls
 - assumed constant temperature wall

Regeneration Reactor

Тад	Descriptor	Unit	Measurement	CFD Predicted
TIC-312	Mixing Zone T	۴F	1282	1350
TIC-313	Mixing Zone T	°F	1325	1404
TIC-314	Mixing Zone T	°F	1318	1400
TIC-315	Mixing Zone T	°F	1311	1396
TIC-316	Mixing Zone T	°F	1287	1391
TIC-328	Riser Zone T	°F	1252	1380
TIC-329	Riser Zone T	°F	1235	1375
PDT-310	Mixing Zone Dp	in. H ₂ O	87	42
PDT-315	Transition Dp	in. H ₂ O	56	34
PDT-320	Riser Dp	in. H₂O	8	25



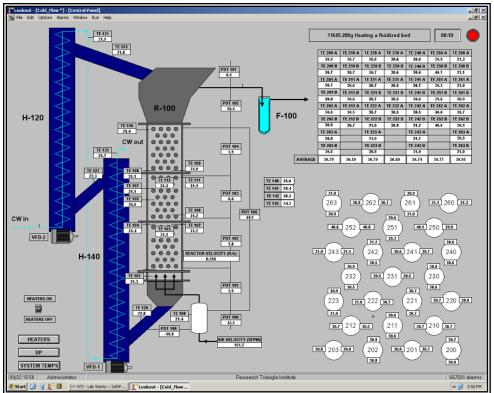
Path Forward for HTDP CFD Modeling

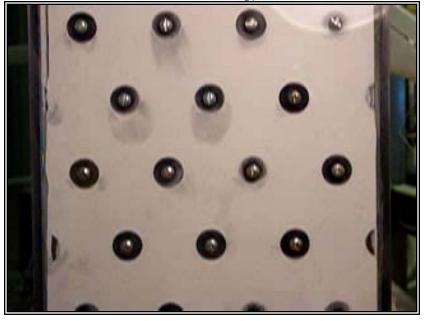
- Validate NETL's CFD models with data from Eastman testing
- Use validated models to assist in design of 50 MW_{e} prototype unit
 - Reactor geometries (heights, diameters, return leg locations, gas/solid distribution)
 - Optimize hydrodynamics and reaction kinetics for maximum performance
 - Evaluate start up and shut down procedures for prototype unit
- Develop CFD modeling options for dual loop HTDP system
- Evaluate regenerator heat integration
 - Optimize use of exothermic regeneration heat to heat incoming solids
 - Evaluate options for system start up
 - Light off additives
 - Fuel injection
- · Optimize solids feed control for regeneration reactor

RTI's Dry Carbonate Process Capture and Purification of CO₂ from Power Plant Flue Gas

Heat Transfer – Reactor Design

Parameters	Uncertainties
 Tube Layout Superficial Gas Velocity Solids Circulation Rate Gas Distributor Layout Sorbent Properties (Particle size, shape, density, thermal conductivity, etc.) 	 Fluid dynamics in reactor System ΔP Solid density distribution Thermal gradients Heat transfer coefficients Mass transfer rates Mixing, bubbling phenomena

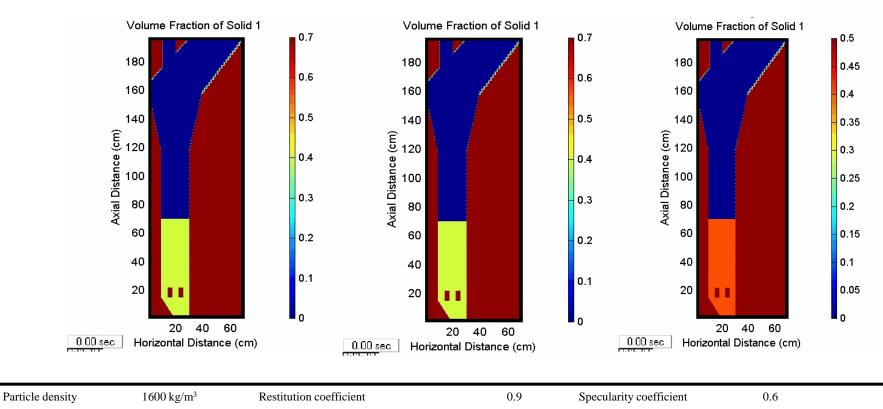

Combination of CFD modeling and actual prototype testing will be needed to optimize reactor design


