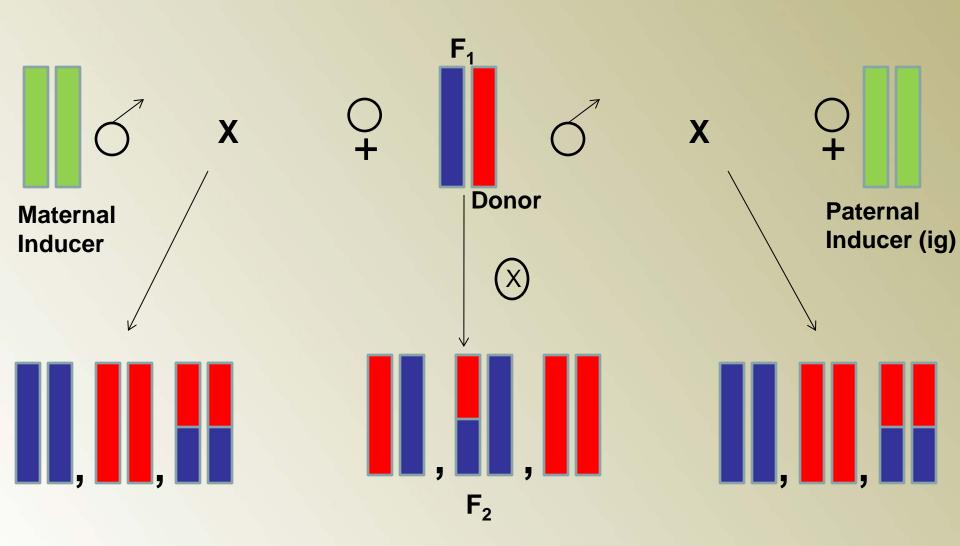
Use of Doubled Haploids in the Context of Genetic Resource Exploitation in Maize

Thomas Lübberstedt

Iowa State University, 1204 Agronomy Hall, Ames, IA, 50010, <u>THOMASL@iastate.edu</u> http://www.plantbreeding.iastate.edu/DHF/DHF.htm

Haploids are an effective tool to eliminate recessive genes leading to lethality or sub-vitality. The main application of (doubled) haploids (DHs) is production of completely homozygous and homogeneous lines in short time. Potentially masking genetic variation within lines or families is completely eliminated within DH lines. The usefulness of DH lines is significantly increased over $F_{2:3}$ or $F_{3:4}$ families, due to a significantly enhanced genetic variation among DH lines. Finally, substantial progress has been made in development in novel inducers and for understanding the genetics of haploid induction and response of donor plants to the induction process. The objective of this presentation is to study and discuss possibilities for using DH technology to support the germplasm enhancement in maize (GEM) allelic diversity project (http://www.public.iastate.edu/~usda-gem/). The GEM diversity project using DH lines to evaluate exotic introgressions in elite background taps into a wide diversity of maize races including Highland germplasm. No selection is made for agronomic performance in the ongoing GEM diversity project which may be an advantage to capture novel allelic diversity. Currently, 54 races (including 12 Highland races above 2,500 meters elevation) are represented in the DH materials. As a case study, the level of diversity present at the brown-midrib 3 locus, known to affect cell wall lignification, and its implications will be reported in detail.

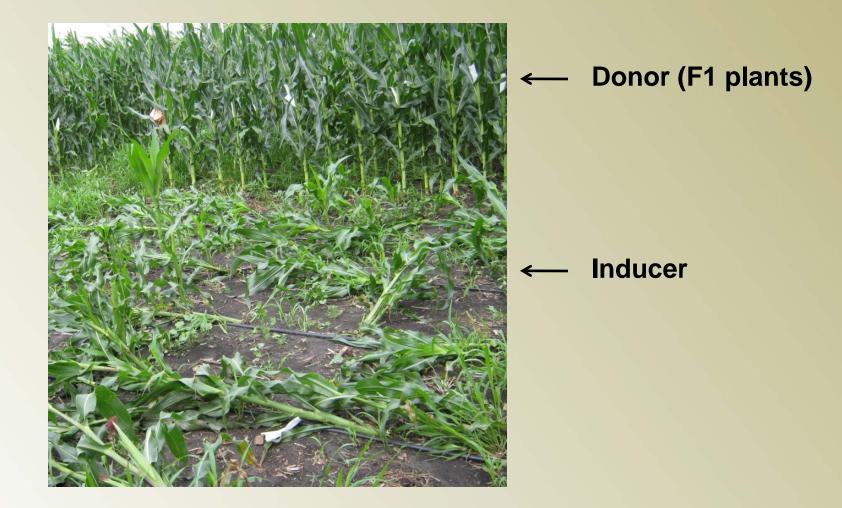

Use of Doubled Haploids in the Context of Genetic Resource Exploitation in Maize

Thomas Lübberstedt

- Status Quo Doubled Haploid (DH) Technology
- Challenges Genetic Resources
 - Adaptation
 - Significant Sequence Variation ?: Bm3 as case study
 - Linkage Drag

