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Abstract

This paper shows how undergraduates are introduced to computational fluid dynamics
(CFD) in research projects.  The students first solve problems in their textbook, then solve
extensions to them (i.e. they remove assumptions).  Then they solve a simple version of their
ultimate problem to learn how to verify their solution.   Finally they solve the research problem.

Introduction

While transport phenomena textbooks are good at presenting the fundamentals, most of
the problems are one-dimensional, since that is the limit of the mathematical ability of most
undergraduates.  Today’s students are motivated by real-life examples, but they have limited
time.  With the advent of sophisticated software, however, it is possible for undergraduates to
solve meaningful transport and flow problems in two and three dimensions.  This talk presents
the methods used to introduce undergraduates to Comsol Multiphysics and the problems they
solve in a research project format.

The learning occurs in three stages.  First, the students learn to solve problems in their
textbooks and learn to validate the solution.  This gives confidence that the computer program is
solving the right equations.  Next, they solve more complicated 2D problems, which go beyond
their textbooks by removing assumptions.  In this stage, students are confronted with the
necessity of translating their problem into the notation of the computer program and proving they
have solved the problem correctly even though there is no analytic solution.  They learn how to
check their data input to the program, look for artifacts in the solution, and use mesh refinement
to estimate the numerical error. They explore the many ways to analyze and view the results,
from streamlines, contour plots, integrals, etc. of the dependent variables as well as derived
quantities (defined in terms of the dependent variables).  For example, is the total flow in equal to
the total flow out? – not a straightforward question when there are multiple inputs and outputs
and the solution is numerical.  The second step is illustrated in detail to show the breadth of
analysis techniques.

The third stage in the learning process is to solve their research problem.  Examples done
during the past year (many suggested by research groups or companies) are shown in Table 1.

Valuable features of Comsol Multiphysics include the graphical user interface, the tools
for creating the geometry and internal boundaries and domains, automatic mesh generation and
refinement, the ability to solve different equations on different meshes (all in the same problem),
the multi-physics capability which permits addition of equations to represent additional
phenomena, the ability easily to make parameters depend upon the solution, the parametric
solver, and the post-processing graphical features.



Table 1. Research Problems Tackled in 2006-7 by Undergraduate Chemical Engineering Students

Thermal field flow fractionation – the effect of entry effects;
Use of ferrofluid to remove arsenic from water supplies;
Flow of viscoelastic fluids in contractions;
Movement of nanoparticles in gels;
Mixing of pharmaceuticals in orbital mixers and injection/remove devices;
Mixing and flow in Swagelok and Circor Tech devices;
Flow in expansions – pressure drop and entry/recovery lengths;
Flow of water in porous media;
Perturbation method applied to the flow of a ferrofluid in an oscillating magnetic field;
Hole pressure problem – used to measure normal stresses in polymers;
Calculation of vortex viscosity of ferrofluids.

Organization of the Research Projects

The procedure for teaching students how to use CFD programs is described.  An
essential element of the process is to make the steps small and manageable, with the eventual
goal clearly specified.  The quarter is 10 weeks long.  The first two weeks are spent introducing
students to the program and having them solve the textbook problems, and extensions.  Most of
the students have already taken a computer course in which they have used the program some,
but only in problems that were well defined.  Weeks 3 and 4 are devoted to solving two-
dimensional problems that are simplifications of their final project.  The problems contain the
essential features of the final project so that they have to address those features.  For example,
many three-dimensional problems have features that can be studied in two dimensional cases,
too.  Since the two-dimensional cases run much faster, they are used first when the students are
learning.  Then, when the three-dimensional real case is studied, fewer mistakes will be made
and the project will run more smoothly.  Weeks 5 to 9 are spent on the project.  The project is
defined in a broad context, as illustrated in Figure 1.  The tenth week is devoted to finishing the
work, preparing and giving the oral presentation, providing information for a project web page,
and writing the final report.  Sometimes the final report is finished after finals.  During the
quarter, the student meets with the instructor once per week to show their current work.  In
addition, the entire group of students meets together to discuss mutual problems and solutions.
Progress reports are given, which is a motivating factor.  One arrangement that works very well is
to have several students working on similar and related projects.  Then they can learn from each
other and interact with each other.  Progress made by one student is then a motivating factor for
their partners.  For example, in Autumn, 2007, correlations are being developed for pressure drop
in flow devices: tees, ells, and devices with multiple input/output ports.  Thus, each student is
working on a different device, but they are all doing basically the same thing.