RTI's Prototype Test Unit

HTU Process Control Interface

Highly instrumented unit allows for 'tuning' and validation of CFD models

Fluidization at u_{sf}=1.5 ft/s



Constructed from clear, high melting point, polycarbonate to allow for visual observation to visually compare HTU and CFD hydrodynamics

Effect of Gas velocity on Solid Volume Fraction Distribution (MFIX simulations)

Inlet Gas: Air at atmospheric pressure Gas Inlet Vel.: 0.39 ft/s 0.65 ft/s

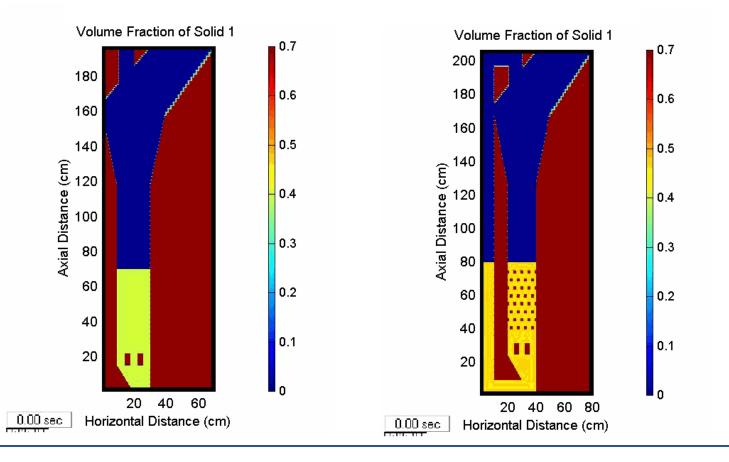
1.3 ft/s

15

www.rti.org

Particle Diameter

70 µm


0.6

Restitution coefficient at the wall

Effect of Heat Transfer Tubes on Hydrodynamics (MFIX Simulations)

With out Tube Bank

With Tube Bank

16

RTI's CFD Modeling Efforts For Dry Carbonate Process

Completed Work:

- Developed CFD model of contactor designs using MFIX
 - Evaluated effect of superficial gas velocity
 - Evaluated effect of heat internals
 - Completed actual testing with prototype unit
- Developing CFD model of contactor designs using Fluent

Planned Effort:

- Validate CFD models with prototype data
- Utilize validated CFD models to rapidly screen heat transfer configurations
- Utilize CFD models to optimize reactor design
 - Minimize pressure drop
 - Maximize gas throughput
 - Optimize recovery of reaction enthalpy (heat management)

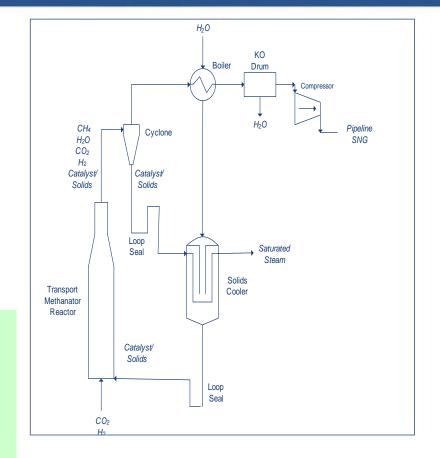
Transport Reactor-based CO₂ Reuse Process

Sabatier Reaction

 $CO_2 + 4H_2 = CH_4 + 2H_2O$ $\Delta H = -165kJ/mol CO_2$

Current Process Technology

- Multiple reactors and heat exchangers in series
- · Reactant gas dilution with product (recycle product)


