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ABSTRACT 

An experimental laboratory program to assess the effectiveness of biaxial and triaxial 

geogrid-reinforced flexible pavements to reduce roadway section was carried out. Six laboratory 

tests were conducted using a steel cylindrical mold with dimensions of 1.8 m (6 ft) in diameter 

and 2.1 m (7 ft) in height. The studied reinforced and unreinforced (without geogrid) sections 

consisted of a locally-obtained subgrade with a minimum thickness of 1.5 m (5 ft) and an 

asphaltic surface course of 7.6 cm (3 in). The base thickness of three tests was 30.5 cm (12 in) 

while for the other three tests used base thickness of 40.6 cm (16 in). A layer of biaxial or triaxial 

geogrid was placed at the mid-depth of aggregate base course for the tests with 40.6 cm (16 in) 

of aggregate base layer. For the tests which the base layer was 30.5 cm (12 in), the geogrid was 

placed at the subgrade-base interface. The instrumentations included pressure cells placed at 

different locations of the test sections, foil strain gauges installed on the ribs of geogrids, and 

LVDT placed on top of the loading system. These devices were connected to a data acquisition 

system. A hydraulic actuator provided 40 kN (9 kips) cyclic load through a 305 mm (12 in) 

circular steel plate at a frequency of 0.77 Hz. The repeated loading was continued for at least 3 

million cycles for each test. Performances of biaxial-reinforced and triaxial-reinforced sections 

were compared with that of companion unreinforced sections.  

Test results revealed that inclusion of both biaxial and triaxial geogrids in flexible 

pavement reduced the surface rutting and vertical stresses in the subgrade-base interface. For the 

studied geogrid-reinforced pavement sections, no tensile strain was experienced by the strain 

gauges installed on the ribs of the geogrids. The vertical pressure at the center of subgrade-base 

interface reduced by an average of 18 and 24% for biaxial and triaxial geogrid-reinforced 

pavement sections, respectively. Using the results of rutting depth, it was found that use of 
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geogrid increased the number of load applications by a factor of 1.5 to 7 depending on the test 

section and geogrid type, as well as rutting depth experienced at different loading applications. 

Using Base Course Reduction (BCR) method and the obtained rutting depth, inclusion of geogrid 

resulted in the base thickness reductions of 11 to 44 percent depending on the above-mentioned 

variables. 
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1. CHAPTER 1      

             INTRODUCTION 

1.1. Background 

Geosynthetic is defined as a planar product manufactured from a polymeric material that 

is used with soil, rock, or other geotechnical-related material as an integral part of civil 

engineering projects. Geosynthetics are available in a wide range of forms and manufactured 

using different processes and materials. Their market is growing steadily, and they are available 

worldwide because of their wide-range civil applications. 

Geogrid is a major type of geosynthetics which has an open mesh grid structure. It can be 

used for soil reinforcement, separation, drainage and filtration in roads, airfields, railroads, 

embankments, earth retaining structures, reservoirs, canals, dams, and coastal protection. 

Uniaxial, biaxial, and triaxial geogrids are three common types of geogrid. Recently, geogrids 

have been widely used for soil reinforcement of paved and unpaved roads where weak soil 

condition exists. 

1.2. Research Objectives 

Road structure cross section is mostly composed of three components: subgrade, base 

course, and surface/wearing course. The main aim of this study was to determine the extent to 

which geogrid, could 1-decrease surface rutting, 2-lower vertical stresses experienced at 

subgrade-base interface, and  3-assist in reducing base course thickness once the studied paving 

sections were reinforced using biaxial or triaxial geogrid. 
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1.3.  Chapter break down 

In order to achieve the stated objectives, the findings of the study are divided into six 

chapters.  

 Chapter 1 is devoted to the background related to geogrid reinforcement of flexible 

pavements, chapter break down of the report, and research significance of this 

investigation. 

 Chapter 2 discusses the geosynthetic types and definition, geogrid properties and test 

methods, production methods for geogrid, function of geogrid in flexible pavements, 

and review of previous experimental studies on the use of geogrid in flexible 

pavements.  

 Chapter 3 discusses the experimental program used herein including the paving 

materials characteristics, mold and loading system properties, instrumentation 

selection and  installation, and pavement test section preparation. 

 Chapter 4 reports on the findings of six tested pavement sections which includes 

asphalt surface deformation and vertical stress distribution. 

 Chapter 5 discusses the design methods used for geogrid-reinforced paved and 

unpaved roads. Traffic Benefit Ratio (TBR) and Base Course Reduction (BCR) are 

two methods used to evaluate the findings of this study. 

 Chapter 6 summarizes the results and findings of this study and suggests 

recommendations for future companion investigations. 
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2. CHAPTER 2      

     LITERATURE REVIEW 

This chapter begins with definition of geosynthetic materials and discussion about their 

applications in civil projects. Afterward, geosynthetic materials types are introduced; followed 

by a closer look at geogrid and it’s properties. Finally, past related experimental studies are 

reviewed in two main categories of small-scale laboratory and large-scale field investigations.  

2.1. Geosynthetic 

Geosynthetics are widely used in construction industries and civil engineering. Because 

of their positive properties such as lightness, long-term durability, simplicity of installation, and 

non-corrosiveness, geosynthetics are now as prevalent as other civil engineering materials such 

as steel, concrete, and timber. In the word geosynthetic, the prefix “geo” intimate that the main 

function of geosynthetics is related to geotechnical engineering and geotechnical materials such 

as soil, sand, earth, and rock. The suffix “synthetics” implies that the geosynthetic materials are 

mostly produced from synthetic products.  

Geosynthetics are grouped by material type, manufacturing method, and intended 

application. These groups include geotextiles, geonets, geomembranes, geosynthetic clay liners, 

geocomposites, and geogrids. General characteristics of these families are described in Table 2.1. 

In addition, each group of geosynthetic materials and its properties is discussed and considered 

separately in the following sections.  

Generally speaking, five principal functions are known for geosynthetics: 1-separation, 2- 

enforcement, 3-drainage, 4-filtration, and 5-containment. Functions of geosynthetic materials are 

discussed in details in section 2.1.2. 

h9026vxy
Sticky Note
Reinforcement
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Table 2.1: Geosynthetic types and properties (Koemer, 1998; Shukla and Yin, 2006) 

Geosynthetic 
Polymeric 

Materials 
Structures Application Areas Major Functions 

Geotextiles 

Polypropylene 

(PP), Polyester 

(PET), 

Polyethylene 

(PE), Polyamide 

(PA)  

Flexible, 

permeable fabrics 

Retaining walls, 

slopes, 

embankments, 

pavements, 

landfills, dams 

Separation, 

reinforcement, 

filtration, 

drainage, 

containment 

Geogrids 

PP, PET, high- 

density 

polyethylene 

(HDPE) 

Mesh-like planar 

product formed 

by intersecting 

elements 

Pavements, 

railway ballasts, 

retaining walls, 

slopes, 

embankments, 

bridge, abutments 

Reinforcement, 

separation 

Geonets 

Medium- density 

polyethylene 

(MDPE), HDPE 

Ney-like planar 

product with 

small apertures 

Dams, pipeline 

and drainage 

facilities 

Drainage 

Geomembranes 

PE, polyvinyl 

chloride (PVC), 

chlorinated 

polyethylene 

(CPE)  

Impervious thin 

sheets 

Containment 

ponds, reservoirs, 

and canals 

Fluid barriers/ 

liner 

Geocomposites 

Depending on 

geosynthetics 

included  

Combination of 

geotextiles and 

geogrids/ geonets, 

geomembranes 

and geogrids 

Embankments, 

pavements, 

slopes, landfills, 

dams 

Separation, 

reinforcement, 

filtration, 

drainage 

 

2.1.1. Geosynthetic Definition  

Based on the American Society for Testing and Materials (ASTM), a geosynthetic is 

defined as “a planar product manufactured from polymeric material used in soil, rock, earth, or 

other geotechnical engineering related materials as an integral part of a man-made project, 

structure, or system” (ASTM D4439-04, 2004). Geosynthetics are made of a wide range of 

various polymers such as polyester (PET), polypropylene (PP), polyvinyl chloride (PVC), 

polyethylene (PE), polyamide (PA), and polystyrene (PS). Geosynthetics could be used in 
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construction projects for many reasons such as economics, construction expediency, and 

functional superiority.  

Geosynthetics are categorized in nine major groups: 1-geonet 2-geomembrane 3-

geosynthetic clay liner 4-geocomposite 5-geotextile 6-geogrid 7-geopipe 8-geofoam, and 9-

geocell. Among these categories, geonet, geomembrane, geosynthetic clay liners and 

geocomposites are discussed briefly in this section. In addition, Geotextile and Geogrid are 

explained in detail. Functions of geosynthetic materials are described at first, aimed to have a 

better understanding of the purpose of each of the geosynthetic materials. 

2.1.2. Functions of Geosynthetics  

Generally speaking, geosynthetic products have five major functions: separation, 

filtration, drainage, containment, and reinforcement. Brief descriptions of these functions are 

given below: 

 Separation – Provide barrier to intermingling of dissimilar materials 

 Filtration - Allow cross-plane fluid flow across the plane of the geosynthetic 

 Drainage – Allow in-plane liquid flow within the plane of the geosynthetic 

 Containment – Act as an impervious liquid or vapor barrier 

 Reinforcement – Add tensile strength to a soil mass 

Although typically designed and manufactured to perform one of these functions, a 

particular geosynthetic may actually perform multiple functions simultaneously. The functions of 

geotextile and geogrid are explained specifically in a related section.  



6 

In particularly, for road ways, geosynthetics could have 4 out of 5 mentioned functions. 

(Koerner, Designing with geosynthetics, 2015): Reinforcement, Separation, Filtration and 

Lateral Drainage (i.e., transmission). Each of these four functions is explained in the sections to 

follow.  

2.1.2.1. Reinforcement 

Base reinforcement is inclusion of a geosynthetic layer at the subgrade-base interface or 

within a base aggregate layer to increase the load-carrying or structural efficiency of a pavement 

section with a poor condition subgrade by transferring of load to the geosynthetic material. 

Reinforcement is the interactive improvement in pavement strength caused by geosynthetic 

inclusion. Reinforcement in pavement system has two benefits. It can 1-increase the service life 

of the pavement and/or 2-obtain same performance with a reduction in pavement layers 

thicknesses. Aggregate base layer reinforcement also increases the load capacity of the 

pavement, provides a safety factor for designed values, and increases the accuracy in the 

pavement design methods. The key mechanism related to this application is called confinement 

or lateral restraint (Holz, Christopher, & Berg, 1998).  

Geosynthetic reinforcement benefits to the pavement system can be evaluated through a 

TBR or BCR ratio:  

 Traffic Benefit Ratio (TBR) is defined as the ratio of the number of load 

applications on a reinforced pavement section to reach a specific rutting depth to 

the number of load applications on an unreinforced section, with the same 

properties, to reach the same defined rutting depth. TBR is sometimes termed 

Traffic Improvement Factor (TIF). 
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 Base Course Reduction (BCR) is defined as the percentage of reduction in the 

reinforced base course layer thickness from the unreinforced thickness, with the 

same material constituents, to reach the same defined failure state. 

TBR and BCR ratios are specific to the geosynthetic properties, subgrade and course 

aggregate properties, failure criteria, geometry and loading details utilized in the test program. 

Thus, the applicability of the mentioned ratios (TBR and BCR) to project-specific geometry, 

materials, failure (or rehabilitation) criteria, and loading must be assessed independently. In 

addition, while previous studies has supported some of the design methods, long-term behavior 

of test sections designed based on these ratios is not available at this time and some confidence 

limits can be established.  

In the following subsection, three mechanisms involved in geosynthetic reinforcement 

are explained in order to understand how geosynthetics could improve pavement properties over 

weak subgrades. 

2.1.2.1.1. Mechanisms involved in reinforcement function 

The reinforcement function is developed primarily through the following three 

mechanisms (Holz, Christopher, & Berg, 1998): 

I. Lateral restraint through interfacial friction between geosynthetic and aggregate. 

By applying load on an aggregate base layer, the aggregate tends to move laterally 

unless it is restrained by the subgrade or geosynthetic reinforcement. Poor 

condition subgrade soil provides little lateral restraint, which results in rutting 

development when the aggregate moves laterally. Interaction between the base 

course layer and the geosynthetic, transfers shear load from the base layer to a 
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tensile load in the geosynthetic (Perkins, Ismerik, Fogelsong, Wang, & Cuelho, 

1998). The geosynthetic being stiff in tension, can limit the extensional lateral 

strains in the aggregate base layer. Moreover, a geosynthetic layer confines the 

aggregate base layer, thereby increasing the mean stress and leading to improve 

its stiffness and shear strength. Frictional and interlocking characteristics between 

the subgrade and geosynthetic are required to recognize this mechanism. 

Particularly, for a geogrid, this implies that the geogrid apertures and subgrade 

soil particles distribution should be considered properly. A geotextile with good 

frictional capabilities can provide tensile resistance to lateral aggregate movement 

(Figure 2.1-a). 

II. Increased bearing capacity, i.e., by forcing the potential bearing surface failure 

plane to develop at alternate higher shear strength surface (Figure 2.1-b). 

III. Membrane type of support of the wheel loads (Figure 2.1-c). The tension 

membrane effect develops as a result of vertical strain causing a concave shape in 

the reinforcement layer. The tension developed in the geosynthetic can help to 

distribute the wheel load and reduce the vertical stress on the soil, but remarkable 

rutting depths are required to realize this mechanism. 