Hole Pressure for Newtonian Fluids
Spring, 2007, Ch.E. 499 Project  for Stephanie Yuen

Project  description: The project simulates the flow of a Newtonian fluid between flat
plates.  A hole is drilled in one of the plates and the pressure is measured at the bottom
and across from the hole.  That pressure can be related to polymer properties if the fluid is
viscoelastic.  This is a problem one of Prof. Finlayson’s graduate students did in 2D when
finite elements were just beginning.  Can you believe we used only 28 elements?  Now it
is time to do it with more elements and in 3D and compare with published experimental
results.

First steps:
Do the problem in Table 10.1
Read the paper by my students
Meet with group on first two Tuesdays.

First week – I’ll demonstrate Comsol Multiphysics
Second week – Have done the problem in Table 10.1; read the paper by my

students; have read about your problem and have questions.
Milestones
Run the existing code, from the polymer paper by BAF
Change the dimensions and parameters to do the exact specs in the experiment
Prepare a 3D geometry
Solve the problem in 3D

At the end of the quarter you need to submit: written report, PowerPoint presentation,
Comsol Multiphysics dataset, and suggested web page.

Here is the checklist for a proper submission of results.
1. Say what problem you are solving;
2. Give the shape and dimensions, number of elements, degrees of freedom;
3. Give the parameters in the equation and identify the boundary conditions;
4. Tell how you solved it;
5. Give checks to your answer (previous similar results, etc.);
6. Give your results, including pertinent plots and integrals;
7. Your report should have an Appendix with sample calculations.

Figure 1. Sample Statement of Goals



The Learning Process

Step One – Solve Problems with Known Solution
Shown in Figures 2 and 3 are two problems that are assigned.  The student is to solve

them, make plots of them, and report back to the instructor.  This exercise gives the student
confidence, since they are able to solve the problems, although maybe the comparison to their
textbook is difficult the first time.  It also gets them ‘over the hump’ on how to access the
program, use it, save their results, print figures, etc.   A printed copy of the mesh is always
required, to emphasize the importance of mesh refinement.  Figure 2 involves cylindrical
geometry, and the student learns about inlet/outlet flow conditions.  The pressure is set at the
outlet and the velocity is set at the inlet.  The solution gives the pressure drop in the device,
which can be compared with the Hagen-Poiseuille law.  The student also learns how to setup
problems in cylindrical geometry.  Figure 3 involves geometries that are not quite square, and
boundary conditions that are not uniform.  Thus, the student learns how to insert such boundary
conditions into the computer code, and how to draw the boundaries.

Figure 2. Flow in Pipe Figure 3. Heat Transfer Problem
The use of the computer program, Comsol Multiphysics®, is aided by reference to the

book, Introduction to Chemical Engineering Computing, which has step by step instructions (1).
Table 10.1 from that reference is shown in Figure 4.  Reference (1) also has screen shots of the
different steps: draw the domain, pick the equation and set the parameters, set the boundary
conditions, create the mesh, solve the problem, and examine the solution.  When drawing the
domain, one learns how to resize objects, reproduce repeating patterns easily, create multiple
domains with different properties.  When setting the equations, one has complete flexibility
including the Navier-Stokes equation, the convective diffusion equation, the energy equation, in
two or three dimensions, as well as other modes, such as Nernst-Planck equation.  The
parameters can be functions of the solution: one merely needs to be able to type the function in a
box.  There are a variety of choices for boundary conditions; this is a good lesson because some
combinations are physically realizable and some are not; thought is required!  The mesh is
created automatically to a scale which you set, and it can be refined automatically or adaptively
or in regions the student specifies.  If the mesh is not sufficiently fine, either the solution method
does not converge (infrequently) or oscillations are observable.  Thus, one must be alert.
Postprocessing options are illustrated below.



Open FEMLAB (Note: FEMLAB with MATLAB® makes and reads .mat and .fl files.  FEMLAB
  stand-alone only makes and reads .fl files.)
• Choose Axial Symmetry 2D
• Choose Chemical Engineering/Momentum/Incompressible Navier-Stokes and click OK

Draw • Click on the square icon and draw a rectangle
• Double click on the object to set exact dimensions
• Use Option/Axis/Grid settings to set the plotting range on the screen

Physics/Subdomain Settings
• Select domain 1; set ρ = 0, η = 1180 (Newtonian), Fx = Fy = 0

Physics/Boundary Settings
• Click on a boundary number (1 through 4) (Note: the corresponding boundary is
  highlighted in red
• Set the boundary condition for each boundary segment