Innovation: Improved single-pass conversion

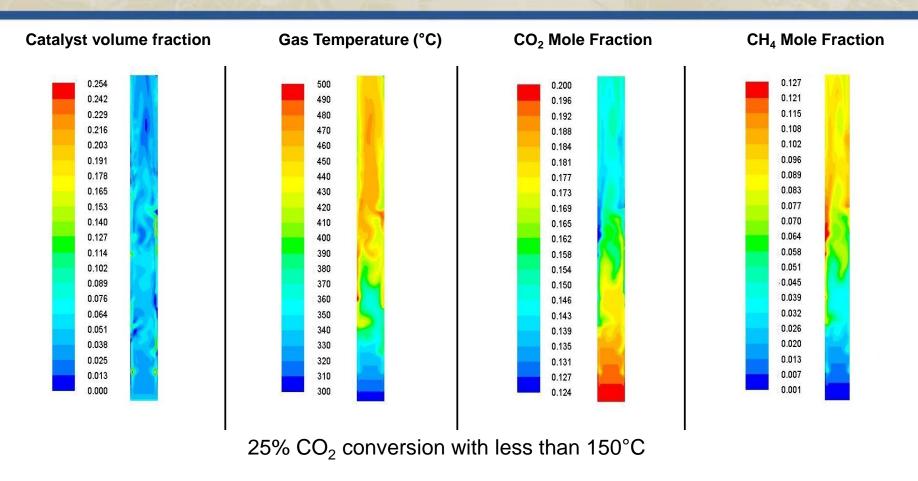
- Improved management of exothermic reaction enthalpy
- Highly-active, attrition resistant, fluidized catalyst

CFD Modeling Opportunities

Optimize single pass conversion through modeling of

- Hydrodynamic properties
- Reaction kinetics,
- Heat and mass transfer

Catalyst Distribution in Reactor (12" ID & 60 ft High)


2.50e-01	
2.37e-01	
2.25e-01	
2.13e-01	
2.00e-01	
1.88e-01	
1.75e-01	
1.62e-01	
1.50e-01	
1.38e-01	
1.25e-01	
1.12e-01	
1.00e-01	
8.75e-02	
7.50e-02	
6.25e-02	
5.00e-02	
3.75e-02	
2.50e-02	
1.25e-02	
0.00e+00	
ontours of Volume fraction (phase-solid) (Time=5.0000e-02) Apr 05, 2010 ANSYS FLUENT 12.1 (2d, dp, pbns, eulerian, spe, lam, transient)

19

Spatial Profiles of Various Bed Properties (12" ID & 60 ft High)

Summary

- RTI is actively engaged in RD&D of a number of fluidized-bed processes at different stages of development (bench-scale through large prototype-scale)
- RTI is developing CFD capabilities to assist in these RD&D efforts
- RTI's goal is to couple CFD modeling with actual test results to enhance research efforts
 - Reactor design issues for HTDP
 - Desulfurization performance based hydrodynamics and reaction kinetics for HTDP
 - Heat transfer for the RTI's dry carbonate process
 - Solids handling, pressure drop and gas/solid distribution for dry carbonate process
 - Heat management for Sabatier-base CO₂ reuse process

Acknowledgements

RTI Researchers

Dr. Luke Coleman, Dr. Jason Trembly, Mr. Gunnar Henningsen, Mr. Thomas Nelson, Mr. Matthew Anderson

DOE/NETL Computational and Basic Sciences Group

Dr. Madhava Syamlal, Dr. Mehrdad Shahnam, Dr. Chris Guenther, and Dr. E. David Huckaby

Illinois Institute of Technology

Professor Dimitri Gidaspow

PSRI

Dr. Ted Knowlton, Dr. Ray Cocco, and Dr. Reddy Karri

Governing Equations

Continuity equations (g-gas, s-solid):

$$\frac{\partial (\rho_s \varepsilon_s)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s \vec{\upsilon}_s) = \sum_{n=1}^N R_{gn}$$
$$\frac{\partial (\rho_s \varepsilon_s)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s \vec{\upsilon}_s) = \sum_{n=1}^N R_{sn}$$