- Efficient Procedures / Outlook

In vivo Haploid Induction



Workflow & Bottlenecks Maternal DH Induction

Step	Challenge
Induction cross	 Inducer availability Induction rate
Haploid (embryo) selection	 Visual scoring Background effects Inducer DNA introgression ?
Genome doubling	 Colchicine:Toxic Alternative procedures Background effects
Selfing of DHs	 Chimera -> partial fertility

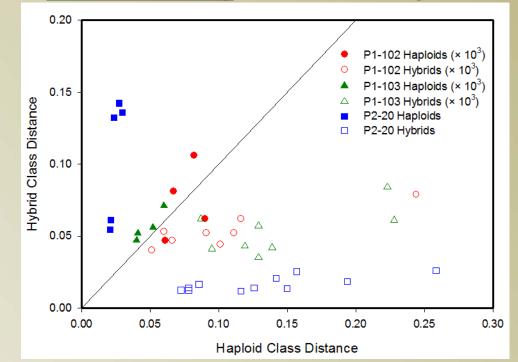
Need for Developing Adapted Inducers

Ames: July 18, 2010

Maternal Inducer Overview (Incomplete)

Name	Origin	% Haploids	Features
Spontaneous	ISU (Chase 1952)	0,1	
Stock 6	USDA (Coe 1959)	2	R-nj
KEMS, WS14	Russia, France (1980-1990ies)	7	R-nj
RWS, RWK-76, UH400	U. Hohenheim (2005)	8-10	R-nj
CAUHOI, CAU5, CAU019	CAU Beijing (2009)	2-10	R-nj, High Oil (CAUHOI)
PHI1-4	Procera, Romania (2010)	12-14	R-nj, Pl1
BHI series	ISU (2014)	>8	R-nj, PI1, other Midwest adapted, Popcorn

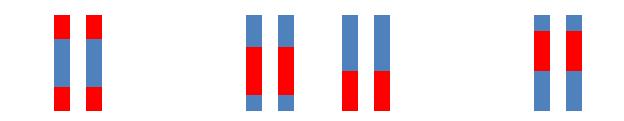
IOWA STATE UNIVERSITY Geiger 2009; Li et al. 2009; Rotarenco et al. 2010; Prigge et al. 2012 Department of Agronomy Crop, Soil, and Environmental Sciences
Xu et al; 2013; http://www.plantbreeding.iastate.edu/DHF/DHF.htm


Haploid Selection Method Overview

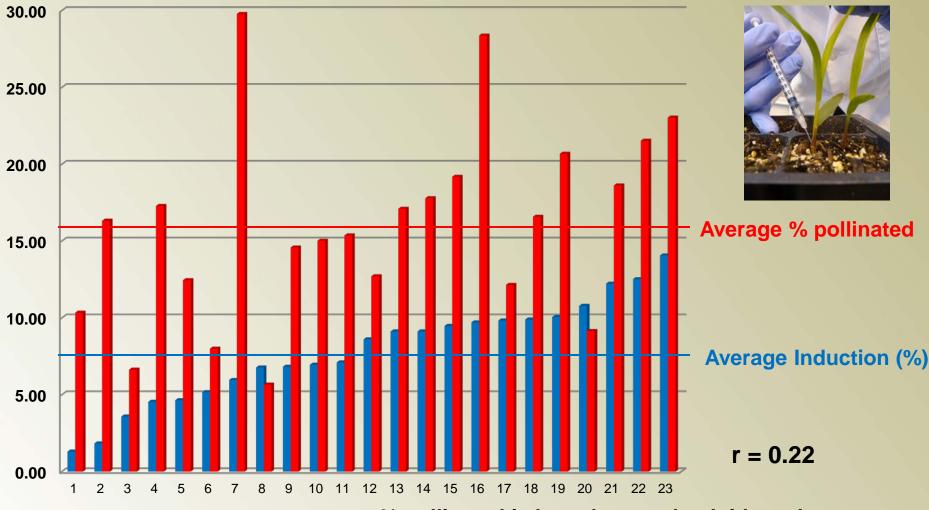
Color: R-nj; Red roots

Machine Sorting: NIRS, NMR (High Oil)

"Phenomic": Weight, MRI (Volume), ...


IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

Jones et al., 2012; Smelser et al., unpublished

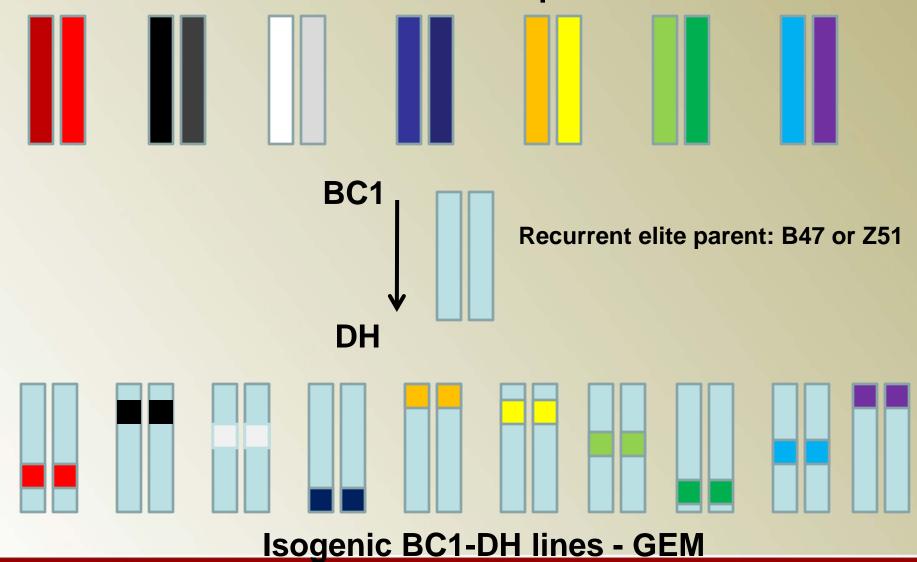

Maize Doubled Haploids: Colchicine Doubling

Induction and "Success Rates" (Haploid to DH Offspring)

% pollinated is based on no. haploid seed

Adaptation

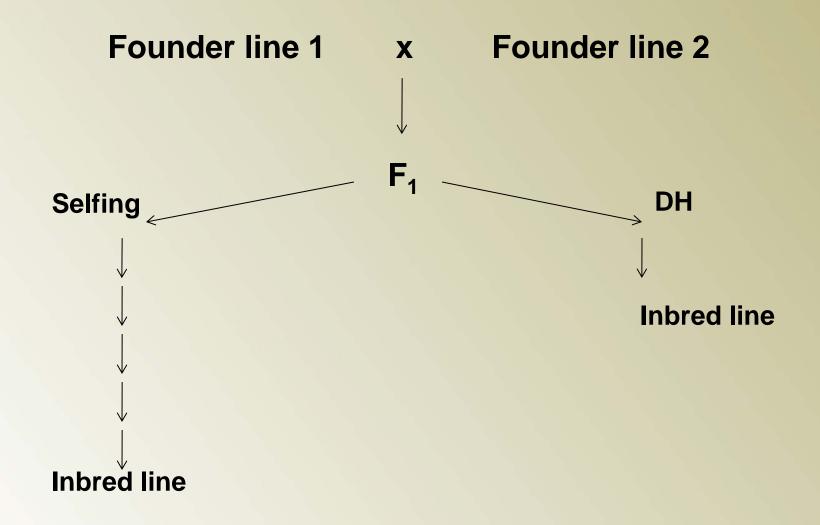
Photoperiod Treatment for Exotic x Temperate



Gardner, Blanco et al. 2007

Germplasm Enhancement in Maize (GEM): Mike Blanco, Candy Gardner

Exotic Maize Populations


http://www.public.iastate.edu/~usda-gem/

Crop, Soil, and Environmental Sciences

Department of Agronomy

IOWA STATE UNIVERSITY

Speed in Line Development

Challenges Genetic Resources

Sequence Variation among Exotics:

Bm3 as Case Study

Are there novel / useful Alleles out there in Exotic Germplasm ?

brown midrib - mutants

Morphological:

brown midrib 3 (bm3-) mutation

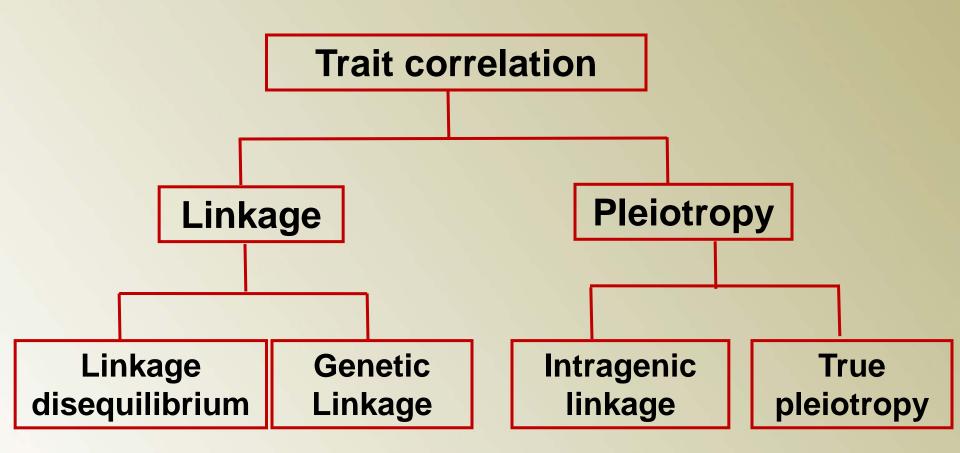
Agronomical:

Trait	Normal	bm3
DMF lignin	24.5	21.0
ADL	7.8	5.3
IVDMD	46.4	54.8

Barriere & Argillier 1993

But: Pleiotropy !