1 – slip/symmetry; 2 – inflow/outflow, v = 0.02; 3 - Outflow/pressure; 4 - no slip
Mesh • Click once on triangle icon or select mesh/initialize mesh

• Note how many elements are used (you should report this)
• Click on divided triangle icon to refine the mesh if desired
• To refine locally, click on the ‘refine selection’ icon, select some elements

Solve • Click on ‘=’ to solve the problem (click on to re-start from the last solution)
Postprocessing • Choose Domain Plot Parameters

• Select the desired quantities for contour plots and surface plots
• Or, click on the arrow plot icon, or streamline plot icon (flow plot)
• Choose Cross Section Plot Parameters to make line plots.
• Plot the v velocity along a line by selecting v velocity, put in the (r,z) coordinates of the
   beginning and ending points.

You can refine the mesh (click the more refined mesh symbol) and re-solve the problem.  This gives you
an indication of the accuracy of the solution.  When you have a figure showing, you can export it in a
figure format you choose such as jpeg.  You always want a figure showing the mesh, as well as parts of
the solution.

To document your work, show the domain and mesh, give the dimensions, identify the boundary
conditions, give values of parameters you used in the subdomain options, list how many elements and
degrees of freedom were used, and indicate how solutions with different number of elements compare.
Then give the results and indicate why they are reasonable.

Table 10-1. Using FEMLAB to solve transport problems
(This example is for a 2D flow problem.)

Figure 4. Table 10.1 from Introduction to Chemical Engineering Computing



Step Two – Solve More Complicated Problems
The next lesson that must be learned is how to make the equations nondimensional, and

how to report results that others can use.  An important checklist is:
• What velocity is 1.0 in the computer?
• What distance is 1.0 in the computer?
• What boundary conditions did you use?
• What is the Reynolds number, and where did you use it (see below)?

The Navier-Stokes equation is

€ 

ρu •∇u = −∇p +∇ • [η(∇u+∇uT )]

If one uses us, ps, and xs for the velocity, pressure, and distance standards, the dimensionless
equations can be rewritten as

€ 

u'•∇'u'= −∇p'+ 1
Re

∇'•[(∇'u'+∇'u'T )] if ps = ρus
2.

or as

€ 

Reu'•∇'u'= −∇p' '+∇'•[(∇'u'+∇'u'T )] if ps =ηus / xs .

One must be careful to make sure the dimensions drawn for the problem are consistent with this
non-dimensionalization.  In both cases, the Reynolds number is given by 

€ 

Re = ρusxs /η .  The first
equation is used for high flow rates while the second one is used for low flow rates, since
convergence is easier in those cases, respectively.  In microfluidics, too, often the Reynolds
number is low, and non-dimensional velocity solutions for all cases with Reynolds number less
than one practically coincide.  Thus, only one solution need be done for a range of Reynolds
numbers.

In order to bring the lesson home, the students are asked to take a given non-dimensional
solution along with specified standard velocity, density, size, and viscosity values (with
dimensions) and provide the dimensional values derived from the non-dimensional solution.  It is
instructive to do this with both forms of Reynolds numbers to show that the velocities are the
same (since the non-dimensional velocities are the same), and the dimensional pressure drops are
the same even though the non-dimensional pressure drops differ in the two formats.

The solutions are found using the finite element method.  While undergraduates are not
expected to understand the details of the finite element method, it is possible to show them the
essential features: dividing a region into smaller regions, approximating a function on each small
region, having some means to determine the numerical values for the approximation, and seeing
the effect of using more smaller finite elements.  All of these steps are illustrated in a PowerPoint
presentation; the one that is hard for undergraduates is the third one: determining the numerical
values.  This is done in the computer program by using the Galerkin method, which involves



integrating by parts and some simple functional analysis.  The undergraduates are not expected to
understand these details, although the instructor is happy to discuss them, but it is essential that
the students realize that an approximation is being made and the only way to test the accuracy of
the approximation when the solution is not known is to examine solutions obtained on finer and
finer meshes.

Once the solutions are found, they should be examined in great detail.  Available in
Comsol Multiphysics are a variety of tools.  One can plot a variable as a contour plot, or a color
plot, or in a line drawing across some part of a two- or three-dimensional domain.  One can also
integrate variables over boundary segments (or all of them) or over the domain (or parts of it if it
is constructed that way).  One can plot and integrate not only the variable itself, but variables
defined as equations.  For the problem of flow in a pipe, Figure 2, students are asked to calculate
the flow rate in and the flow rate out; they should be the same (and they are to six or more
significant figures).  The pressure drop for a given length must be compared with the analytical
solution, and this can be done in both dimensionless terms and dimensional terms.  Two or more
meshes should be tried, and the pressure drop compared.  Streamlines can be plotted, and in this
case they should be straight lines.  Other complications involve different boundary conditions
(slip or symmetry conditions on the axis in axi-symmetric geometry), no slip or velocity specified,
specifying the pressure or velocity (but not both).  When doing convective diffusion problems, if
the Peclet number is large the mesh must be small, or a Petrov-Galerkin option should  be used.
These matters are discussed if the problems involve convection and diffusion.