2.1.2.2. Separation 

Separation is the inclusion of a permeable geosynthetic layer at the interface between 

different materials (i.e. subgrade/base interface) so that the integrity and the functioning of both 

materials can remain intact or even be improved (Koerner & Soong, Analysis and design of 

veneer cover soils, 2005). In pavement design and applications, separation means the prevention 
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of subgrade soil intruding into base layer (or sub-base), and also prevention of aggregate base (or 

sub-base) contamination into the subgrade. For instance, a main cause of failure of sections 

constructed over weak subgrade is migration of the base course aggregate with the underlying 

poor-conditioned soil as shown in Figure 2.2. A geosynthetic layer can be placed at the 

subgrade-base interface to perform as a separator and prevent the subgrade and base course 

aggregate from being mixed (Figure 2.2). 

 

 

Figure 2.1: Reinforcement mechanisms induced by a geosynthetic layer used for base 

reinforcement (Zornberg & LaRocque, 2008): 

(a) Lateral restraint; (b) Increased bearing capacity; (c) Membrane-type support  
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(a)                (b) 

Figure  2.2: Separation function of a geosynthetic layer placed between the base aggregate and a 

soft subgrade (Zornberg & LaRocque, 2008):  

(a) Test section with geotextile; (b) Test section without geotextile  

 

2.1.2.3. Filtration 

Filtration is defined as the equilibrium geosynthetic-to-soil system that allows for 

appropriate liquid flow with a little soil loss across the plane of the geosynthetic layer over a 

service lifetime compatible with the application under consideration (Koerner & Soong, Analysis 

and design of veneer cover soils, 2005). In other words, it is limiting the movement of soil 

particles, and at the same time allowing water to move from the filtered soil to the coarser soil 

adjacent to it during the performance life of the road structure. 

A common application illustrating the filtration function is the use of a geosynthetic in a 

pavement edge drain as shown in Figure 2.3. The geosynthetic-soil system should achieve an 

balance that allows for adequate liquid flow under consideration. Whereas the flow of liquid is 
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perpendicular to the plane of the geosynthetic, filtration refers to the cross plane hydraulic 

conductivity or permittivity, which is defined as (Stormont, Henry, & Evans, 1997): 

𝜓 =
𝑘𝑛

𝑡
 

Equation 2.1: Geosynthetic hydraulic permittivity 

 

ψ is the permittivity, kn is the cross-plane hydraulic conductivity, and t is the geosynthetic 

thickness at a specified normal pressure. Comparison of the soil particle size to the geosynthetic 

aperture shape and size and 95% opening size of it, is another important property for soil 

retention design using geosynthetic (apparent opening size, AOS). The coarser sized particles 

eventually create a filter bridge that in turn retains the finer-sized particles, building up a stable 

upstream soil structure (Thompson, 2009). 

 

Figure 2.3: Filtration function provided by geotextile (Zornberg & LaRocque, 2008) 
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Speaking of functions of geosynthetics in pavement structures, lateral drainage is the 

forth function to be mentioned.  

2.1.2.4. Lateral Drainage 

Drainage defines as the ability of geosynthetics to provide a path for flow of water 

through the plane of the geosynthetic. As geotextile thickness decreases with increasing normal 

stress, the in-plane drainage of a geosynthetic is generally quantified by its transmissivity, which 

is defined as (Shukla, 2002): 

𝜃 = 𝑘𝑝 × 𝑡 

Equation 2.2: Geosynthetic transmissivity 

 

θ is the transmissivity, kp is the in plane hydraulic conductivity, and t is the geosynthetic 

thickness at a specified normal pressure. 

2.1.2.5. Other Functions 

Limitation of crack development (and sealing as secondary function) can be performed 

by a geosynthetic layer when used in the overlay of the pavement sections. Due to environmental 

stresses, the HMA layer is subjected to thermal cracking. A geosynthetic layer can acts as a 

stress relieving interlayer and dissipating stresses before the crack induces stresses in the overlay. 

Moreover, when a geosynthetic is impregnated with HMA or other polymeric mixes it becomes 

almost impermeable to both cross-plane and in-plane flow (Meccai & Al Hasan, 2004). As 

shown in Figure 2.4, the nonwoven geotextile can be placed on the existing pavement surface 

following the application of an asphalt tack coat. The geotextile has been reported not only to 
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prevent cracks in the overlay but also to act as a waterproofing membrane minimizing vertical 

flow of water into pavement structure (Button & Lytton, 2015). 

 

Figure 2.4: Geosynthetic used for mitigation of crack propagation in pavement overlay 

(Zornberg & LaRocque, 2008) 

 

As alluded earlier, geosynthetics are categorized in nine groups of 1-geonet 2-

geomembrane 3-geosynthetic clay liner 4-geocomposite 5-geotextile 6-geogrid 7-geopipe 8-

geofoam and 9-geocell. Among these categories, geonet, geomembrane, geosynthetic clay liners 

and geocomposites are discussed briefly in this section. In addition, geotextile and geogrid are 

explained in-detail. 

2.1.3. Geonet  

A geonet is a specialized geosynthetic product that usually performs the drainage 

function. A geonet contains of integrally connected sets of parallel ribs overlying similar sets 

oriented at obtuse angles. This geometric orientation creates void space within the plane of the 
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product that allows easy movement of liquids or gases. Figure 2.5 shows a geonet produced by 

Tensar Company.  

 

Figure 2.5: Geonet (Tensar, RoaDrain™ Roadway Drainage System, 2015) 

 

2.1.4. Geomembrane 

ASTM defines a geomembrane in two ways. First, “a geomembrane is a very low 

permeability synthetic membrane liner or barrier used with any geotechnical engineering related 

material in order to control fluid migration in a man-made project, structure, or system” (ASTM 

D4833 / D4833M-07(2013)e1, 2013). The second ASTM definition for a geomembrane is “an 

essentially impermeable geosynthetic composed of one or more synthetic sheets” (ASTM 

D4439-04, 2004). The most common geomembranes are extruded polymeric sheets. These 

products perform the primary function of liquid or vapor barrier. Figure 2.6 shows a 

geomembrane.  

2.1.5. Geosynthetic Clay Liner 

Geosynthetic Clay Liners are made of a layer of bentonite clay sandwiched between two 

non-woven geotextiles or a layer of bentonite clay glued to a geomembrane (Figure 2.7). As with 
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geomembranes, the primary function of a geosynthetic clay liner is to function as a liquid or 

vapor barrier. 

 

Figure 2.6: Geomembrane (ArchiEXPO, 2015) 

 

 

Figure 2.7: Geosynthetic clay liner (Hillier, 2008) 

 

2.1.6. Geocomposites 

Geocomposites are formed by the combination of one or more geotextiles, geonets, 

geogrids, or geomembranes. The functions of products within this family are product specific. 

Any one of the five primary functions discussed in Section 2.1.2 can be targeted using 

geocomposites (Koerner, Designing with geosynthetics, 2015). 
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2.1.7. Geotextile 

A geotextile is a permeable geosynthetic layer comprised solely of textiles (ASTM 

D4439-04, 2004). Geotextiles are either woven or non-woven. These products resemble heavy 

fabrics and are typically very flexible and porous. A geotextile may perform one or more of the 

five primary functions discussed in section 2.1.2. 

The idea of using textile in pavement structure goes back to the early Persian times when 

natural fibers were utilized to stabilize poor soils. It was not until the 1920’s when the United 

States implemented a cotton textile for road construction. The introduction of synthetic fibers 

made road construction more feasible and beneficial. Some geotextile samples are shown in 

Figure 2.8.  

 

Figure 2.8: Geotextile (USFabrics, 2015) 

 

In the next subsections, the production methods of geotextiles are explained followed by 

their utilization, properties, and test methods.  
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2.1.7.1. Geotextile production 

There are three ways a geotextile can be manufactured; they are knitted, woven, and non-

woven. The distinction between woven and nonwoven is that a woven geotextile is produced by 

the interlacement of warp and weft yarns. These yarns may either be spun, multifilament, 

fibrillated, or of slit film. Nonwoven geotextiles are manufactured by mechanically interlocking 

or thermally bonding the fibers/filaments. This mechanical interlocking is attained through 

needle-punching, which is most applicable for civil engineering applications (Bhatia & Smith, 

1996).  

2.1.7.2. Functions of Geotextile 

Although geosynthetic materials functions were discussed in section 2.1.2, the geotextile 

functions are discussed separately. These days, geotextiles are used in various projects for 

specific purposes. The most common use of geotextile is in road projects where used underneath 

paved and unpaved roads to separate, stabilize, reinforce, and filter (Giroud J.-P. , 1984). Each of 

these functions is discussed separately in the order mentioned. 

Separation- There are several issues to consider when placing granular aggregates on top 

of fine-grained soils. Two such issues are fine-grained soils enter the void of the aggregate base 

and the aggregate punches into the fine grained soil. The first issue is a concern since it avoids 

adequate drainage and greatly reduces the strength of the aggregate layer which hastens road 

failure. The second issue is a concern since it decreases the effective thickness of the aggregate 

layer which also hastens road failure. Due to these concerns, geotextiles used for separation 

purposes are vital to maintain a long road life (Giroud J.-P. , 1984).  
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Stabilization- The effectiveness of the geotextile stabilization results from two factors. 

Firstly, the aggregate is compacted above the geotextile and individual stones are “seated” which 

leave imprints in the subgrade and geotextile. Because of this seating, the aggregates are fixed 

into a position, which stabilizes the aggregate base layer. The stabilization of the subgrade soil 

due to geotextile can change the soil failure mode from local shear to general shear. Due to this 

change in shear, an additional load is permitted before the soil strength is surpassed which allows 

for a reduced aggregate base layer. This is economically viable as it saves initial costs and 

reduces the maintenance required on the road (Giroud J.-P. , 1984). 

Reinforcement- In regards to using a geotextile for reinforcement purposes, woven 

geotextile is considered more appropriate than nonwoven due to its higher tensile strength. The 

benefits of reinforcement are heavily reliant on the extent of system deformation permitted. 

Unpaved roads receive more benefits from the use of geotextiles since roads allow large amounts 

of deformation. Paved roads normally have low allowable deformations and do not receive as 

much benefit from reinforcement (Giroud J.-P. , 1984).  

Filtration- Filtration by use of geotextile is provided by the geotextile’s defined openings 

that hold soil particles but permit the movement of fluids and has a similar purpose to that of 

separation. It should be noted that a geotextile that is a separator will not necessarily provide 

filtration. When there is a need for filtration, engineers must select an appropriate woven or 

nonwoven geotextile that will allow proper retention of soil particles and flow of water. The 

proper selection of geotextile will greatly enhance the performance of the pavement (Giroud J.-P. 

, 1984). Geotextiles that offer reinforcement, separation, and filtration simultaneously are 

classified under the application of stabilization (Morian, 2007).  
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2.1.7.3. Geotextile properties and test methods 

Physical properties of the geotextiles generally serve as an index property and are not 

generally adopted directly in design. Table 2.2 shows common physical properties and their 

respective standards. 

Table 2.2: Tests used to determine physical properties of geotextiles 

Properties Relevant standards 

Specific gravity ASTM D792 or D 1505 

Mass per unit area (weight)  ASTM D5261 or ISO 9864 

Thickness ASTM D5199 

Stiffness ASTM D1388 

 

The mechanical properties quantify the geotextiles’ resistance to tensile stresses 

mobilized from applied loads or installation conditions. Some tests are performed with the 

geotextile in isolation while other tests are performed under the confinement of soil (often called 

performance tests). Table 2.3 summarizes tests available for quantification of mechanical 

properties of geotextiles. 

Table 2.3: Tests used to determine mechanical properties of geotextiles 

Tensile strength Tear tests 
Frictional 

behavior 
Impact tests Other tests 

Grab tensile 

strength ASTM 

D4632 

Trapezoidal test 

ASTM D4533 

Direct shear 

device 

Burst strength 

ASTM D3786 
Compressibility 

Narrow strip ASTM 

D751 

Tongue tear test 

ASTM D751 
Pullout tests Puncture tests 

Fatigue 

strength 

Wide width ASTM 

D 4595 

Elmendorf tear test 

ASTM D1424 
  Seam strength 

Confined tensile 

strength 
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The tests required to determine hydraulic, endurance and degradation properties of 

geotextiles are summarized in Table 2.4. A number of tests are available for each one of these 

categories. The hydraulic response of geotextiles under unsaturated conditions has been the focus 

of recent advances (Bouazza & Avalle, 2006). Some recent tests have been developed to 

accelerate the determination of endurance and degradation properties (e.g., creep) using time-

temperature superposition methods (Zornberg & LaRocque, 2008). 

Table 2.4: Tests used to determine hydraulic, endurance and degradation properties of geotextiles 

Hydraulic properties Endurance properties Degradation properties 

Porosity (nonwoven) Installation damage  Temperature degradation 

Percent open area 

(woven) 
Creep response Hydrolysis degradation 

Apparent opening size Confined creep response 
Chemical degradation oxidative 

degradation 

Permittivity Stress relacation Radioactive degradation 

Permittivity under load Abrasion Biological degradation 

Transmissivity Ling-term clogging Sunlight (UV)  

Soil retention Gradient ratio clogging Synergistic effects 

 
Hydraulic conductivity 

ratio 
General aging 

 

2.1.8. Geogrid 

In this section, the 6
th

 and last class of geosynthetic materials is introduced. At the 

beginning of this section, geogrid is defined and various aperture types are shown. After that, the 

available methods for geogrid production are reviewed. In Section 2.1.8.4 properties and 

standard tests for geogrid evaluation are given, followed by geogrid benefits and most effective 

placement locations. At the end, the role of geogrid in flexible pavements is described.  
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2.1.8.1. Geogrid definition 

Geogrids are geosynthetics formed with open apertures and grid-like configurations of 

orthogonal or non-orthogonal ribs. Koerner (1998) defines a geogrid as a “geosynthetic material 

consisting of connected parallel sets of tensile ribs with apertures of sufficient size to allow for 

strike-through of surrounding soil, stone, or other geotechnical material.” Extruding and drawing 

sheets of Polyethylene (PE) or Polypropylene (PP) plastic in one or two directions or weaving 

and knitting Polyester (PET) ribs are methods used to produce geogrids. Geogrids are designed 

mainly to satisfy the reinforcement function. 