Biochemical: Caffeic-O-methyltransferase (Lignin)



LD between Significantly Associated Polymorphisms in COMT Gene

	1233	1235	1236	1240	1243	1261	1296	1331	1377	1381	1439	1449	1547	1589	1638	1811	1902	1907	1916	1917	1918	1919	1920	1948	1952	1953	1954	2032	2103	2178	2185	2693					R ²	
1233	_																																				n	
1235																																			Т			
1236																																					0	
1240	_																																			0).9	
1243		_					_	_	_		-																				_	_				C).8	
1261 1296					_																											-			h	_	_	
1331		-			_			1																					_			\neg				_ ().7	
1377		+			_				1																							\neg			I.	0).6	
1381		-																																	П	0).5	
1439																																			H			_
1449																																				().4	
1547																																				C).3	
1589								_	-	-	-	-																								0).2	
1638					-		_	-	-	-	-	-																_				_			+			_
1811 1902												-																				-				().1	
1907								\vdash	\vdash			-						1									_					\neg				C	0.0	
1916									Г			H																				1						
1917									\square																													
1918																																						
1919																																						
1920																															_							
1948											L	_																							P) - 1	/alu	le
1952					_																										_	_						
1953 1954		-																														-				>(0.01	
2032																																			+			_
2103																								\vdash											-		0.01	
2178								\square																												<0	.00	1
2185																																				<0.	000	11
2693																																			-		500	-

IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

Brenner et al., 2010, BMC Plant Biol 10:27

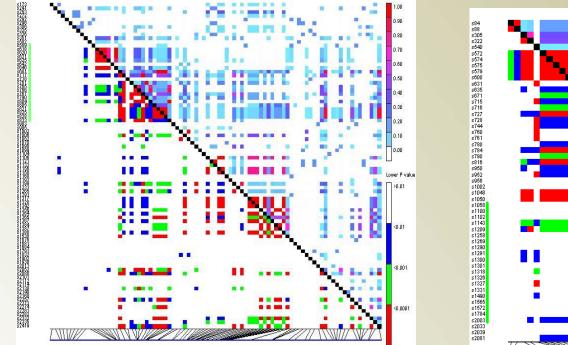
IOWA STATE UNIVERSITY Department of Agronomy *Crop, Soil, and Environmental Sciences*

Chen & Lubberstedt 2010, TIPS 15:454

Molecular Characterization of Bm3 locus

- Previous studies on *Bm3* locus:
 - Fontaine and Barriere 2003: 6 elite lines
 - Guillet-Caude et al. 2004: 34 elite lines
 - Zein et al. 2007: 42 elite lines

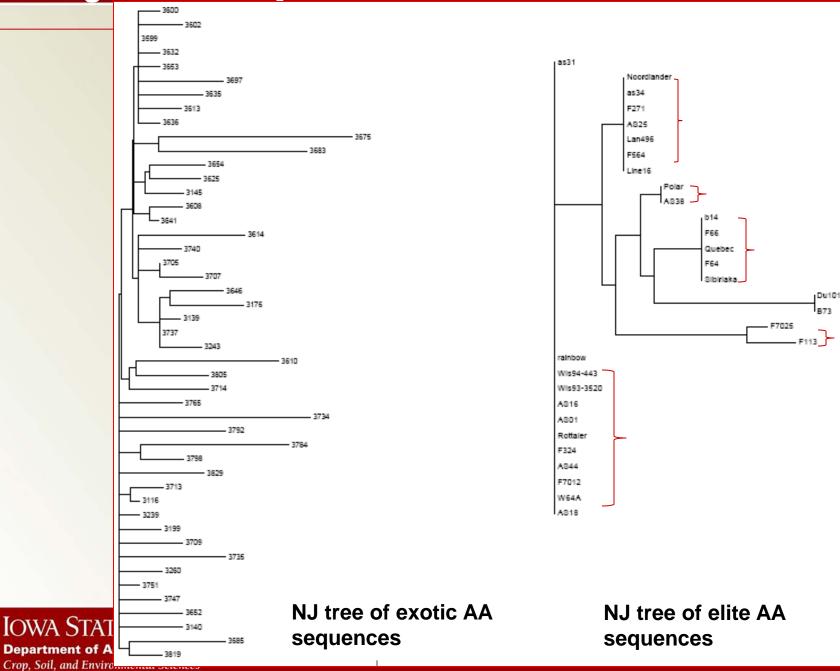
=> In total 30 distinct full-length *Bm3* (COMT) allele sequences (NCBI)