Momentum Equations:

$$\frac{\partial(\rho_{g}\varepsilon_{g}\vec{v}_{g})}{\partial t} + \nabla \cdot \left(\rho_{g}\varepsilon_{g}\vec{v}_{g}\vec{v}_{g}\right) = \varepsilon_{g}\rho_{g}\vec{g} - \varepsilon_{g}\nabla P + \nabla \cdot \overline{\overline{\tau}}_{g} + \beta\left(\vec{v}_{s} - \vec{v}_{g}\right) - R_{gs}\left(\xi_{gs}\vec{v}_{s} + \overline{\xi}_{gs}\vec{v}_{g}\right)$$
$$\frac{\partial(\rho_{s}\varepsilon_{s}\vec{v}_{s})}{\partial t} + \nabla \cdot \left(\rho_{s}\varepsilon_{s}\vec{v}_{s}\vec{v}_{s}\right) = \varepsilon_{s}\rho_{s}\vec{g} - \varepsilon_{s}\nabla P - \nabla P_{s} + \nabla \cdot \overline{\overline{\tau}}_{s} + \beta\left(\vec{v}_{g} - \vec{v}_{s}\right) + R_{gs}\left(\xi_{gs}\vec{v}_{s} + \overline{\xi}_{gs}\vec{v}_{g}\right)$$

Fluctuating energy equation:

$$\frac{3}{2} \left[\frac{\partial (\rho_s \varepsilon_s \theta)}{\partial t} + \nabla \cdot (\rho_s \varepsilon_s \theta \vec{\upsilon}_s) \right] = \left(-P_s \overline{\overline{I}} + \overline{\overline{\tau}}_s \right) : \nabla \vec{\upsilon}_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma + \Pi_s$$

www.rti.org

Constitutive Equations

Solid pressure:

$$P_{s} = \varepsilon_{s} \rho_{s} \theta [1 + 2(1 + e)\varepsilon_{s} g_{0}]$$

Stress tensor:

$$\vec{\vec{\tau}}_{g} = \mu_{g} \left(\nabla \vec{\upsilon}_{g} + \nabla \vec{\upsilon}_{g}^{T} \right) - \frac{2}{3} \mu_{g} \nabla \cdot \vec{\upsilon}_{g} \vec{\vec{1}} \qquad \qquad \vec{\vec{\tau}}_{s} = \mu_{s} \left(\nabla \vec{\upsilon}_{s} + \nabla \vec{\upsilon}_{s}^{T} \right) + \left(\xi_{s} - \frac{2}{3} \mu_{s} \right) \nabla \cdot \vec{\upsilon}_{s} \vec{\vec{1}}$$

Viscosity:

MFIX:

$$\mu_{s} = \left(\frac{2+\alpha}{3}\right) \left[\frac{\mu_{s}^{*}}{g_{0}\eta(2-\eta)} \left(1+\frac{8}{5}\eta\varepsilon_{s}g_{0}\right) \left(1+\frac{8}{5}\eta(3\eta-2)\varepsilon_{s}g_{0}\right) + \frac{3}{5}\eta\mu_{b}\right]$$
$$\mu_{s}^{*} = \frac{\rho_{s}\varepsilon_{s}g_{0}\theta\mu}{\rho_{s}\varepsilon_{s}g_{0}\theta + \left(\frac{2\beta\mu}{\rho_{s}\varepsilon_{s}}\right)} \qquad \mu = \frac{5}{96}\rho_{s}d_{p}\sqrt{\pi\theta} \qquad \xi_{s} = \frac{256}{5\pi}\eta\mu\varepsilon_{s}^{2}g_{0}$$

FLUENT:

$$\mu_{s} = \frac{4}{5} \varepsilon_{s}^{2} \rho_{s} d_{p} g_{0} (1+e) \left(\frac{\theta}{\pi}\right)^{1/2} + \frac{10 \rho_{s} d_{p} \varepsilon_{s} \sqrt{\theta \pi}}{96(1+e) g_{0}} \left[1 + \frac{4}{5} g_{0} \varepsilon_{s} (1+e)\right]^{2}$$

 $\xi_s = \frac{4}{3}\varepsilon_s^2 \rho_s d_p g_0 (1+e) \left(\frac{\theta}{\pi}\right)^{1/2}$

50 DERTINAL

25

Constitutive Equations (Contd..)