The ribs of a geogrid are defined as either longitudinal or transverse. The direction which 

is parallel to the direction that geogrid is fabricated on the mechanical loom is known as roll 

length direction, Machine Direction (MD), or longitudinal direction. On the other hand, the 

direction which is perpendicular to the mechanical loom and MD in the plane of geogrid, is 

known as Transverse Direction (TD) or cross machine direction. In other words, the longitudinal 

ribs are parallel to the manufactured direction (a.k.a. the machine direction); the transverse ribs 

are perpendicular to the machine direction. Some mechanical properties of geogrid such as 

tensile modulus and tensile strength are dependent on the direction which geogrid is tested. Also, 

geogrid installation in pavements is usually in a way that traffic path is parallel with the ribs 

produced in machine direction (Kwon, Tutumluer, & Al-Qadi, Validated mechanistic model for 

geogrid base reinforced flexible pavements, 2009). 

In a geogrid, the intersection of a longitudinal rib and a transverse rib is known as a 

junction. Junctions can be created in several ways including weaving or knitting. Figure 2.9 

shows a section of geogrid in plan view and labels the different grid components. Position of ribs 

and junctions could make various aperture types which are explained in the next section.  
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Figure 2.9: Geogrid Component Nomenclature (Stadler, 2001) 

 

2.1.8.2. Geogrid Aperture 

Geogrids can be categorized in three main groups based on their aperture: uniaxial, 

biaxial and triaxial. Uniaxial geogrid has a tensile strength in one direction. It is mainly used for 

reinforcing slopes, retaining walls, and embankments. Figure 2.10 shows uniaxial geogrid. 

 Biaxial geogrids have tensile strength in two dimensions and they are often used for 

reinforcement of pavements including unpaved roads, railroads, and flexible pavements. Dong et 

al. (Dong, Han, & Bai, 2010) revealed that biaxial geogrid cannot provide constant tensile 

strengths when subjected to tension in more than two directions, and it has tensile strengths in 

just two directions. This is one the limitations of biaxial geogrids. Figure 2.11 shows Biaxial 

Geogrid. 

Figure 2.12 presents triangular aperture geogrid with ribs in three directions. This feature 

causes two benefits. First of all, the apertures allow soil particles to interact better with ribs. 
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Secondly, triaxial geogrid can provide uniform tensile strengths in all directions as compared 

with uniaxial and biaxial geogrids. This is because of the fact that triangular aperture geogrid has 

a more stable grid structure than rectangular aperture geogrids (Dong, Han, & Bai, 2011). 

However, triaxial geogrids are recently introduced to the market and their effects on the 

performance of reinforced pavements have not been well tested and evaluated. The question how 

geogrids are produced and have various aperture shapes is addressed in the next section.  

 

Figure 2.10: Uniaxial geogrid (Inversiones, 2011) 

     

 

Figure 2.11: Biaxial Geogrid (ArchiExpo, 2015) 
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Figure 2.12: Triaxial Geogrid (Staff, 2012) 

 

2.1.8.3. Geogrid Production 

In this section, the methods used to produce geogrid are introduced. Common geogrid 

types currently available in market include welded geogrid, extruded geogrid, and woven geogrid 

(Das, 2010). Extruded geogrid is produced from a polymer plate which is punched and drawn in 

either one or more ways. Various aperture types are shaped based on the way the polymer sheet 

is drawn. Drawing in one, two or three directions results in production of uniaxial, biaxial and 

triaxial geogrids, respectively (Koerner, Designing with geosynthetics, 2015).  

Polypropylene (PP) or polyester (PET) fibers are generally used to produce woven 

geogrids. In most cases, these fibers are coated to increase the abrasion resistance of  produced 

geogrid (Berg, Christopher, & Perkins, 2000). Manufacturing process of welded geogrid is by 

welding the joints of extruded polymer woven pieces.  

Geogrids are also categorized in two main groups based on their rigidity. Geogrids made 

from polyethylene (PE) or polypropylene (PP) fibers are usually hard and stiff and they have a 

flexural strength more than 1,000 g-cm (ASTM D1388-14e1, 2014). Flexible geogrids, are often 

made from polyester (PET) fibers by using a textile weaving process. They usually have a 
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flexural strength less than 1,000 g-cm (Koerner, 1998). Geogrid test methods and properties are 

reviewed in the next section.  

2.1.8.4. Geogrid Properties and Test Methods 

The test methods involved to quantify properties of geogrids in laboratory are listed in 

Table 2.5.  

Table 2.5: Tests for geogrid properties 

Physical Properties Mechanical Properties Degradation properties 

Structure Single Rib test Temperature effects 

Junction type Junction strength Oxidation effects 

Aperture size Wide width tensile strength  Hydrolysis effects 

Thickness  Shear test Chemical effects 

Mass per unit area Pullout test Radioactive effects 

Flexural rigidity  Endurance properties Biological effects 

Stiffness Installation damage  Sunlight (UV) effects 

 Tension- Creep behavior Stress- crack resistance 

 

2.1.8.5. Function of Geogrid 

In the prior sections, geogrid was defined and it’s properties and production methods 

were reviewed. Geosynthetic functions were also reviewed in 2.1.2 section. In the following 

paragraphs, the functions of geogrid in pavements are discussed. 

While geotextiles can be used for separation, drainage and filtration, or reinforcement, 

geogrids are mainly used for reinforcement applications. Geogrids can also provide confinement 
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and partial separation. The confinement is developed through the interlocking mechanism 

between base course aggregate particles and geogrid openings, as shown in Figure 2.13. 

 

Figure 2.13: Interlock between aggregate and geogrid (Tensar, Rib Testing, 2015) 

 

The interlocking efficiency depends on base course aggregate particle distribution and the 

geogrid opening size and aperture. In order to achieve the best interlocking interaction, the ratio 

of minimum aperture size over D50 should be greater than three (Jewell et al., 1984). The 

effectiveness of interlocking depends on the in-plane stiffness of the geogrid and the stability of 

the geogrid ribs and junctions (Webster, 1993).  

The reinforcement mechanisms in geogrid base reinforced pavement sections include 

lateral restraint (confinement), increased bearing capacity and tension membrane effect which 

are explained, respectively, in the next subsections. 

2.1.8.5.1. Lateral Confinement Mechanism 

Aggregate base layer lateral restraint is the fundamental mechanism for geogrid-

reinforced pavements. As shown in Figure 2.14, the vertical load applied on the surface of the 

pavement would cause lateral spreading motion of the aggregate base materials. As the loading is 

applied on the surface of the roadway, tensile lateral strains are generated in the base layer 
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causing the aggregates moves out away from the loading. Geogrid reinforcement of pavement 

sections restrains these lateral movements and it is called lateral restraint. The phrase “lateral 

restraint” includes many components of geogrid reinforcement in pavements. First of all, it 

would restraint the lateral movement of granular base materials (Perkins S. , Mechanical 

response of geosynthetic-reinforced flexible pavements, 1999). Secondly, lateral restraint 

increases the stiffness of the base layer (Bender & Barenberg, 1978). Moreover, it reduces the 

shear stresses caused by the loading in the subgrade soil (Love, Burd, Milligan, & Houlsby, 

1987). Finally, lateral restraint causes better load distribution on the subgrade soil (Palmeira & 

Milligan, 1989). Lateral restraint mechanism and its components are shown in Figure 2.14. 

 

Figure 2.14: Lateral restraint mechanism and its components (Perkins S. W., 2001) 

 

2.1.8.5.2. Increase of the Bearing Capacity Mechanism 

By geogrid reinforcement of a pavement system, the failure envelope is shifted from the 

weak subgrade soil to the strong aggregate base layer. This mechanism is called increase of 
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(improved) bearing capacity and it’s illustrated in Figure 2.15. Moreover, based on this 

mechanism the failure model of subgrade soil may change from punching failure to general 

failure by inclusion of geogrid in pavement. Therefore, the subgrade’s failure model may change 

from punching failure without reinforcement to general failure with ideal reinforcement (Binquet 

& Lee, 1975). 

 

Figure 2.15: Increase of bearing capacity mechanism (Perkins S. W., 2001) 

 

2.1.8.5.3. Tension Membrane Mechanism 

The tension membrane effect develops as a result of vertical strains creating a concave 

shape in the tensioned geogrid layer, shown in Figure 2.16 (Giroud & Noiray, Geotextile-

reinforced unpaved road design, 1981). The tension membrane force is not vertical, but its 

vertical component decreases the vertical pressure applied on the subgrade soil. Some sorts of 

movements must be provided to activate the tension membrane effect. For example, a rutting 
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depth is required to involve the tension membrane effect and increase the bearing capacity of the 

soil. For a heavy duty and strong geogrid a more significant mobilization, such as a remarkable 

rutting depth in needed to activate the tension membrane mechanism (Göbel, Weisemann, & 

Kirschner, 1994). In addition, for noticeable and great effect of this mechanism, the subgrade soil 

CBR should be less than 3% (Barksdale , Brown, & Chan, 1989). 

 

Figure 2.16: Tension membrane mechanism (Perkins S. W., 2001)  

 

2.2. Previous Experimental Studies Using Geogrids 

Geosynthetic materials were introduced in previous sections with an emphasis on 

geotextile and geogrid which are the most widely used ones. This section provides an extensive 

literature review on the lab-scale and large-scale investigations carried out on geogrid 

reinforcement in paved sections. Both field investigations and laboratory testing programs have 
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shown that geogrid reinforcement of flexible pavements would extend the service life of the 

roadway or decrease the pavement layers thicknesses with the same performance and service life.  

2.2.1. Small- Scale Laboratory studies  

Laboratory-scale studies on the effects of geogrid reinforcement on pavement 

performance are required to evaluate the benefits of geogrid inclusion and in order to conduct 

large-scale testing. Not only the lab-scale testing is cheaper and easier than the field 

investigation, but also the testing environment is more under control. Small-scale investigations 

have used monotonic or cyclic loading to examine the behavior of reinforced pavement sections.  

2.2.1.1. (Carroll, Walls, & Haas, 1987)  

By testing a couple of test sections using loading plate system, Abdelhalim et al. (Abd El 

Halim, Haas, & Chang, 1983) investigated the performance of geogrid reinforcement placed at 

subgrade-base interface under poor condition and strong subgrades. They revealed that geogrid-

reinforced test sections took more loading cycles before the failure rutting depth of 20 mm (0.79 

in) as compared to the unreinforced test section. Moreover, pretensioning of the geogrids at 

installation process did not show any remarkable benefits compared to ordinary installed 

geogrids. Based on this investigation (Abd El Halim, Haas, & Chang, 1983), other researchers 

(Carroll, Walls, & Haas, 1987) proposed a design method that suggested a conversion of 

unreinforced aggregate base layer thicknesses to equivalent base layer thicknesses for geogrid-

reinforced sections, as presented in Figure 2.17. The point of inflection in Figure 2.17 shows the 

minimal thickness required. However, this design graph was developed based on experimental 

results of a single type of geogrid. 
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Figure 2.17: Desing criteria for base ciurse thickness prospsed by (Carroll, Walls, & Haas, 1987) 

and (Webster, 1993) 

 

2.2.1.2. (Haas, Wall, & Carroll, 1988) 

Aimed to understand the benefits of geogrid inclusion in flexible pavements, an extensive 

test program was conducted in a 4.5×12×0.9 m (15×40×3 ft) box. Cyclic loading was performed 

through a 2.5 cm (1 in) thick circular shape steel plate with a diameter of 30.4 cm (12 in). 

Pavement test section properties such as subgrade stiffness, base coarse thickness, and location 

of the geogrid layer in pavement section, were different in the studied pavement sections. Rutting 

depth, vertical stress at the subgrade-base interface, and geogrid ribs tensile strains were 

measured throughout the tests. Haas et al. (Haas, Wall, & Carroll, 1988) revealed that inclusion 

of geogrid into the pavement test section increased the number of loading cycles by a factor of 3. 

By inclusion of geogrid in pavement system, base course layer thickness decreased by 25-50%. 

Subgrade-base interface was reported as the optimum location for geogrid reinforcement for thin 
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aggregate base layer sections. For a thick base layer pavement section, mid point of the base 

layer was suggested as the optimum location for geogrid placement. 

2.2.1.3. (Al-Qadi, Brandon, Valentine, Lacina, & Smith, 1994) 

Pavement test sections were prepared in a 3×2.1×1.8 m (10×7×6 ft) mold to represent a 

regular secondary road in the State of Virginia constructed on a poor condition subgrade. 

Various types of geotextiles and geogrids, different base course thicknesses, and different 

subgrade condition and strengths were used. Dynamic loading was performed on the surface of 

the pavement using a circular shape steel plate with diameter of 300 mm (12 in). Rutting depth of 

the surface asphalt layer was recorded through an array of LVDTs. Al-Qadi et al. (Al-Qadi, 

Brandon, Valentine, Lacina, & Smith, 1994) revealed that the geotextiles and geogrids 

significantly improved the performance of roadways constructed over a poor condition subgrade 

soil. The reinforcing mechanisms of geotextiles were different from geogrids, based on the tests 

results. They suggested that geotextile can provide separation between the soil and granular base 

materials, while geogrid cannot.  