• GEM: 55 exotic full-length *Bm3* alleles (Sanger sequencing)

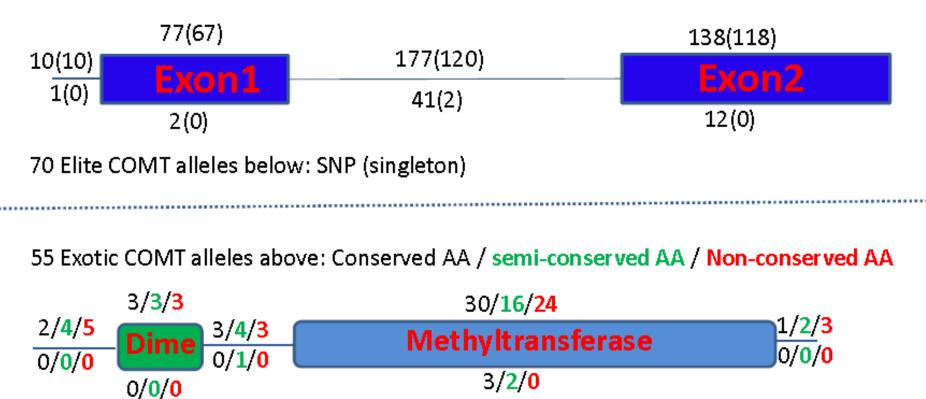
Chen et al., 2014

55 Exotic Alleles

30 Elite Alleles (70 lines)



IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences


Chen et al., 2014

Higher diversity at AA level of exotic versus elite alleles

More polymorphisms in exotic COMT alleles

55 Exotic COMT alleles above: SNP (singleton)

70 Elite COMT alleles above: Conserved AA / semi-conserved AA / Non-conserved AA

7 frameshift mutations !

Chen et al., 2014

Conclusions

Answer: Yes ! All New !

- High Resolution for Gene-Based Association Analyses
- Discrimination Pleiotropy Genic Linkage
- Chance for finding "Optimal Haplotypes"
- Deep Genetic Resource for Breeders

Variation for Agronomic Traits

Plant Materials:

- 50 GEM-BC1-DH Lines
- Checks: W604-9S, PHB41, PHZ51, DE811, B73, Mo17

Traits:

- Stover DNDF, Plant Height, Ear Height, Flowering Time, Lodging

Experiments:

- Forage trials: Davenport (Dow), Ames 2010

Genotyping:

- 199 SNP markers

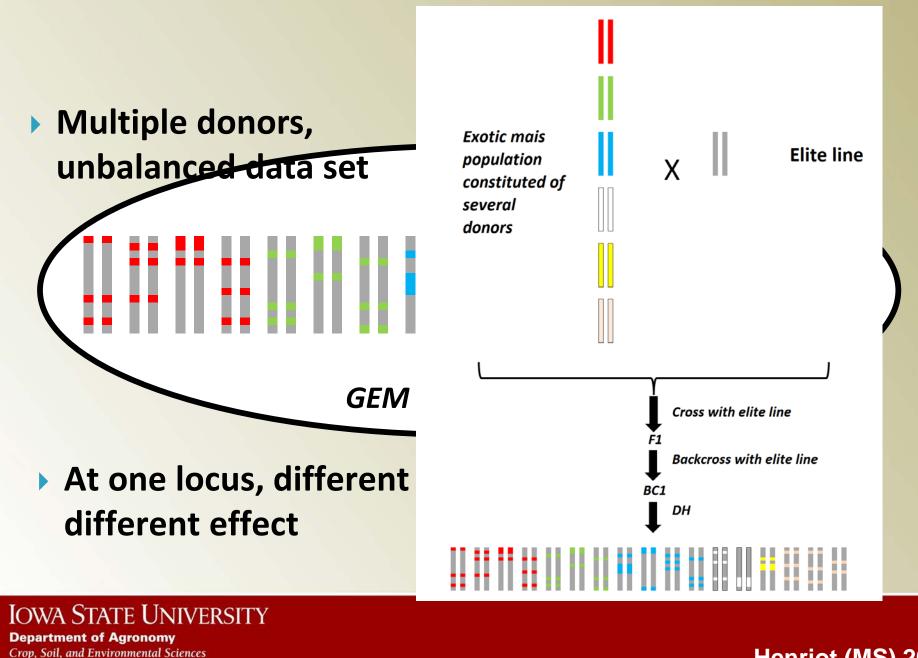
Applying science to fuel and feed our global society