Granular conductivity: MFIX:

FLUENT:

$$\kappa_{s} = \frac{150\rho_{s}d_{p}\varepsilon_{s}\sqrt{\theta\pi}}{384(1+e)g_{0}} \left[1 + \frac{6}{5}\varepsilon_{s}g_{0}(1+e)\right]^{2} + 2\rho_{s}\varepsilon_{s}^{2}d_{p}(1+e)g_{0}\sqrt{\frac{\theta}{\pi}}$$

www.rti.org

Constitutive Equations (Contd..)

Collisional dissipation: MFIX:

$$\gamma = \frac{12}{\sqrt{\pi}} (1 - e^2) \frac{\varepsilon_s g_0}{d_p} \theta^{\frac{3}{2}} \qquad \gamma = 3(1 - e^2) g_0 \rho_s \varepsilon_s^2 \theta \left(\frac{4}{d_p} \sqrt{\frac{\theta}{\pi}} - \nabla \cdot \vec{\upsilon}_s \right)$$

FLUENT:

Exchange term: $\Pi_{s} = -3\beta\theta + \frac{81\varepsilon_{s}\mu_{g}^{2}\left|\vec{v}_{g}-\vec{v}_{s}\right|^{2}}{g_{0}d_{p}^{3}\rho_{s}\sqrt{\pi\theta}}$

Radial distribution function:

www.rti.org

Species and Energy Balance and Constitutive models

Species balance equations:

$$\frac{\partial \left(\rho_{g}\varepsilon_{g}X_{gn}\right)}{\partial t} + \nabla \cdot \left(\rho_{g}\varepsilon_{g}\vec{\upsilon}_{g}X_{gn}\right) = R_{gn}$$
$$\frac{\partial \left(\rho_{s}\varepsilon_{s}X_{sn}\right)}{\partial t} + \nabla \cdot \left(\rho_{s}\varepsilon_{s}\vec{\upsilon}_{s}X_{sn}\right) = R_{sn}$$

Energy balance equations:

$$\begin{split} \mathcal{E}_{g} \mathcal{P}_{g} C_{pg} \left[\frac{\partial T_{g}}{\partial t} + \vec{v}_{g} \cdot \nabla T_{g} \right] &= -\mathcal{E}_{g} \frac{\partial P}{\partial t} + \overline{\vec{\tau}}_{g} : \nabla \vec{v}_{g} + \nabla \cdot \left(k_{g} \nabla T_{g}\right) + \gamma_{gs} \left(T_{s} - T_{g}\right) - \Delta H_{g} + \gamma_{Rg} \left(T_{Rg}^{4} - T_{g}^{4}\right) \\ \mathcal{E}_{s} \mathcal{P}_{s} C_{ps} \left[\frac{\partial T_{s}}{\partial t} + \vec{v}_{s} \cdot \nabla T_{s} \right] &= -\mathcal{E}_{s} \frac{\partial P}{\partial t} + \overline{\vec{\tau}}_{s} : \nabla \vec{v}_{s} + \nabla \cdot \left(k_{s} \nabla T_{s}\right) + \gamma_{gs} \left(T_{g} - T_{s}\right) - \Delta H_{s} + \gamma_{Rs} \left(T_{Rs}^{4} - T_{s}^{4}\right) \\ \gamma_{gs} &= \frac{C_{pg} R_{os}}{\exp \left(C_{pg} \frac{R_{os}}{\gamma_{gs}^{0}}\right) - 1} \\ \mathcal{E}_{g} \mathcal{P}_{g} C_{pg} \left[\frac{\partial T_{g}}{\partial t} + \vec{v}_{g} \cdot \nabla T_{g} \right] &= \overline{\vec{\tau}}_{g} : \nabla \vec{v}_{g} + \nabla \cdot \left(k_{g} \nabla T_{g}\right) - \Delta H_{g} \\ \mathcal{E}_{s} \mathcal{P}_{s} C_{ps} \left[\frac{\partial T_{s}}{\partial t} + \vec{v}_{s} \cdot \nabla T_{s} \right] &= \overline{\vec{\tau}}_{s} : \nabla \vec{v}_{s} + \nabla \cdot \left(k_{s} \nabla T_{s}\right) - \Delta H_{s} \end{split}$$