2.2.1.4. (Montanelli, Zhao, & Rimoldi, 1997) 

Aimed to evaluate the influence of geogrid reinforcement in roadways, a lab-scale testing 

program using a cyclic plate system was carried out on test sections constructed on a subgrade 

soil with different CBRs of 1 to 18%. Intended to make use of the AASHTO design method, 

Montanelli et al. (Montanelli, Zhao, & Rimoldi, 1997) proposed a base layer coefficient ratio, 

also known as Base Course Reduction (BCR), which is the ratio of geogrid-reinforced to 

unreinforced aggregate base material coefficients. Based on experimental results, the BCR ratio 

varied from 1.5 to 2 depend on the subgrade strength (CBR value). The BCR ratio can be used to 
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calculate the structural number (SN) of the reinforced paved road to be used in AASHTO design 

method: 

𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝐺 

Equation 2.3: Structural number 

 

In Equation 2.3, D1 is the thickness of HMA layer and D2 is base course layer thickness 

(both in inch unit). a1 and a2 are asphalt and aggregate base layers structural coefficients, 

respectively, used to specify the strength and structural capacity of pavement layers in 

unreinforced pavement sections. m2 is the drainage coefficient of the aggregate course material 

and “G” is the base layer reinforcing coefficient (BCR). Geogrid-reinforced base layer thickness 

can be achieved as follows:  

𝐷2 =
𝑆𝑁 − 𝑎1𝐷1

𝑎2𝐺
 

2.2.1.5. (Perkins S. , Geosynthetic Reinforcement of Flexible Pavements: 

Laboratory Based Pavement Test Sections, 1999) 

Perkins et al. (Perkins S. , Geosynthetic Reinforcement of Flexible Pavements: 

Laboratory Based Pavement Test Sections, 1999) carried out lab-scale tests on reinforced and 

unreinforced pavement sections that stimulate roadway materials, properties, and loading 

conditions in the field. A 2×2×1.5 m (79×79×59 in) reinforced concrete mold was used for the 

testing. 40 kN (9 kips) cyclic loads were applied through a 304 mm (12 in) diameter steel plate. 

Twenty test sections were prepared and tested. Variables in testing program was subgrade 

strength and materials, geosynthetic position, two types of geogrid and one type of geotextile, 

and base layer thickness. The pavement responses recorded in test set-up included strains 



34 

experienced by geosynthetics, rutting depth, stress and strain in subgrade soil, moisture content, 

and temperature in pavement sections. Geogrid-reinforced pavement sections with poor 

condition subgrade soil (CBR of 1.5 %) showed significant improvements. Minor benefit was 

observed for sections constructed on a stiff subgrade soil (CBR of 20%). The heavy-duty geogrid 

showed superior performance compared to the light-duty geogrid used in this investigation. Both 

geogrid-reinforced sections showed better performance than the geotextile-reinforced section. 

The geogrid location in the pavement section was found as a crucial element in evaluation of 

reinforced pavement system. Remarkably improved performance was detected when geogrid 

reinforcement layer was located at the mid-depth of aggregate base layer compared to the 

sections with geogrid installed at the subgrade-base interface.  

2.2.1.6. (Leng, Ju, & Gabr, 2002) 

Fourteen laboratory scale tests were carried out in a 1.5×1.5×1.35 m (59×59×53 in) box 

at North Carolina State University to investigate the properties of biaxial geogrid-reinforced 

aggregates constructed over a poor condition subgrade soil. Cyclic loading were performed 

through circular shape plate with diameter of 305 mm (12 in) with maximum applied pressure of 

500 kPa (72 Psi). Rutting depth and vertical stress at the bottom of the base layer were recorded. 

The experimental results revealed that geogrid inclusion in test sections decreased the rutting 

depth and improved the stress distribution at the interface between subgrade and base. 

2.2.1.7. (Moghaddas-Nejad & Small, 2003) 

Moghaddas-Nejad and Small (Moghaddas-Nejad & Small, 2003) carried out triaxial 

compression test in drained condition on geogrid-reinforced fine gravel and sand. Geogrid was 

placed at the mid-depth of 200×400 mm (8×16 in) cylindrical sample. The experimental results 
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of this investigation revealed that for a specific confining stress, the improvement in rutting 

depth significantly increased with the increase of deviator stress, up to a peak point and then it 

started to decrease slowly. However, not any remarkable effects were observed by inclusion of 

geogrid on the resilient deformation of tested materials. 

2.2.1.8. (Perkins, et al., 2004) 

Perkins et al. (Perkins, et al., 2004) conducted cyclic triaxial tests on geogrid-reinforced 

and unreinforced granular base materials. The test sections were cylindrical with height of 60 cm 

(24 in) and diameter of 30 cm (12 in). The test samples were compacted in a firm compaction 

mold using a vibrating plate compactor. Four different kinds of geosynthetics were used in this 

study. Two types of geogrids, one type of geotextile and one class of geocomposite was placed at 

the mid depth of the test section. The results revealed that geosynthetic reinforcement of granular 

materials does not have any remarkable effects on the resilient modulus of unbound aggregates. 

However, significant improvements were observed in rutting depth of test specimens when they 

were reinforced with a layer of geosynthetic. These finding are similar to those observed by 

Moghaddas-Nejad and Small (Moghaddas-Nejad & Small, 2003). Perkins et al. (Perkins, et al., 

2004) observed poor repeatability in rutting depth of reinforced test specimens by inclusion of 

different types of geosyntehtics. They also reported that not any significant improvement was 

observed in reinforced test specimens until a friction angle of 30° was achieved.  

2.2.1.9. (Nazzal, 2007) 

Aimed to investigate the effects of geogrid reinforcement on resilient behavior and 

permanent deformation of limestone aggregates, a cyclic and monotonic loading test program 

was conducted. The aggregates had maximum grain size of 19 mm (3/4 in), uniformity 
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coefficient of 30, D10 of 0.18 mm, and a D60 of 6 mm. The crushed limestone aggregates were 

classified as GW-GC based on the Unified Soil Classification System (USCS). The maximum 

dry density of 0.172 gr/cm
3
 (10.7 pcf), at the optimum moisture content of 7% was reported 

based on standard proctor test. Five different kinds of biaxial geogrids with different tensile 

strengths were used in this study. 

Based on experimental results of this investigation, reported by Nazzal (Nazzal, 2007), 

the rutting depth of limestone aggregates decreased by inclusion of geogrid in cyclic loading test 

samples. Moreover, the stiffness and strength properties of limestone aggregates (shear strength, 

and secant elastic modulus) increased by geogrid reinforcement when monotonic loading was 

applied. Better performance was observed when geogrids with higher tensile strength were used. 

In addition, more remarkable improvements were found at higher levels of strain.  

2.2.1.10. (Chen, Abu-Farsakh, & Tao, 2009) 

The effectiveness of geogrid-reinforced aggregate base layer in paved sections on poor 

condition subgrade under cyclic plate load testing was studied by Chen et al. (2009). The 

performance of instrumentation sensors was also evaluated to improve future instrumentation 

programs. A test box with dimensions of 2.0×2.0×1.7 m (6.5×6.5×5.5 ft) was used to conduct the 

testing program. A 40-kN (9 kips) load at a frequency of 0.77 Hz was applied through a 305 mm 

(1 ft) circular plate. The instrumentations used included pressure cells, linear variable 

displacement transducers, foil strain gauges, and piezometers. The test results revealed that the 

inclusion of geogrid at the interface between subgrade and base layer can improve the 

performance of flexible pavement on weak subgrade (CBR of 0.5%). Moreover, the TBR can be 

increased up to 3.5 for a rutting depth of 25 mm (1 in). The test results also revealed that geogrid 

reinforcement has redistributed the applied load to a wider area, thus achieving an improved 
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stress distribution on the subgrade soil, which eventually reduced the permanent deformation of 

subgrade. Due to high number of cyclic loadings, the foil strain gauges are unsuitable for long-

time continuous monitoring of strain development within geogrid. 

2.2.1.11. (Abu-Farsakh & Chen, 2011) 

In order to investigate the effects of geogrid reinforcement in flexible pavements, a cyclic 

loading palate test program was conducted. Pavement test sections were prepared inside a mold 

with dimensions of 2×2×1.7 m (6.5×6.5×5.5 ft). Cyclic loading was applied through a 2.5 cm (1 

in) thick circular plate with diameter of 305 mm (1 ft). A hydraulic actuator provided 40 kN (9 

kips) sinusoidal vertical loading, which applied a pressure of 550 kPa (80 Psi) on the surface of 

asphalt layer. These conditions simulates the standard single-axle dual tires force of 80-kN 

(18,000-lb). The subgrade soil was categorized as silty clay with Liquid Limit (LL) of 31 and 

Plasticity Index (PI) of 15. The base course layer was crushed limestone aggregates with D10 of 

0.382 mm and D50 of 3.126 mm. Design level 2 super pave mixture with a thickness of 19 cm 

(7.5 in) was used as Hot Mixed Asphalt materials in this study. Aggregate base layer was 

reinforced with four different types of geogrids.  

Based on experimental results of this study, geogrid reinforcement of base course layer 

remarkably decreased the surface rutting depth of pavement sections. By geogrid inclusion, the 

number of applied cyclic loadings increased by a factor of 15.3 at the rutting depth of 19.1 mm 

(3/4 in). More significant improvements were observed in rutting depth of the test sections 

reinforced with higher tensile strength geogrids. Upper one-third of the base course layer was 

suggested as the optimum location for geogrid reinforcement.  
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2.2.1.12. (Abu-Farsakh, Souci, Voyiadjis, & Chen, 2011) 

A series of cyclic triaxial tests were conducted on geogrid-reinforced limestone 

aggregates test specimens. The limestone aggregates had a D10 of 0.28 mm (0.011 in) and D50 of 

5 mm (0.2 in). One type of biaxial geogrid and one type of triaxial geogrid were used to reinforce 

the test sections. The results of this study revealed that geogrid reinforcement reduced the rutting 

depth of crushed limestone materials. These reductions were depended on geogrid properties 

such as aperture size, tensile modulus and also the location of geogrid in test section. Not any 

remarkable effect was observed on the resilient modulus of granular limestone materials by 

inclusion of geogrid.  

2.2.1.13. (Qian, Han, Pokharel, & Parsons, 2011) 

Qian et al. (2011) conducted a study to compare unreinforced and triaxial geogrid-

reinforced base course layers over a poor condition subgrade. Test sections were constructed in a 

large geotechnical testing box with dimensions of 2×2.2×2 m (6.5×7×6.5 ft) at the University of 

Kansas and tested under cyclic loading. Throughout the tests, surface deformation and vertical 

stress at the subgrade-base interface were monitored. The test results revealed that triaxial 

geogrids reduced rutting depth and vertical stresses at the interface compared with an 

unreinforced base. The improvements were more significant by utilizing a heavier-duty geogrid. 

The back calculations from the measured vertical stresses at the subgrade-base interface revealed 

that the modulus ratio of base course to subgrade and the stress distribution angle decreased with 

an increase in the number of cycles. The rates of reduction in the stress distribution angle and the 

modulus ratio for the unreinforced base were faster than those for the reinforced bases.  
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2.2.2. Large- Scale Field Investigation  

Laboratory-scale investigations are beneficial to initially and easily simulate geogrid-

reinforced roadway sections. However, field-scale studies provide more relevant and actual 

results on the behavior of geogrid-reinforced pavement systems. In this chapter, an extensive 

literature review is conducted on field-scale geogrid inclusion in flexible pavements.  

2.2.2.1. (Webster, 1993)  

Aimed to provide a design criteria for geogrid-reinforced flexible pavements, a full scale 

testing program was conducted. Four lanes of paved roadway were constructed on a subgrade 

soil with CBR of 3 to 8%. The aggregate base layer thicknesses were 153, 254, 304, and 457 mm 

(6, 10, 12, and 18 in) at different test section locations. Based on the results of this study, 

Webster (Webster, 1993) proposed a design method which converts the unreinforced aggregate 

base layer thicknesses to geogrid-reinforced base layer thicknesses, as shown in Figure 2.17 (see 

Section 2.2.1.1). Comparison of the two proposed design curves suggested by two different 

studies, shows that how material properties and test program details were influential on the test 

results.  

2.2.2.2. (Cancelli & Montanelli, 1999) 

Aimed to compare the performance of woven geotextile and geogrid in flexible 

pavements, an extensive experimental program was conducted. Based on the results of this study, 

the aggregate base layer thickness reduced significantly by inclusion of geogrid in paved roads. 

Geogrids with higher tensile modulus showed better performance in reduction of the rutting 

depth. High strength geotextile was more effective in separation of base and subgrade materials 

than reinforcing the test section. The number of load applications increased by a factor of 200 at 

h9026vxy
Sticky Note
Is this 200%. Factor of 200 sounds too high.
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the rutting depth of 5 mm (0.2 in), by inclusion of geogrid in pavement system. Averagely, a 

TBR of 10 was suggested for geogrid-reinforced sections considering different types of geogrids 

and subgrade soil conditions. More remarkable improvements were observed when geogrid was 

used on a poor condition subgrade soil. The structural layer coefficient of base course layer 

increased to 1.5-2.0 by geogrid inclusion. The elastic strains recorded for geogrids were less than 

0.2% in most of the reinforced test sections.  

2.2.2.3. (Perkins S. , Evaluation of geosynthetic reinforced flexible pavement 

systems using two pavement test facilities, 2002)  

The performance of geogrid and geotextile-reinforced pavement sections were compared 

in a full scale investigation conducted by Perkins (Perkins S. , Evaluation of geosynthetic 

reinforced flexible pavement systems using two pavement test facilities, 2002). Two different 

types of geogrid and one type of geotextile were placed at the subgrade-base interface. Each of 

the four test sections had a length of 9.91 m (32.5 ft) and a width of 3.18 m (10.4 ft). Base course 

and HMA layers had thicknesses of 350-mm (12 in) and 75-mm (3 in), respectively. The 40-kN 

loading was applied on the surface of the asphalt layer through a Heavy Vehicle Simulator. 

Asphalt surface rutting depth and stresses at the subgrade-base interface were recorded 

throughout the test. In addition, the strain values were recorded at different locations of 

pavement sections through strain coils. 