Stover Cell-Wall Digestibility of Checks vs. GEM-DHs

Line	DNDF (average)
W604S	53.6
W605S	46.9
W606S	43.5
W607S	44.2
W609S	46.3
GEM-Gordo 1	48.8
GEM-Gordo 2	47.1
GEM-Gordo 3	47.3
GEM-Gordo 4	48.8

Brenner et al., 2012

Applying science to fuel and feed our global


Mapping in GEM-DH Panel

- > 600 GEM-DH Lines developed
- Genotyping-by-Sequencing: done for 360 DHLs
- 8000 SNPs: done for 360 DHLs
- Phenotyping: per se 2013, 2014; TC 2015
- Significance of linkage drag> GEM-BC1:3-sublines: 2015

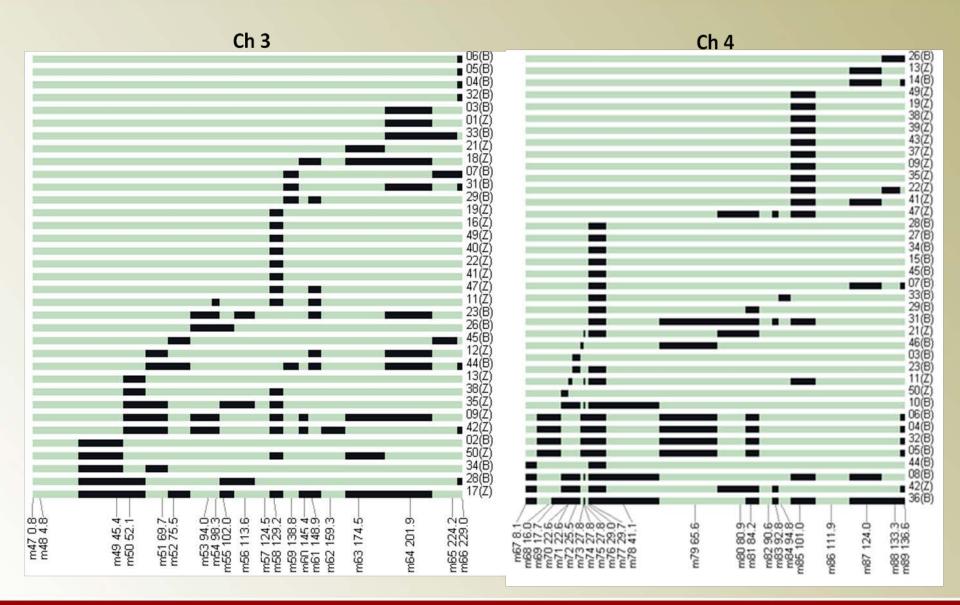
Genetic Architecture GEM-DH Panel

Henriot (MS) 2013

GEM-BC1-DH Genotyping

	PHB47	PHZ51				
No. of DH lines	203	137				
Excluded Lines (>1% Het)	31	20				
% Donor Expected	75	75				
% Donor (199 SNPs)	88	89				
% Donor (>8000 SNPs)	85	85				
% Donor GBS unimputed	93	92				
% Donor GBS imputed	93	92				

Sanchez, Vanous; unpublished


	Crossover	'S		% Rec.	Parent	
	Obs. (avg)	Exp.		Obs.	Exp.	
Ch1	6.54	2.77	*	0.87	0.75	*
Ch2	3.25	2.07	*	0.88	0.75	*
Ch3	3.97	2.29	*	0.89	0.75	*
Ch4	4.55	1.36	*	0.88	0.75	*
Ch5	3.46	1.34	*	0.91	0.75	*
Ch6	3.17	0.86	*	0.85	0.75	*
Ch7	4.84	1.39	*	0.89	0.75	*
Ch8	4.31	1.51	*	0.86	0.75	*
Ch9	3.74	1.28	*	0.89	0.75	*
Ch10	3.82	1.46	*	0.83	0.75	ns

IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

Brenner et al. 2012

Applying science to fuel and feed our global society.