Step Three – Solve Research Problem
The research problem obviously involves a problem whose solution that is not known.  It

is helpful, though, if the student can solve similar problems whose solution is known.  This
provides a check and is a confidence builder.  As an example, suppose a student is going to
determine a correlation for pressure drop in a flow element such as a tee (in laminar flow).  At
low Reynolds number (below 1.0) the form of the correlation is

€ 

Δp xs
ηvs

= K ,

and one only needs to solve the flow problem to determine K.  This has been done for other
cases, which are illustrated in Table 2 (2).  This table is part of a chapter in a book; it includes
work done by ten prior undergraduate researchers.



Table 2. Coefficient K for contractions and expansions at small Reynolds number (2)

Example Results

Case 1 - Flow in small orifices
When an orifice is used in a small device, the thickness of the orifice affects the pressure

drop, particularly in laminar flow.  Febe Kusmanto did simulations of this as shown in Figure 5.
The dotted lines are an analytical solution due to Dagan, et al. (3) for Stokes flow.  This work was
published (4) and also corrects a misleading impression in the literature (5).  Once a solution is
obtained, it is possible to gain insight into the solution, by looking at the streamlines, as in Figure
6.  Additional complications can also be considered, as shown in Table 3.

Column1 Picture KL

2:1 pipe/planar 7.3/3.1

3:1 pipe/planar 8.6/4.1

4:1 pipe/planar 9.0/4.5

45 degrees tapered, planar, 3:1 4.9

28.07 degrees tapered, planar, 3:1 10.8

3:1 square (quarter of the geometry) 8.1

Table III. Coefficient K L for contractions 
and expansions for 
Re  negligbily small

vs = average velocity, xs = thickness or diameter, both in the small section



Figure 5. Excess pressure for  orifices with a non-negligible thickness

Figure 6. Streamlines and pressure profiles for Re = 0 (left) and 316 (right)

Table 3. Extensions to Orifice Problem

Does the temperature rise enough to affect the solution?
Just add in the temperature equation.

An adiabatic situation shows a temperature rise of less than one degree at the highest Reynolds
number.

Work done by Yuli Tan.

100 101 102 103100

101

102

Re

K

Compare Theory to Experiment

L/D = 0.092     
L/D = 0.28      
L/D = 0.75      
L/D = 1.14      
num. L/D = 0.092
num. L/D = 0.28 
num. L/D = 0.75 
num. L/D = 1.14 



Case2 – Mixing in a Serpentine Microfluidic Mixer
In microfluidic applications, mixing is slow because it is done mostly by diffusion unless

the flow geometry causes the fluid paths to mix.  The serpentine mixer shown in Figure 7(a) has
been designed to mix better in a smaller total length.  This problem was solved by Zachery Tyree;
first the Navier-Stokes equation was solved, and the streamlines are shown in Figure 7(b).  Then
the convective diffusion equation was solved, as shown in Figure 7(c).  Since the Peclet number
is large (2200) it was necessary to refine the mesh for the convective diffusion equation.  Thus,
the finite element problem is being solved on two meshes, one sufficient for the flow and the
other sufficient for the convective diffusion equation.  Furthermore, the convection-diffusion
problem is solved after the flow is solved.  This flexibility in Comsol Multiphysics makes the
solution much faster than it would be if all equations had to be solved simultaneously on the
same mesh.  Figure 8 shows the comparison with experiment (6) and Figure 9 shows the
concentration distribution internal to the device, which shows how the mixing actually takes
place.

(a) (b)

(c)
Figure 7. Serpentine mixer



  

Figure 8. Comparison with experiment (6)

Figure 9. Velocity profiles and concentration profiles inside serpentine mixer

Case3 – Mixing in a Pharmaceutical Device
One method of mixing chemicals for analysis is to use a process which injects one

chemical into a solution and then removes part of the solution (aspiration).  Nick Cox studied
such a device based on suggestions from Dr. Mark Petrich, Rosetta Inpharmatics, Inc.  The talk
will show a movie of the mixing that takes place.