The results of this study revealed that inclusion of all three types of geosynthetics 

significantly decreased the surface rutting depth. In addition, lower stress and strain values were 

experienced in reinforced pavement sections compared to those of unreinforced sections. Not 

any remarkable differences were observed between the performance of geogrid and geotextile 

layers.  

h9026vxy
Sticky Note
Typical structural layer coefficient varies 0.1 to 0.12. 1.5 to 2 sounds unrealistic.
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2.2.2.4. (Tingle & Webster, 2003) 

Four field-scale pavement sections were prepared to investigate the effects of 

geosynthetics on test section properties. The unreinforced section had a 50.8 cm (20 in) thick 

aggregate base course layer. Woven and nonwoven geotextile-reinforced sections had a base 

layer thickness of 38.1 cm (15 inch). Another pavement section was prepared with base layer 

thickness of 25.4 cm (10 inch) and reinforced with a layer of geocomposite (geogrid/nonwoven 

geotextile). 

Tingle and Webster (Tingle & Webster, 2003) reported that the base aggregates were 

punched to the subgrade soil for about 3.8 cm (1.5 in) and the subgrade soil was intruded to the 

aggregates about 12.7 cm (5 in) at unreinforced section. However, subgrade rutting depth of zero 

was recorded for unreinforced section. When the test section was reinforced with woven 

geotextile, a rutting depth of 7.6 cm (3 in) was recorded on the subgrade and not any subgrade 

intrusion was recorded. Nonwoven geotextile-reinforced section showed a subgrade rutting depth 

of 7.6 cm (3 inch) and subgrade intrusion of 190 mm (7.5 in). Inclusion of geocomposite in 

roadway resulted in a subgrade rutting depth of 5.1 cm (2 inch). A base course reduction factor 

of 0.75 and 0.5 was suggested for geotextile and geocomposite-reinforced pavement sections, 

respectively. 

2.2.2.5. (Aran, 2006)  

Two roadway flexible pavements were constructed in 1986 and 1990 in order to study the 

long term performance of geogrid-reinforced sections. The test section prepared in 1986 had a 

base layer thickness of 25.4-cm (10 in) and the geogrid was placed the subgrade-base interface. 

The unreinforced section HMA layer thickness was 5 cm (2 in) more than the reinforced test 
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section. In the test section constructed in 1990, the base layer thickness was 10 cm (4 in) and the 

geogrid was placed at the middle or bottom of the aggregate base layer. The unreinforced test 

section had 15 cm (6 in) of lime-stabilized subgrade soil. The performance of the studied 

roadway sections were recorded in 1991, 2004, and 2005.  

Long term evaluation of the results of this study revealed that geogrid-reinforced test 

section had the same performance with unreinforced section with 5-cm (2 in) thicker HMA layer. 

Moreover, improvements observed by geogrid inclusion in the studied sections were similar to 

unreinforced section with 15-cm (6 in) lime-stabilized subgrade. Improved behavior was 

observed when geogrid was used in thinner pavement sections. 

2.2.2.6. (Helstrom, Humphrey, & Hayden, 2007) 

Aimed to study the effects of geosynthetic reinforcement on flexible pavements, two 

series of test sections were prepared over a subgrade soil with standard penetration field blow of 

7. Base course layer thickness was 300 mm (12 in) and 600 mm (24 in) for the first and second 

series of the test sections, respectively. Four different reinforced test sections were prepared at 

each of the test series. Geogrid reinforcement was placed at the subgrade-base interface and mid-

depth of base course layer for the first two pavement sections. Another test section was 

reinforced with a layer of geogrid placed at the middle of aggregate base layer and a layer of 

drainage geocomposite placed at the subgrade-base interface. The last test section was prepared 

with a drainage geocomposite layer placed at the interface between subgrade and base course 

layers. All pavement sections had a150 mm (6 in) thick HMA layer. 

It was found that inclusion of geogrid and drainage composite layers in 304 mm (12 in) 

thick base layer pavements increased the base course structural coefficient by 5 and 17%, 
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respectively. However, not any remarkable results were observed for the test sections with base 

layer thickness of 600-mm (24-in). Inclusion of drainage geocomposite layers in pavement 

sections did not have any effects on pore water pressure in the subgrade soil. 18 to 83% of the 

long-term force in geogrid was created during base layer compaction and preparation. Helstrom 

et al. (Helstrom, Humphrey, & Hayden, 2007) suggested that geogrid and drainage composite 

inclusion in 300-mm (12-in) thick base layer pavements was equivalent to 25 to 75 mm (1 to 3 

in) thicker base course layer. 

2.2.2.7. (Al-Qadi I. , Dessouky, Kwon, & Tutumluer, Geogrid in flexible 

pavements: validated mechanics, 2008)  

In order to study the improvements by inclusion of geogrid in low volume flexible 

pavements, nine filed scale roadway sections were prepared on a subgrade soil with CBR of 4%. 

Three different aggregate base layer thicknesses of 202 mm (8 in), 304 mm (12 in), and 458 mm 

(18 in) were used to build the pavement sections. Two geogrid types were used and the HMA 

layer thickness was 75 mm (3 in) and 128 mm (5 in) for different test sections. Pavement 

responses were measured by 173 gauges installed in the test section to record rutting depth, 

stress, strain, moisture, temperature, and pore-water pressure. A cyclic loading of 44 kN was 

applied to simulate standard dual tire pressure. 

Al-Qadi et al. (Al-Qadi I. , Dessouky, Kwon, & Tutumluer, Geogrid in flexible 

pavements: validated mechanics, 2008) revealed that inclusion of geogrid in pavement sections 

decreased the surface rutting depth of the studied test sections. Moreover, lower shear 

deformation in aggregate base layer was observed in geogrid-reinforced test sections. Subgrade-

base interface was reported as the optimum location for geogrid reinforcement at thin aggregate 
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base layer sections. For a thick base layer pavement section, upper one third of the base layer 

was suggested as the optimum location for geogrid placement. 

2.2.2.8. (Duncan-Williams & Attoh-Okine, 2008) 

An experimental program to study the effects of geogrid reinforcement on strength 

properties of aggregate base materials was conducted. Unreinforced and geogrid-reinforced 

specimens were prepared inside a mold using different soil materials. The reinforcement layer 

was placed at the mid depth of the test specimen. Duncan et al. (Duncan-Williams & Attoh-

Okine, 2008) revealed that geogrid reinforcement increased the CBR value of the soil. 

2.2.2.9. (Henry, Clapp, Davids, Humphrey, & Barna, 2009)  

Eight full scale pavement sections were prepared to study the properties of geogrid-

reinforced flexible pavements with thick HMA and base course layers.  Two HMA thicknesses 

(102 mm (4 in) and 152 mm (6 in)) and two base course layer thicknesses (300 mm (12 in) and 

600 mm (24 in)) were involved amongst the roadway sections. The subgrade soil material was 

silt and reinforcement layer was placed at the interface between subgrade and base course layers 

for reinforced studied test sections. Subgrade soil had modulus of 109 MPa to 138 MPa based on 

Falling-Weight Deflectometer (FWD) test. However, required water was added to achieve the 

target modulus of 35 MPa. Elastic deformations and permanent rutting depth were recorded at 

the surface of HMA and subgrade-base interface through electromagnetic induction coils. Seven 

pressure cells were installed in each test section to record stresses throughout the test. Moreover, 

foil strain gauges were installed on the ribs of geogrid to measure flexural and longitudinal 

strains. Dynamic loading of 689.5 kPa was applied through a Heavy Vehicle Simulator on the 

surface of studied test sections.  
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Henry et al. (Henry, Clapp, Davids, Humphrey, & Barna, 2009) revealed that number of 

applied cyclic loadings increased by a factor of 1.3 to 1.4 by inclusion of geogrid in flexible 

pavement sections. However, not any remarkable improvements were observed in thick base 

(300 mm (12 in) and 600 mm (24 in)) and thick HMA layer (102 mm (4 in) and 152 mm (6 in)) 

test sections. Moreover, geogrid reinforcement did not decrease elastic vertical strain in any 

layers of the pavement system. 

2.2.2.10. (Cox, McCartney, Wood, & Curry, 2010) 

Cox et al. (Cox, McCartney, Wood, & Curry, 2010) conducted a research program to 

study the effects of geogrid reinforcement on rutting depth of flexible pavements. A Vibroseis 

(shaker) was used to apply cyclic loading on the surface of geosynthetic-reinforced pavement 

sections. A line of LVDTs were installed on the surface of test sections to record elastic 

deformations and permanent rutting depths. Based on experimental results of this study, lower 

rutting depths were observed for thicker base course layer pavements. Not any remarkable 

improvements were detected in pavement performance by geogrid reinforcement, possibly due to 

lack of enough strain in pavement section to mobilize the reinforcement layer.  

2.2.2.11. (McCartney, Cox, Wood, & Curry, 2010) 

This study investigated the response of full-scale geogrid-reinforced flexible pavements 

to static surface loading. Specifically, Static Plate Load (SPL) tests were conducted on a low-

volume, asphalt pavement frontage road in Eastern Arkansas, USA. This site is consisting of 

sixteen 15 m (50 ft)-long sections including different geosynthetic types, two base course 

thicknesses, and control sections. Maximum deflections under a maximum static surface stress of 

540 kPa (78 Psi) ranged from 2.5 to 4 mm (0.1 to 0.16 in). At least four unload-reload curves 
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were obtained for each section to dampen the effects of the visco-elastic response of the asphalt 

surface layer on the system stiffness. The range in tangent stiffness obtained from the third 

reload cycle for the pavement sections ranged from 495 to 905 kPa/mm during the winter (dry 

season), and 452 to 725 kPa/mm during the late spring (wet season). A smaller decrease in 

stiffness from the wet season to the dry season was observed for the reinforced sections. The 

trends in the stiffness values indicate logical trends with reinforcement type and base course 

thickness, showing that the SPL test is suitable for global characterization of the geosynthetic-

reinforced sections. Three-layer elastic analyses using moduli determined using Spectral 

Analysis of Surface Waves (SASW) was found to be useful in quantifying the impact of 

geosynthetic reinforcement on the surface settlement. Although predicted elastic settlements 

were greater than measured settlements, the trends were close. The Poisson’s ratios of the base 

course layers in each section (incorporating the geosynthetic reinforcement as a composite) were 

found to be a useful parameter to account for the effect of geosynthetic reinforcement on the base 

lateral confinement. 

2.2.2.12. (Al-Qadi I. , Dessouky, Tutumluer, & Kwon, 2011) 

In order to investigate the effectiveness of geogrid reinforcement in low-volume flexible 

roadways, and to identify the reinforcement mechanism involved in geogrid stabilized base 

course layers, a field-scale accelerated loading test program was carried out. Different HMA and 

base course layer thicknesses were used to construct pavement sections on a poor condition 

subgrade soil (CBR of 4%). More than 170 gauges were used to monitor the geogrid -reinforced 

and unreinforced test sections responses such as rutting depth, temperature, strains, moisture, 

pore-water pressure, and stresses throughout the test program. Cyclic loading was applied 

through an Accelerated Transportation Loading Assembly (ATLAS) which provided a dual-tyre 
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moving load of 44 kN (10 kips) at the speed of 8 km/h (5 mph). Lower loading speed was also 

utilized to compare different pavement sections responses.  

Al-Qadi et al. (Al-Qadi I. , Dessouky, Tutumluer, & Kwon, 2011) revealed that inclusion 

of geogrid in flexible pavements reduced the surface rutting depth and delayed the surface 

cracking compared to unreinforced test sections. Moreover, vertical deflection and vertical stress 

at subgrade soil of geogrid-reinforced sections decreased by reducing the loading speed. 

Therefore, the most remarkable finding of this investigation was that geogrid reinforcement 

decreased the horizontal displacement of granular materials, specifically in loading directions. 

Researchers of this study reported that upper one-third of a relatively thick base course layer is 

the optimum place for geogrid layer. Also, the interface between subgrade and base course layer 

is the best placement for geogrid -reinforced pavement sections constructed over a poor 

condition subgrade soil. 

2.2.2.13. (Jersey, Tingle, Norwood, Kwon, & Wayne, 2012) 

A large-sale pavement section was prepared and subjected to traffic loading at the U.S. 

Army Engineer Research and Development Center to study the effectiveness of a geogrid layer 

that was utilized for base course layer reinforcement of a thin flexible pavement section. A 

geogrid-reinforced and two unreinforced pavement sections were prepared under controlled 

conditions. An accelerated traffic loading was applied on the surface of roadway sections. 

Pavement stiffness and permanent surface deformations were measured periodically throughout 

the testing. The results showed that the geogrid-reinforced pavement showed a better 

performance than the unreinforced control pavements. The results were used to develop traffic 

benefit ratios and effective base course structural coefficients to enable comparison of the 

pavement structures. 
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2.2.2.14. (Al-Qadi I. , Dessouky, Kwon, & Tutumluer, Geogrid-Reinforced 

Low-Volume Flexible Pavements: Pavement Response and Geogrid 

Optimal Location , 2012) 

Al- Qadi et al. (Al-Qadi I. , Dessouky, Tutumluer, & Kwon, 2011) extended their 

previous researches to study the performance of a geogrid-reinforced low-volume flexible 

pavement constructed on a poor condition subgrade soil, and to investigate the optimum place 

for geogrid layer in pavement sections. Nine different test sections were prepared at Advanced 

Transportation Research and Engineering Laboratory (ATREL) of University of Illinois. More 

than 170 sensors were installed in test pavement sections to monitor the pavement response to 

dual tire accelerated loading. The results of this study showed that longitudinal and transverse 

shear deformations, significantly decreased by inclusion of geogrid in pavement sections.  
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3. CHAPTER 3    

 MATERIALS CHARACTERIZATION AND CYCLIC LOADING PLATE SYSTEM 

3.1. Overview 

In this chapter, materials characteristics used for the laboratory test set-up of the studied 

pavement sections are discussed. In addition, this section describes the experimental design, 

instrumentation selection and installation, test procedures, and data collection system. 

3.2. Paving materials characteristics 

The subgrade soil, base course aggregates and Hot-Mixed Asphalt (HMA) are the three 

types of materials used. 

3.2.1. Subgrade soil  

The subgrade soil utilized in this study was obtained from a local site representing 

common soil types in Southeastern Las Vegas. The soil is categorized as light brown silty, 

clayey sand with gravel (SC-SM) based on the Unified Soil Classification System (USCS). 