Distribution of Introgressions

IOWA STATE UNIVERSITY

Department of Agronomy

Crop, Soil, and Environmental Sciences

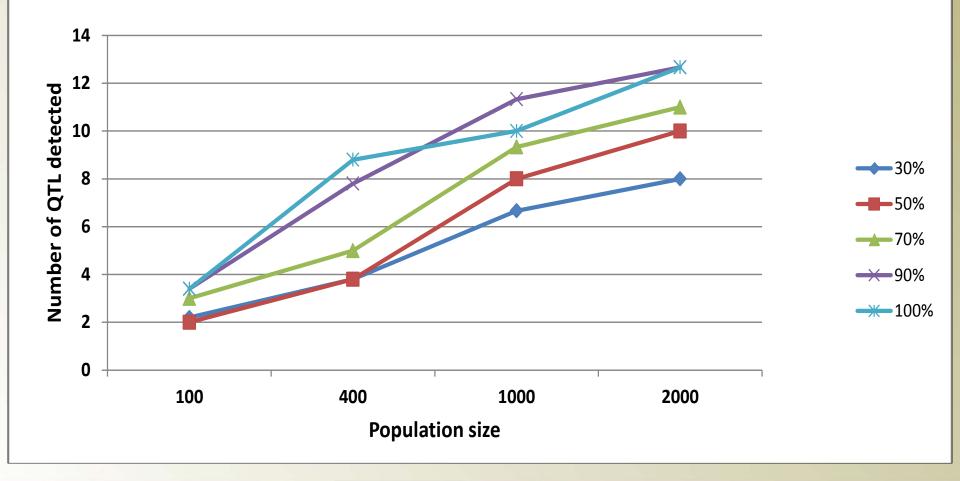
Brenner et al. 2012

Applying science to fuel and feed our global society

Simulation Study for QTL Detection in GEM BC1-DH

Plant height as « model » trait

Number of QTL	15
Genetic variance	100%, each QTL explaining between 2% and 30%
explained	of the genetic variance
Mean	200 cm
h²	90% or 50%


Simulation of different scenarios regarding QTL alleles:

- Simulation of different proportions ψ of donor lines carrying an allele whose effect is different from the elite line.
- Simulation of multiple alleles whose effects are comprised between –a and +a for 3 QTL (= « multiple allele » QTL)

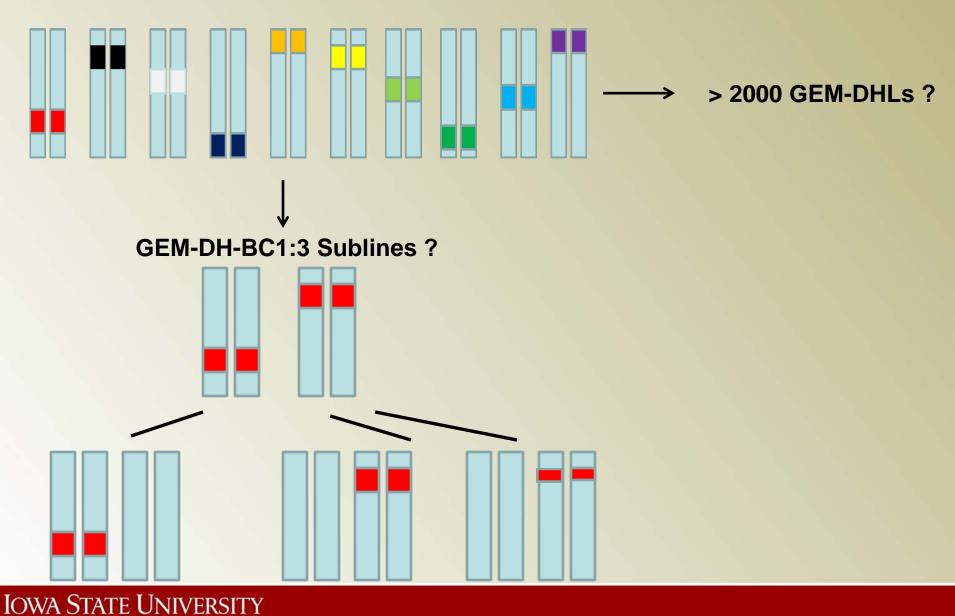
IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

Henriot (MS) 2013

Number of QTL detected per proportion of donor lines carrying QTL allele and population size (*Method BIM*, h² = 90%; marker coverage = 10 cM))

IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

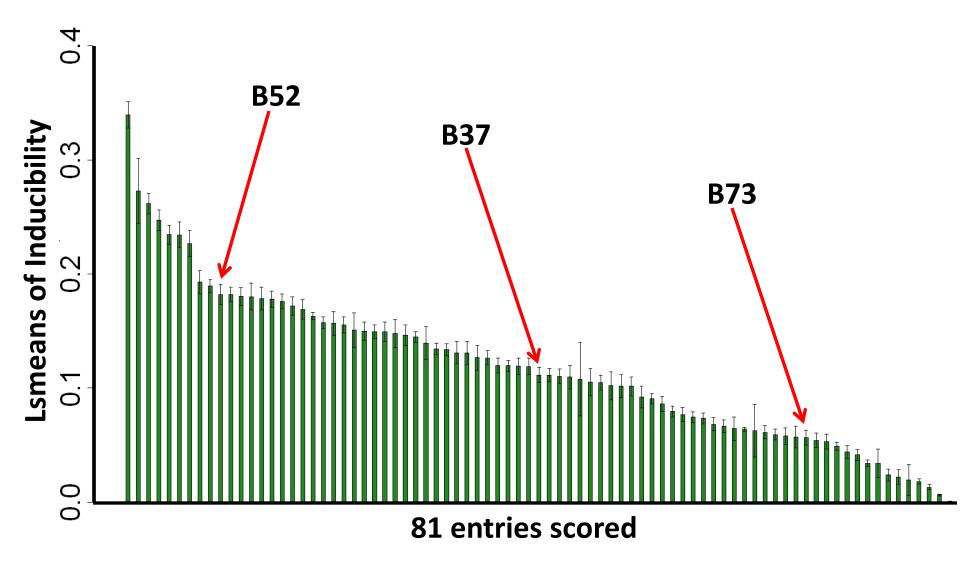
Henriot (MS) 2013


Impact of Linkage Drag

How & When to Evaluate Genetic Resources: BC1 vs BC3

% Exotic			
<u>Exp (Obs.)</u> 0	Recurrent parent RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	1
Ū	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	2
	Exotic inbred 000000000000-00000	Chrom	1
100	00-00-00000-0-0-00000000+++	Chrom	2
	GEM-BC1-DH RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	1
25 (17)	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	2
	GEM-BC1:3-DHa		_
6	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	1
	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	2
6	GEM-BC1:3-DHb RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	1
	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	Chrom	2

How to Find Needle in GEM Stack

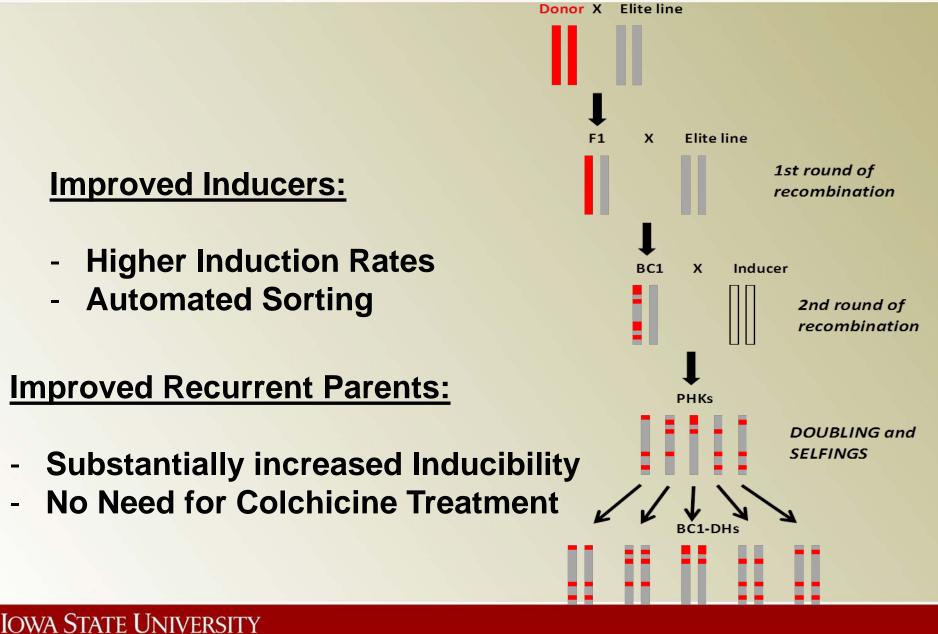

Department of Agronomy

Crop, Soil, and Environmental Sciences

Efficient Procedures & Outlook

The DH Process: Inducibility

De La Fuente, unpublished


The DH Process: Spontaneous Doubling

- Observed >50% spontaneous doubling on 2 lines
- Attempted self pollinations were successful as were cross pollinations
- Observed fertility of F₁ in greenhouse
- Female fertility is not an issue

De La Fuente, unpublished

GEM with Improved Inducers and Recurrent Parents

Department of Agronomy Crop, Soil, and Environmental Sciences - Is there useful genetic variation ?

- What is impact of linkage drag?

- What is impact selective sweeps ?

- Impact of background / recurrent parent (epistasis) ?

Acknowledgments

Iowa State University

Uschi Frei Elizabeth Bovenmyer Yongsheng Chen Everton Brenner Gerald de la Fuente Darlene Sanchez Fabienne Henriot

USDA-ARS

Mike Blanco Candy Gardner Ed Buckler Andrew Smelser Adam Vanous Fred Engstrom DH Facility

Other

KWS Saat AG Dow Agrosciences

http://www.plantbreeding.iastate.edu/DHF/DHF.htm

CeDHR: Planned NSF I/UCRC on DH Research (ISU, UIUC) ThomasL@iastate.edu

IOWA STATE UNIVERSITY Department of Agronomy Crop, Soil, and Environmental Sciences

Chase 1947, 2011