Case4 – Examination of magnetic field for removal of arsenic from water
Jonathan Lundt, an undergraduate physics student, studied the problem of removing

arsenic from water.  The method is to add a magnetic material on which the arsenic absorbs and
then to remove the magnetic material (7,8).  The removal is achieved by passing the magnetic
solution through a bed (or steel wool) that is in an applied magnetic field.  The magnetic particles
then adhere to the steel wool.  His role was to find a geometry that would give the maximum
magnetic force.  One geometry, and its force magnitude, is illustrated in Figure 10.

Figure 10.  Geometry of packing and magnetic force field for removal of arsenic-coated magnetic
particles

Case 5 – Polymer mixing
In the Renton Wastewater Treatment plant near Seattle, a polymer is added to a solution of

sludge to encourage it to flocculate.  Then the stream goes to a centrifuge where the sludge is
removed and sent over the Cascade mountains for fertilizer in Eastern Washington.  To enhance
the mixing, a mixer was installed, but the mixing was still insufficient.  Sharpe Mixers helped
develop a project that eleven students worked on.  Shown in Figure 11 are the streamlines for a
simulation when a polymer is injected into the main stream.  The interesting feature discovered
by the students is that the power-law index of the polymer solution is very low (by
measurements) and turbulent flow only occurs at a higher Reynolds number for low power-law
indices.  Thus, the flow was in a regime which could have been laminar.  Figure 11 shows that
the polymer solution is not well mixed, and other simulations over eight feet show it still isn’t
well mixed, when the flow is laminar.  In this case, the instructor was willing to settle for a
Newtonian flow, since the problem is so complicated, but the students proceeded to use a non-
Newtonian model, not knowing it might be hard.  But they succeeded!



Figure 11.  Streamlines and polymer concentration at the exit

Case 6 – Transport Effects in Thermal Flow Field Fractionation
This case is treated in another presentation, paper 304c, with co-authors Nick Cox and

Pawel Drapala.

Case 7 – Three-dimensional hole pressure problem
Stephanie Yuen solved the two- and three-dimensional hole pressure problem for a

Newtonian fluid.  This geometry can be used with polymers to deduce the first normal stress
difference.  Shown in  Figure 12 are the velocity magnitudes for the two-dimensional problem
and for the center of the three-dimensional problem.  As can be seen, the two results are very
similar.

Figure 12. Flow profiles in the hole pressure problem

Case 8 – Mixing in a Three-dimensional T
It has long been recognized that in a two-dimensional T-sensor the mixing of two fluids is

entirely by diffusion.  Previous students have solved the problem and measured the mixing using
a mixing cup concentration and a variance defined below.



€ 

cmixing cup =
cu • dA

A
∫
u • dA

A
∫

,     variance =
(c − cmixing cup)2u • dA

A
∫

u • dA
A
∫

Daniel Kress studied the same situation but in a three dimensional case with two circular
channels coming together and forming a T with a third channel as the outlet.  There was no
problem creating the geometry because Comsol Multiphysics handles the complications of two
circular pipes joining in sideways to another circular pipe.  The inherent three-dimensional
nature of the problem is illustrated in Figure 13, where it is seen that regions near the walls have
more time to diffuse sideways because their velocity is smaller.  Figure 14 shows variance for a
variety of conditions.  Plotted there are two-dimensional variances for Peclet numbers from 14 to
288 as well as three-dimensional variances.  Figure 14 shows that there is a universal mixing
curve that can be determined even from a two-dimensional simulation.

Figure 13.  Concentration profiles in mixing device
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Figure 14. Variance as a function of length in the outlet leg



Case 9 – Flow of Water in Partially Saturated Soils
Comsol Multiphysics also has equations for flow through porous media.  Anna Moon

solved a one-dimensional case in which water flowed under pressure through a series of four
different soils.  The pressure profiles are shown in Figure 15.  This problem was one the author
originally tackled when studying the flow of water in dry soils, as in the Hanford Atomic Energy
Complex.  Once the one-dimensional problem was solved, it was easy to extend it to two
dimensions, as shown in Figure 16.

Figure 15. Pressure change when water flows through different soils

Figure 16. Two-dimensional injection into a porous media

Conclusions

The program Comsol Multiphysics is relatively easy to use for quite complicated
problems.  This allows undergraduates to perform meaningful simulations that go beyond their
textbook examples, challenge their creativity, and improve their problem-solving skills.  Results
of prior quarters are described on the web site:

http://courses.washington.edu/microflo/
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