Subgrade soil had the R-value of 40 and resilient modulus of 65.75 MPa (9536 Psi). The sieve 

analysis test was conducted prior to each of the six set-up tests to make sure the delivered soil 

had the same properties. The average particle size distribution for the subgrade soil is shown 

Table 3.1. Modified Procter tests (ASTM D1577-07, 2012) were carried out which produced an 

average maximum dry density of 2.03 gr/cm
3
 (127 PCF) corresponding to the optimum moisture 

content of 11%. 

 

 

h9026vxy
Comment on Text
Did you use Nevada Test Method or AASHTO/ASTM method. The R-MR correlation developed by NDOT is based on Nevada test method.
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Table 3.1: Subgrade soil and base aggregate particle size distributions  

Passing, % 

Sieve size, mm Subgrade soil 
NDOT type 2 Class B 

requirements 

37.5 100 100 

25.0 93 100 

19.0 89 90-100 

12.5 83 - 

9.5 79 - 

6.3 72 - 

4.75 68 35-65 

2.36 61 - 

2.00 57 - 

1.18 52 15-40 

0.6 49 - 

0.425 46 - 

0.3 43 - 

0.15 39 - 

0.075 33 2-10 

 

3.2.2. Base Course Aggregates  

Type 2 Class B crushed limestone aggregates, commonly used in Southern Nevada for 

paved roads, were used for aggregate base course layer (see NDOT Type 2 Class B gradation 

requirements in Table 3.1). The base aggregate was classified as Light Gray, Poorly Graded 

Gravel /Silt & Sand (GP-GM). The average Modified Proctor tests for the base course aggregate 

materials showed optimum moisture content of 8.5% and maximum dry density of 2.264 gr/cm
3
 

(141 lb/ft
3
).  

3.2.3. Asphalt mixture 

The HMA type 2C plant-mix aggregate with rap, as designated by Nevada Department of 

Transportation, was prepared from a local asphalt plant and truck delivered to the laboratory 

testing site. It had a bitumen ratio of 4.4 and sand equivalent of 60. The LA abrasion loss was 

h9026vxy
Sticky Note
NDOT Uses Type 1 Class B aggregate base for our projects.
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equal to 24%. Other properties of the HMA are provided in Table 3.2. In addition, the particle 

distribution is shown is Figure 3.1. 

3.3. Geogrid index and mechanical properties  

Rectangular (BX1100) and triangular (TX130S) aperture geogrids made of 

polypropylene, herein referred to biaxial and triaxial geogrids, manufactured by Tensar 

Company were used in this study. Their materials and dimensional properties are shown in Table 

3.3 and 3.4, respectively. Both geogrid types are of the same family. In other words, they have 

been produced through the same manufacturing process and only differ in the product design 

details. For this specific family of geogrid, they only differ in aperture shape and size, unit 

weight, mechanical properties, tensile modulus, and rib thickness. 

3.4. Mold Dimensions and Cyclic Loading System 

A cylindrical mold, shown in Figure 3.2-a, with a diameter of 1.8 m (6 feet) and a height 

of 2.1 m (7 feet) was prepared to house the studied test pavement sections. A hydraulic actuator 

with a force range of 40 kN (9 kips), was installed between the two I-beams of the crosshead 

(Figure 3.2-b). A cyclic loading was applied on the surface of the asphalt layer by a steel rod that 

fits into a hole on the loading plate. The loading plate was a 1.3 cm (0.5 in) thick circular steel 

plate with a diameter of 305 mm (12 inches). The applied load was kept constant at 40 kN (9 

kips), which performed a pressure of 551 kPa (80 Psi) and model dual tires under an equivalent 

80-kN (18,000-lb) single-axle load. The loading, as shown in Figure 3.3, had a linear load 

increase from 2.2 kN (0.5 kips) to 40 kN (9 kips) in 0.3 second, followed by a 0.2-second period 

where the load was held constant at 40 kN (9 kips), followed by a linear load decrease to 2.2 kN 

(0.5 kips) over  

h9026vxy
Sticky Note
Add additional information for selecting BX1100 and TX 130S. Are they same Type (Type 1 & 2)?  cost comparable?  same weight per sq. yd? or any other reason?
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Table 3.2: HMA properties 

Property Value Property Value 

Type material 
Type 2C plantmix 

aggregate with rap 

Liquid limit (before 

marination) 

¾”: 16;     ½”:16;    

3/8”:15 

Type asphalt 76-22NV 
Plasticity index (before 

marination) 

¾”:2 ;     ½”:2;    

3/8”:2 

Surface area m
2
/kg 

(ft
2
/lb) 

6.23 (30.4) LA Abrasion 24.0 

Sand equivalent 60 
VMA (Based upon 

calif. Sp. Gr.) 
14.4 @4.4 

Calif. Specific gravity 2.76 
Original tensile strength 

(Psi) 
120.5 

Coarse Agg. bulk 

specific gravity 
2.73 % retained strength 99 

Fine agg. specific 

gravity 
2.67 Bitumen ratio 4.4 

  Resilient Modulus (ksi) 260 

 

 

Figure 3.1: HMA particle size distributions 
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a 0.3-second period, and extended by a 0.5-second resting period of 2.2 kN (0.5 kips) 

before the next loading cycle resumed. This load pulse resulted in a frequency of 0.77 Hz. 

 

Table 3.3: Materials and dimension properties of BX1100 (Tensar, Tensar Biaxial BX grogrids, 

2015) 

Index properties Units MD Values1 TD Values1 

Aperture Dimensions mm (in) 25 (1.0) 33 (1.3) 

Minimum Rib Thickness mm (in) 0.76 (0.03) 0.76 (0.03) 

Load Capacity Units MD Values1 XMD Values1 

True Initial Modulus in Use  kN/m 250 400 

True Tensile Strength @2% Strain kN/m 4.1 6.6 

True Tensile Strength @5% strain kN/m 8.5 13.4 

Structural Integrity Units MD Values1 

Junction Efficienty % 93 

Flexural stiffness Mg-cm 250,000 

Aperture Stability Kg-cm/deg 3.2 

 

 

  

 

Table 3.4: Materials and dimension properties of TX130s (Tensar, Tensar TriAx 

(TX) Gogrids, 2015) 

Index Properties Longitudinal Diagonal Transverse 

Rib Pitch, mm (in) 33 (1.30) 33(1.30) - 

Mid-rib Depth, mm (inch) - 1.5 (0.06) 1.2 (0.05) 

Mid-rib Width, mm (inch) - 0.6 (0.02) 0.7 (0.03) 

Rib shape Rectangular 

Aperture shape Triangular 

Structural integrity 

Junction efficiency, % 93 

Aperture Stability, kg-cm/dg @ 5.0 kg-cm 3.0 

Radial stiffness at low strain, Kn/m @ 0.5 % strain 200 

Radial stiffness at low strain, lb/ft @ 0.5% strain 15,075 
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3.5. Instrument selection and calibration  

Intended to precisely compare the performance of the studied test sections reinforced 

with different types of geogrid and in order to identify the optimal test section properties for a 

given subgrade condition, the vertical stresses at the interface between the subgrade and base 

layer, as well as the strains experienced by the geogrid ribs were recorded. Moreover, the asphalt 

surface rutting depth was recorded throughout the six studied pavement sections. These 

measurements also allowed for understanding of the mechanisms taking place at the base-

subgrade interface separately.  

The selection of instrumentation was based on the data needed, cost effectiveness, 

reliability, and the information found in the literature. Each of these instrumentations is 

discussed in this chapter separately.  

 

(a)                         (b) 

Figure 3.2: Test mold and loading system 

(a) Mold and frame; (b) Loading plate system 
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Figure 3.3: Loading details 

 

3.5.1. Instrument for measuring vertical pressure 

The vertical stress sensors were selected based on the pavement section properties and 

loading details in order to provide accurate and satisfactory measurements throughout the tests. 

The pressure cells should record the stress values at the base and subgrade layers without any 

interruption to the actual existing stress levels at the pavement section. Hydraulic pressure cells 

and the diaphragm (membrane) cells are two common types of earth pressure cells for recording 

the vertical pressure in granular materials.   

The diaphragm cell is basically made of a strong circular membrane holding by a 

boundary ring. The diaphragm cell is installed in the subgrade soil and the membrane bends 

while the pressure is applied to the soil surface. The membrane movements are recorded by a 

strain gauge transducer installed inside the cell. The amount of membrane movement reflects the 

amount of pressure applied to the soil.  
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Hydraulic pressure cells are made of two concave circular shape steel plates welded 

together to create a cavity. The cavity is filled with a liquid and it is connected to a pressure 

transducer through a steel tube. The pressure transducer transforms the physical force of the fluid 

to electrical signals.  

Hydraulic type pressure cells were selected to record the pressure values at the subgrade 

and aggregate base layers as one of the key responses of a flexible pavement system. The 

pressure cells were produced by Geokon Company (Geokon 3500) and generally had a diameter 

of 22.9 cm (9in). Customized hydraulic pressure cells with diameter of 15.2 cm (6 in) were 

ordered considering the test sections geometry in order to minimize any possible interruptions in 

the studied pavement sections. The installation of the pressure cells in the subgrade is discussed 

in the paragraph below.  

Holes of the same form, but marginally larger than that of the earth pressure cells, were 

excavated to a specific depth with a hand trowel. Once, the bottom of each hole was flattened, 

the pressure cells were placed and leveled inside the holes, using a leveling device as shown in 

Figures 3.4-a and 3.4-b, before each hole was backfilled and compacted with the same subgrade 

soil materials. The amount of soil needed to backfill was estimated by removing the amount of 

soil occupied by the pressure cell, which was calculated by multiplying the density of the soil by 

the approximate volume of the pressure cell from the soil excavated. The installation process of 

the pressure cells are shown in Figure 3.4. 

The pressure cell installed in the aggregate base layer was protected by embedding the 

pressure cell in a bag of fine sand, in order to avoid possible damages during compaction of base 

layer. A pressure cell protected and installed in the aggregate base layer is shown in Figure 3.5. 
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3.5.2. Instrument for geogrid deformation measurement 

In order to evaluate mobilization and engagement of the geogrids installed in pavement 

sections, the strain amount in geogrid ribs were recorded throughout the tests. 8 foil strain gauges 

were placed in two directions of biaxial and triaxial geogrids away from the center of the mold at 

15.2 cm (6 inches) intervals. The strain gauges were selected based on a lot of factors such as 

maximum possible strain values during the tests, number of repeated loadings, size, accuracy, 

temperature, and properties of the materials geogrids are made of.  

With regard to consultations with foil strain gauge producers and a comprehensive 

literature review, EA-06-230DS-120 strain gauge produced by Vishay Micro-Measurements Inc. 

was chosen to use in this study. Mentioned strain gauges had a backing material made from 

0.025 mm (0.001 in) tough, flexible cast polymide. The measurement grid was constructed from 

a constantan alloy that was able to keep the strains of up to 5 percent. Strain gauges were 

precisely calibrated by the producer on a steel plate to obtain the gauge factor. The strain gauges 

had an electrical resistance of 120.0 ± 0.15% ohm, and gauge factor of 2.095 ± 0.5%. The strain 

gauges had a length of 12.7 mm (0.5 in) and a width of 3.3 mm (0.13 in). They were installed on 

the ribs of biaxial and triaxial geogrids and connected to a three wire quarter bridge circuit. The 

circuit was connected to a data acquisition system. Installation, soldering and protection of the 

strain gauges are discussed in the paragraphs to follow.  
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(a)       (b) 

 

 (c)      (d) 

 

 

 

 

(a)       (b) 

 

Figure 3.4: Subgrade pressure cells installation procedure 

 (a) Positioned the pressure cells in their location; (b) Checked pressure cells to be 

level; (c) Installation of a pressure cell in subgrade; (d) Final look of the pressure cells 

installed 

Figure 3.5: Base layer pressure cell installation 

(a) Protected pressure cell for installation of base layer;  

(b) Installed pressure cell at the subgrade-base interface 
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Strain gauges were set up on the surface of the ribs of the geogrid in order to measure the 

bending and tensile strains in geogrid. A small drop of the adhesive was applied to the center of 

the sanded rib (Figure 3.6-a), and the gauge was transferred to the center point using a process, 

designed to prevent contamination from getting on the surface of the gauge. The top of the gauge 

(the side with the measurement grid) was carefully positioned on the sticky side of a piece of 

tape using sterile tweezers. Then the sticky side of the tape was transferred to the geogrid surface 

(gauge facing up but covered with tape), the gauge was aligned and centered, and slight pressure 

was applied until adhesive fully covered the contact area between the back of the gauge and the 

surface of the geogrid. A small spring clamp was used to apply pressure in order to make sure a 

strong attachment of the strain gauge to the geogrid’s rib took place. After the adhesive had 

cured, the clamps were removed and the tape was slowly peeled back at nearly a 180 angle to 

avoid damaging (or pulling up) the gauge. Any excess adhesive that extended over the rib was 

carefully trimmed using a razor blade, without damaging the material or the gauge. The gauge 

was inspected to ensure proper alignment and adhesion.  The same procedure was repeated for 

external terminals. Final configuration of two strain gauges installed on the ribs of triaxial 

geogrid is shown in Figure 3.6-b. 