28

RTI's Dry Carbonate Process Support for Development of 1 TPD CO₂ Pilot Unit

Fluidized, Moving-bed, Heat Transfer Unit

- Designed to address uncertainties in the 1TPD design
- Develop a fundamental understanding of how heat transfer internals affect the hydrodynamic and heat transfer characteristics of a moving, fluidized-bed reactor
- Hydrodynamic Properties
 - ΔP across bed and process, gas-solids mixing
 - Regions of operability (solids and gas flow)
 - · Gas-solids separation
- Heat Transfer Characteristics
 - Effect of gas and solids flow rates on overall heat transfer coefficient
 - · Effect of tube layout on overall heat transfer coefficient

RTI's Dry Carbonate Process Current R&D Efforts – 1 TPD CO₂ scale Testing

Process and Sorbent Evaluation Efforts

Bench-Scale R&D Fluidized, Moving-Bed Existing technology Engineered-Na₂CO₃ • Effective heat transfer Inexpensive materials Good gas-solid contact • High CO₂ loadings Sorbent velopment Process • Acceptable ΔP Maintain high reactivity **Pilot Demo** Sufficient Residence time to Acceptable physical properties $(1 \text{ ton } CO_2 / day)$ load ~20 wt% CO₂ on sorbent Attrition resistance Particle density Solids Handling Surface area • Move 10⁶s lb/h Existing technology **Economic Evaluation** 30

Internal/External Cost and Performance Evaluations

5/14/2010

Basis for CFD Simulations

Reaction: CO₂+4H₂=CH₄+2H₂O

Kinetic equation (r: mmoles/g h kPa; P: kPa):

 $r = k_1 P_{CO_2} P_{H_2}^{0.5} / (P_{H_2}^{0.5} + k_2 P_{CO_2})$ $k_1 = 1.46E9 \exp(-9460/T)$ $k_2 = 1.18E - 3\exp(3710/T)$

Heat of reaction: -165 kJ/mol

Transport reactor: Diameter: 2" – 12" Height: 60 ft

Material property:

Gas: Incompressible ideal gas Catalyst: Particle size: 80 µm Density: 1600 kg/m3

> Specific heat: 940 j/kg k Thermal conductivity: 130 W/m K

Boundary conditions: Wall:

Gas: No slip Catalyst: Johnson Jackson partial slip No heat flux

Inlet:

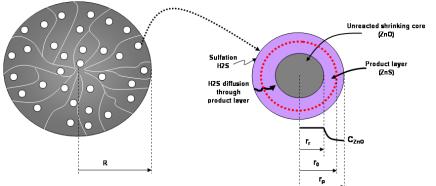
Mass flow rate: 448.378 lb/hr Mass ratio (solid : gas) = 10 :1 Gas composition (mole fraction): CO_2 = 0.1851; H₂= 0.7317; CH₄= 0.0832 Gas temperature: 250°C Catalyst temperature: 250°C

Outlet:

Prescribed pressure: 314.70 psi

Initial conditions:

Temperature: 300° C or 250° C No catalyst Gas velocity: 0 Gas composition (mole fraction): $CO_2 = 0.1851$; $H_2 = 0.7317$; $CH_4 = 0.0832$ ³¹


Development of CFD Model for HTDP

DOE/NETL CRADA tasks

- Develop a CFD model
- Validate CFD model with 0.3 MW_{e} HTDP pilot plant data from Eastman testing
- Use validated model to optimize design of 50 MW_{e} demonstration HTDP system

Model Development

- Reaction Models
 - Overlapping grain model
 - Arrhenius rate expression
 - H₂S diffusion in RTI-3 pore structure
 - Knowledge of RTI-3 pore structure
- Fluid Dynamics (Fluent)
 - Continuity, momentum, and energy for each phase
 - Coupling phases achieved through inter-phase exchange terms
 - Mass transfer between phases modeled through heterogeneous reaction schemes
- System Geometry