For the wiring and soldering of the strain gauges, cable conductors and wires were 

positioned and secured to the geogrid with a cable tie before soldering the transmission cable to 

the external terminal. Tiny wires were used to solder the strain gauges to the terminals followed 

by soldering of the main wires to the terminals as shown in Figure 3.7-a. The final installation 

configuration is shown in Figures 3.7-b and 3.7-c. 
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(a)       (b) 

Figure 3.6: Foil strain gauge installation 

 (a) Adhesive applied on the ribs of geogrid; (b) Installation of foil strain gauges and terminals 

 

All foil strain gauges needed protection. For this purpose, non-conductive silicone was 

applied liberally on all electrical components in the area of the install to form a protective (but 

ductile) cover around the gauges, terminals, and wires as shown in Figure 3.8-a. Subsequently, 

thin electrical tape was wrapped around the nodes and ribs to fully seal the electrical connection 

(Figure 3.8-b). Care was taken to minimize the amount of protection in the grid opening in order 

to avoid influencing the interaction with the soil. The resistance of the gauge was verified at the 

end to make sure the installation and protection process did not damage the strain gauge. As 

shown in Figure 3.8-c, a plastic hose was used to protect the wires from any possible damages 

during compaction and testing. The final configuration of a protected strain gauge is shown in 

Figure 3.8-d.  

After installation, soldering, wiring, and protections of the strain gauges, the geogrid was 

cut in a circular shape, as shown in Figure 3.9-a, with a diameter of 180.4 cm (5 feet 11 inch 

which was 1 inch smaller than the mold diameter). The wires were passed through two plastic 

pipes on the sides of the mold and the geogrid was installed inside the mold as shown in Figure 

3.9-b. 
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3.5.3. Instrument for asphalt surface deformation measurement 

To monitor test section loading responses, a Linear Variable Displacement Transformer 

(LVDT) was part of the loading actuator and was used to record the HMA surface deflection. 

This displacement transducer was part of the loading system and was placed on top of the 

loading plate (Figure 3.10-a). The asphalt surface deformation (rutting depth) was recorded 

throughout the test by RMCTools software provided by the hydraulic loading system company 

(Figure 3.10-b). 

3.6. Data acquisition system 

Instruments were connected to a data acquisition system to collect, store, and plot the 

collected data at a rate of 10 Hz. An in-house programme for data acquisition was developed 

using Labview software. The instruments were only activated during load application. The data 

acquisition system is shown in Figure 3.11. 

3.7. Test Section Preparation and Instruments Installation 

All the studied pavement sections were prepared with care in order to make sure they 

have the same and a uniform compaction level. 

Discussed instrumentations were installed in the studied pavement sections. Accurate 

installation of the gauges guarantees a reliable measurement throughout the test. 

3.7.1. Test Section Preparation 

Six pavement test sections were prepared. The first section was unreinforced with a 40.6 

cm (16 inch) thick base layer. The second and third test sections were reinforced with biaxial and 

triaxial geogrid layers, respectively, positioned at the mid-depth of the 40.6 cm (16 inch) thick 
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aggregate-base layer. The forth test section was unreinforced consisted of a 30.5 cm (12 inch) 

base layer. Fifth and sixth test sections with the same thickness of base layer, were biaxial and 

triaxial geogrid-reinforced and the reinforcement was placed at the interface of subgrade and 

base layers. The six pavement test sections are schematically shown in Figure 3.12. The test 

codes consist of a letter and two digit numbers. The letters C, B and T represents the words, 

Control, Biaxial and Triaxial respectively. And the two digit number shows the thickness of 

aggregate base layer in inches. For example, the test code B12 belongs to the test section 

reinforced with a biaxial geogrid and 12 inches (30.5 cm) of aggregate base layer. The same 

coding system in used throughout this study. 

 

(a)       (b) 

 

(c) 

Figure 3.7: Foil strain gauge soldering 

(a) Soldering of foil strain gauges; (b) Wiring of the gauges and terminals; (c) Two strain 

gauges installed and soldered on geogrid ribs 
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(a)       (b) 

 

(c)       (d) 

Figure 3.8: Foil strain gauge protection 

(a) Applying silicon to protect the gauges; (b) Electrical tape applied for protection purposes; 

(c) Protection of wires; (d) Final look of a protected foil strain gauge 

 

 

(a)       (b) 

Figure 3.9: Geogrid installation 

 (a) Cutting the geogrid in a circular shape; (b) A geogrid layer installed inside the mold 
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(a)       (b) 

Figure 3.10: Dynamic loading system 

 (a) Loading plate system control device; (b) Asphalt surface deformation measurement 

instrument 

 

(a)       (b) 

 

Figure 3.11: Data acquisition system 

 (a) Data acquisition system modules;  (b) LabView software monitoring the instruments while 

tests are running 
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As for the construction of pavement sections, the silty clay subgrade was first placed and 

compacted in multiple equal lifts inside the steel mold (Figure 3.13-a and 3.13-b). The loose 

thickness of each lift was 22.9 cm (9 inches) which resulted in a 12.7 cm (5 inches) thickness of 

compacted soil. The subgrade soil was compacted at a water content of 11.2% to the compaction 

level of 95% corresponding to the Modified Proctor test (maximum dry density of 2.03 gr/cm
3
 

(127 PCF) at the optimum moisture content of 11%). The subgrade was prepared by using a tiller 

to mix the silty clay and water. Then, the silty clay was rake-leveled and compacted using a 

compaction rammer to a predetermined height to achieve the desired density. At the completion 

of subgrade preparation, the pressure cells were placed 5.1 cm (2 inches) below the subgrade-

base interface at the distances of 0, 22.8 and 45.7 cm (0, 9 and 18 inches) away from the center 

of the mold as shown in Figure 3.4-d. Another pressure cell was placed 5.1 cm (2 inches) above 

the interface in the base course layer at the center of the mold. The pressure cells installation and 

protection process were described in Section 3.5.1. Table 3.5 shows subgrade’s moisture content 

and resulting compaction density for the six pavement test sections. 

The base course layer was prepared by placing crushed limestone in two 10 inches (or 8 

inches) loose lifts, mixed with the desired optimum water content, and compacted to the final 

thickness of 8 inches (or 6 inches) resulting in an average density of 2.15 gr/cm
3
 (134 pcf) which 

corresponded to nearly 95% of the optimum density using Modified Proctor Compaction. The 

geogrid was installed at the center of base course layer between the two compacted lifts for the 

first three test sections with 40.6 cm (16 inch) of base thickness and at the subgrade-base 

interface for the last three test sections with 30.5 (12 inch) thick base layer (Figure 3.13-c and 

3.13-d).  
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The HMA was truck delivered, spread over the area of the test mold, rake-leveled, and 

immediately compacted to the predetermined height of 7.6 cm (3 inches) using a vibratory plate 

compactor at the level of 95% of optimum density of 2.603 gr/cm
3
 (162.5 pcf). The asphalt 

preparation and compaction process are shown in Figure 3.13-e and 3.13-f. 

Geogauge tests were carried out, as shown in Figure 3.14, after compaction of each lift to 

ensure the required compaction level and moisture content is achieved. Shown in Table 3.5 are 

Geogauge test results for the subgrade, base, and HMA layers. 

h9026vxy
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Table 3.5:  As- constructed lift properties of subgrade, base and asphalt layer 

Test 

No. 

Test 

Section 

Subgrade 

Moisture 

Content 

(%) 

Subgrade Density 

gr/cm
3
 (PCF) 

Subgrade 

Compaction 

effort (%) 

Base 

Moisture 

Content 

(%) 

Base 

Density 

gr/cm
3 

(PCF) 

Base 

Compaction 

Effort (%) 

HMA 

Density 

gr/cm
3
 

(PCF) 

HMA 

Compaction 

Effort (%) 

1 C16 11.40 1.86 (115.8) 91.40 4.10 2.13 (133.3) 94.30 2.34 (144.3) 93.10 

2 B16 12.50 1.81 (113) 89.20 4.20 2.18 (135.9) 96.15 2.39 (148.2) 95.61 

3 T16 11.34 1.83 (114.2) 90.10 3.90 2.09 (130.7) 92.51 2.30 (146.9) 94.79 

4 C12 13.20 1.82 (113.8) 89.80 3.80 2.18 (136.1) 96.27 2.39 (145.9) 94.10 

5 B12 11.8 1.87 (117) 92.35 4.6 2.15 (134.2) 94.98 2.36 (145.3) 93.75 

6 T12 13.1 1.82 (113.4) 89.5 5.35 2.17 (135.4) 95.78 2.38 (145) 93.7 
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Figure 3.12: Pavement test section schematics 

 

The loading plate system and the displacement transducer were then installed on top of 

the prepared pavement section as shown in Figure 3.15. All sensors were connected to a data 

acquisition system and the results were recorded throughout the repeated loading for at least 3 

million cycles.  

 

Biaxial geogrid 

Triaxial geogrid 

Triaxial geogrid Biaxial geogrid 
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(a) (b) 

 

 

(b) (d) 

 

 

(c)       (d) 

Figure 3.13: Test section compaction and preparation 

(a) Dumping soil inside the mold; (b) Compaction of subgrade soil; (c) Spreading coarse 

aggregate over the subgrade; (d) Compaction of aggregate base; (e) Hot mix asphalt delivery; (f) 

Compaction of HMA 
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(a)       (b) 

Figure 3.14: Geogauge testing 

(a) Subgrade soil compaction level and moisture measurement; (b) Hot mix asphalt compaction 

level and moisture measurement 

 

 

 

(a)       (b) 

Figure 3.15: Loading plate system installation 

(a) Moving the loading plate system after test section preparation; (b) Installation of the loading 

system  
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4. CHAPTER 4      

    TEST RESULTS AND DISCUSSION 

4.1. Overview 

This chapter presents the results of testing and analyses performed for the six pavement 

sections described in Section 3.7.1. Differences in performance between the two aggregate base 

layer thicknesses, as well as the two geogrid types are discussed. As explained in Chapter 3, the 

two aggregate base layer thicknesses and the two geogrid types were selected to ensure that the 

experimentation was generalized.  

4.2. Asphalt surface deformation (Rutting Depth) 

Figure 4.1 illustrates the development of asphalt surface deformation (rutting depth) for 

accelerated load tests, up to 3 million repeated loading for the different tested pavement sections. 

The permanent surface deformation was recorded by the LVDT placed on top of the loading 

plate attached to the loading system. Generally speaking, the rutting depth increased with 

increases in the number of loading cycles for all studied pavement sections. The rutting depth 

increased at a faster rate up to the fist 0.5 million loading cycles; however, the rate of increase in 

rutting depth decreased with additional increases in the number of loading cycles. The 

unreinforced sections displayed higher surface deflections as compared to those of the reinforced 

pavement sections. Use of triaxial geogrid was more effective than biaxial geogrid in reducing 

both surface rutting and vertical stresses at the interface between base and subgrade. 
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Figure 4.1: Surface Deformation (Rutting depth) 

 

The results of the accelerated load tests, up to 3 million repeated loading for the 40.6 cm 

(16 in) thick base test sections, are graphically presented in Figure 4.2. As can be seen, the 

surface deformation of the biaxial geogrid-reinforced pavement section was less than the 

reference test section throughout the test. The biaxial-reinforced section displayed lower surface 

deflections, as compared to that of the unreinforced section, by approximately 21, 18, 15, 16, 17, 

and 17.1% at the loading cycles of 0.5, 1, 1.5, 2, 2.5 and 3 million, respectively (Table 4.1). The 

triaxial geogrid-reinforced test section showed a better performance than both the biaxial-

reinforced and the unreinforced pavement sections. By using triaxial geogrid, the rutting depth 

decreased by nearly 31, 28, 30, 30, 31, and 30% at 0.5, 1, 1.5, 2, 2.5 and 3 million strokes, 

respectively; as compared to unreinforced pavement section. The asphalt surface deformation of 
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triaxial-reinforced test section was approximately 13, 12, 18, 18, 17, and 16% lower than the 

biaxial-reinforced test section at 0.5, 1, 1.5, 2, 2.5, and 3 million cycles, respectively. 

 

Figure 4.2: Surface Deformation of the 40.6 cm (16 in)-thick base pavement sections 
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T12 -33.3% -26.9% -16.7% -17.1% -14.3% -14.7% -16.1% -15.7% 
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Figure 4.3 illustrated the asphalt surface deformation of the 30.5 cm (12 inch)-thick base 

layer pavement sections. The rutting depth of biaxial-reinforced test section was lower than that 

of the unreinforced test section. The surface deformation of biaxial geogrid-reinforced test 

section was 10, 12, 8, 10, 8 and 8% smaller than that of the unreinforced section at 0.5, 1, 1.5, 2, 

2.5 and 3 million strokes, respectively. The rutting depth of the triaxial geogrid-reinforced test 

section was smaller than unreinforced and biaxial-reinforced sections. When triaxial geogrid was 

used, the surface deformation decreased by 17, 17, 14, 15, 16 and 16% at 0.5, 1, 1.5, 2, 2.5 and 3 

million loading cycles, respectively, as compared to unreinforced test section. Also, triaxial 

geogrid-reinforced pavement section rutting depths decrease by 7.7, 5.6, 6.5, 5.2, 8.6, and 8.4% 

at 0.5, 1, 1.5, 2, 2.5 and 3 million strokes respectively when compared to that of the biaxial-

reinforced test section. 

4.3. Vertical Stress distribution  

The results of the vertical pressures, generated from the installed pressure cells in the 

subgrade center point, quarter radius off-center, and half radius off-center for the six tested 

pavement sections are shown in Figure 4.4, 4-5, and 4-6, respectively. The vertical stresses 

obtained from the pressure cell installed at the aggregate base layer center point are presented in 

Figure 4.7. As can be seen, irrespective of the test section properties and the location of the 

pressure cells, the magnitude of vertical stresses remained steady throughout the 3 million 

cyclical loading. 
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Figure 4.3: Surface Deformation of the 30.5 cm (12 in)-thick base pavement sections 

 

 

Figure 4.4: Vertical pressure the subgrade center point  
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Figure 4.5: Vertical pressure at the subgrade quarter radius off-center 
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Figure  4.6: Vertical pressure at the subgrade half radius off-center 

 

 

Figure 4.7: Vertical pressure at the base layer center point 
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As reported in Table 4.2, by reinforcing the C16 test section (base thickness of 40.6 cm 

(16in)) with biaxial geogrid, the average vertical stresses at base center, subgrade center, quarter 

radius off-center, and half radius off center reduced by 26, 19, 11, and 7%, respectively. The 

reductions in the vertical stresses of the triaxial geogrid-reinforced pavement section were 37, 

25, 16 and 6% when compared to the unreinforced test section. Additionally, the reduction in 

average vertical stresses in triaxial-reinforced section were 11, 6, and 5% more than that of the 

biaxial-reinforced test section at base center, subgrade center, and quarter radius off-center. 

When comparing the average vertical pressures of the C12 test section (base thickness of 

30.5 cm (12 in)) with the biaxial geogrid-reinforced test section, at the base center, subgrade 

center, quarter radius off-center, and half radius off-center, decreases of 20, 17, 9, and 2%, 

respectively, were found. A comparison of the vertical stresses at base center, subgrade center, 

subgrade quarter radius off-center and half radius off-center between the triaxial geogrid-

reinforced and unreinforced test section revealed that the vertical stresses reduced by 21, 23, 11 

and 1% respectively. On the other hand, the reductions in average vertical pressure of the 

triaxial-reinforced section were 1, 6, and 2% more than that of biaxial-reinforced test section at 

base center, subgrade center, and quarter radius off-center, respectively. 
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Figure 4.8: Average vertical pressure at different locations of the mold  
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500,000 cycles and then lowly diminished throughout the remaining repeated loading. This 

behavior was observed in all geogrid-reinforced test sections. At the completion of testing and 

upon demolding, foul strain gauges were connected to the data acquisition system and 

reexamined for the expected performance. The foil strain gauges were found to be in good 

working conditions. This implies that, due to the strong base and subgrade soil as used in this 

study, the amount of vertical pressure was insufficient to induce noticeable strains at the level 

where geogrids were installed.  
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5. CHAPTER 5      

    MODELING AND DESING METHODS 

5.1. Summary 

The main function of a pavement system is to take the loading applied by vehicles and 

distribute it to a wider area and safely transfer it to the subgrade soil. Regularly, flexible 

pavements are made of Hot Mix Asphalt (HMA) and base course layers build on top of the 

subgrade granular materials. Pavement design guides are developed to find the most optimal and 

economical combination of HMA and base course layer thicknesses, , taking into account the 

subgrade’s strength and properties and the loading details to be carried throughout the service 

life of roadways. 

This chapter discusses numerical modeling and design methods of geogrid-reinforced 

flexible pavements. Furthermore, design methods used in unpaved roads are reviewed briefly. 

Moreover, analytical design methods are used to evaluate the results of this investigation.  

5.2. Modeling of Flexible Pavements  

Paved road's key responses such as vertical pressure and vertical strain at the interface of 

subgrade and base layer, vertical pressure and vertical strain at the interface of asphalt and base 

layers, and tensile strains at the asphalt-base interface are important for pavement design and 

performance prediction. New numerical modeling methods can be used to predict critical 

responses of a flexible pavement system.  
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5.2.1. Finite Element Modeling for Geogrid-Reinforced Flexible Pavements 

Finite Elements (FE) simulation is a strong method to study the behavior of geogrid-

reinforced paved roadway sections. In this method, geogrid reinforcement layer is considered as 

a continuous membrane in pavement structure, in spite of the fact that geogrid has a mesh-like 

structure with openings. This assumption, limits FE modeling to consider lateral confinement 

mechanism provided by geogrid reinforcement to granular base materials, discussed in Chapter 

2.  

5.2.1.1. (Wathugala, Huang, & Pal, 1996)  

Wathugala et al. (Wathugala & Desai, 1993) used ABAQUS software to develop 

axisymmetric finite element models to study the behavior of geosynthetic-reinforced paved 

sections with reinforcement located at subgrade-base interface. They used elasto-plastic Drucker-

Prager modeling for HMA and base course layers. Hierarchical Single Surface (HiSS) model was 

utilized for subgrade soil simulation. Lower surface deformation for pavement system was 

anticipated with use of heavy duty geogrids. More significant improvements in pavement 

performance were observed by use of elasto-plastic modeling compared to linear elastic 

simulation.  

5.2.1.2. (Perkins, et al., 2004) 

Perkins et al. developed design criteria for geogrid-reinforced paved sections using 

Mechanistic-Empirical Pavement Design Guide. Two-dimensional axisymmetric finite element 

models, as one of the ME design components for unreinforced paved roads, were developed in 

ABAQUS software by following the guidelines suggested for nonlinear response models (Uzan, 

2004). The authors could not develop a unique response model for reinforced paved roads to 
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explain the improvement by geogrid inclusion, but they suggested a multi-step modeling 

procedure to address the compaction level and surface loading effects on the confinement level 

of the base course layer by inclusion of geogrid in paved roads. In this simulation, geogrids were 

considered as a linear elastic membrane. Contacts were allocated to the up and down faces of the 

reinforcement layer and the neighboring pavement layers, based on the Coulomb friction model. 

The multi-step finite element modeling showed that shear stresses at layers interfaces increase 

with an increase in compaction level and traffic loading cycles. The shear stresses observed at 

layers interfaces contribute to the lateral confinement of aggregate base layer. Similar predicted 

results in rutting depth was observed between the data obtained from testing program and the 

results of developed finite element models based on critical pavement responses.  

5.2.1.3. (Saad, Mitri, & Poorooshasb, 2006) 

Saad et al. (Saad, Mitri, & Poorooshasb, 2006) used ADINA software to develop a 

dynamic 3 dimensional finite element model to predict geogrid-reinforced flexible pavements 

behavior. The soil granular layer was simulated by the modified CamClay model and the 

aggregate base layer was simulated through the elastoplastic Drucker-Prager simulation. Both 

HMA and geogrid layers were considered as a linear elastic membrane. A triangular wave shape 

dynamic loading with the duration of 0.1 second was performed to the pavement model. The 

interface between the geosynthetic and the pavement layers was assumed to be fully bounded. A 

parametric study was performed in order to investigate the factors that could influence the 

effectiveness of geosynthetic reinforcement such as aggregate base materials thickness and 

quality, and subgrade soil strength. 
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5.2.1.4. (Kwon, Development of a mechanistic model for geogrid reinforced 

flexible pavements, 2007) 

Kwon developed an axisymmetric FE model to investigate the benefits of geogrid 

reinforcement in paved roads. The asphalt layer was simulated as isotropic elastic straight layer. 

A nonlinear, stress-dependent simulation was developed for the aggregate base course and soil 

layers. Anisotropy of the aggregate base materials was reflected on the modeling procedure. The 

geogrid layer was modeled through membrane elements with finite thicknesses. A remarkable 

aspect of the simulation is consideration of "locked-in" horizontal remaining stresses in geogrid’s 

adjacent pavement layers, which models the improvements of geogrid reinforcement develped by 

construction and loading. The remaining stress was implementing to the base layer on top of the 

geogrid as a primary condition. The finite element simulations were regulated and approved by 

field studies carried out as accelerated pavement testing programs. 

5.3. Design Methods used for geogrid-reinforced pavements 

Several design methodologies have been proposed for geogrid-reinforced paved and 

unpaved roads since the late 1970s. Unpaved methods include: Giroud and Noiray (1981), and 

Giroud and Han (2004); and paved methods are AASHTO R50-09 and a software developed by 

Tensar named SpectraPave4 Pro. A short review of these methods is presented below. Moreover, 

the geogrid-reinforced pavement design methods are used to evaluate the results of this study.  

5.3.1. Design Methods for Unpaved Roads 

5.3.1.1. The Giroud and Noiray Method 

Giroud and Noiray (Giroud & Noiray, Geotextile-reinforced unpaved road design, 1981) 

used the tensioned membrane theory to evaluate the effects of the tensile strength of the 
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geotextile on required aggregate base layer thickness. The subgrade they considered in the study 

was a soft, saturated clay material that is undrained. The aggregate base material had a minimum 

CBR of 80%. Moreover, this method considered a rectangular contact area and a steady stress 

distribution angle. In order to approximate the vertical stress at the subgrade-base interface, a 

stress distribution method was proposed. Henry (Henry K. S., 1999) compared the Barenburg et 

al. and Giroud and Noiray design methods and reported the differences. 

5.3.1.2. The Giroud and Han Method 

Giroud and Han (Giroud & Han, Design method for geogrid-reinforced unpaved roads. I: 

Development of design method, 2004) suggested an equation to determine the required aggregate 

base layer thickness of geogrid-reinforced unpaved sections constructed over an undrained, 

cohesive granular materials. Giroud and Has method considers more parameters than other 

available design procedures for geogrid-reinforced unpaved roads. Geosynthetic type and 

properties, the aperture size and shape of the geogrid, the stability modulus of the geogrid, the 

aggregate base course modulus, the modulus of the subgrade soil, the traffic loading details, the 

tire pressure, the wheel load, subgrade’s undrained shear strength, and the rutting depth are some 

of the parameters used in this method. Different bearing capacity factors were recommended for 

unreinforced, geotextile-reinforced, and geogrid-reinforced base course layers. 

Not like the Giroud and Noiray method, the Giroud and Han method considers the effects 

of the aggregate base layer stiffness, which has relationship with the CBR of the aggregate base 

material. Moreover, the new method considers the tire contact area as a circular shape. These 

features are some of the improvements of the Giroud and Han method as compared to the 

previous methods. Consideration of base layer stiffness in design method is consistent with the 

findings of a research conducted by Knapton and Barber (Knapton & Barber, 1979), which 
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concluded that the aggregate base material CBR value is an important factor in the number of 

loading cycles an unpaved road can resist. Another major difference between the Giroud and 

Han method and the Giroud and Noiray method is the inclusion of the stress distribution angle in 

design procedure. In the Giroud and Noiray procedure, the stress distribution angle was fixed and 

steady, but in the Giroud and Han method, the stress distribution angle varies based on the 

number of loading cycles, the aggregate base layer thickness, the radius of the contact area, and 

the geosynthetic type and properties. These features make this design approach more accurate 

and realistic. 

5.3.2. Design Methods for Paved Roads 

As paving material costs increase, thickness reduction and cost savings using geogrids 

become more attractive options for many road construction projects. However, the absence of 

appropriate design methodologies limits contractors and state highway agencies to use geogrid as 

reinforcement in paved roads. There is a lack of documentation on general test data illustrating 

the beneficial field performance of geogrid reinforcement in flexible pavmetns. Not all types or 

brands of geogrids have the same characteristics, suggesting that the performance of geogrids is 

somewhat product specific. Current available geogrids design procedures are both product 

specific and specific to the conditions under which pavement test sections were carried out.  

The current geogrid-reinforced pavement design methods are based on empirical design 

method with traffic benefit ratio (TBR). The TBR-based design approach, such as the AASHTO 

Recommended Practice PP46-01 (Berg & Association, 2000), provides a simple but limited 

approach to quantifying geogrid performance benefits for various design scenarios. 
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5.3.2.1. AASHTO PP 46-01 (AASHTO R 50-09) 

The American Association of State Highway and Transportation Officials (AASHTO) 

has provided guidance on the use of geosynthetics in paved roads. Now in the form of a Standard 

Practice document (AASHTO, R50-09, 2009), clear trend is provided about evaluation of 

performance benefit of geosynthetic reinforcement in paved roads. In Section 3 of this standard 

practice document, AASHTO state that “Because the benefits of geosynthetic-reinforced 

pavement structures may not be derived theoretically, test sections are necessary to obtain benefit 

quantification.” Within Section 5 of the same document, it is stated that their design procedures 

“use experimentally derived input parameters that are often geosynthetic specific” and “users of 

this document are encouraged to affirm their design with field verification of the reinforced 

pavement performance.” 

It is clear that AASHTO is supporting a radical departure from the current “state of 

practice” for the design of geosynthetic-reinforced flexible pavements. In the same document, 

they later state that “traffic benefit ratio (TBR) and base course reduction factor (BCR) are the 

parameters that need to be quantified through full scale testing.” 

Evaluation of the improvements by geogrid reinforcement in flexible pavements is based 

on pavement trials conducted in both small-scale and full-scale field testing. Research summaries 

from previous investigations were provided in Chapter 2 of this report. Within AASHTO R 50-

09 and it’s predecessor, PP 46-01 a single Traffic Benefit Ratio (TBR) or Base Course Reduction 

(BCR) value method is used to account for the benefit derived from geogrid-reinforcement of 

flexible pavement structure. AASHTO R 50-09 and PP 46-01 provide no guidance on how to 

carry out a study to arrive at TBR/CBR range. In addition, variations in pavement structure 

geometry and loading conditions are noticeably missing. Furthermore, these guidelines do not 
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delineate the applications of subgrade stabilization and base course reinforcement. Based on 

AASHTO R 50-09 standard, TBR and BCR are used to account for the benefits of geogrid 

reinforcement in this study.  

5.3.2.2. Traffic Benefit Ratio (TBR) 

The improvement to the pavement system provided by geogrid reinforcement can be 

directly measured by a Traffic Benefit Ratio (TBR), which is defined by Berg et al. as follows: 

“A ratio of the number of load cycles on a reinforced section to reach a defined failure state to 

the number of load cycles on an unreinforced section, with the same geometry and material 

constituents, to reach the same defined failure state (Berg, Christopher, & Perkins, 2000).” 

The traffic benefit ratio (TBR) is used to evaluate the benefit of geogrid base 

reinforcement in this study. Calculated TBRs for the different unreinforced and reinforced test 

sections at the rutting depths of 4, 5, 6, 7, 8, and 9 mm are summarized in Table 5.1. More details 

on TBRs calculations process is provided in Appendix I. 

Table 5.1: Traffic Benefit Ratio for the studied test sections 

 
Test Pavement Section 

Rutting Depth, mm (in) C16 B16 T16 C12 B12 T12 

4 (0.16) 1.0 3.0 4.0 1.0 - - 

5 (0.20) 1.0 3.0 5.0 1.0 3.0 4.0 

6 (0.24) 1.0 3.0 7.5 1.0 3.0 4.0 

7 (0.28) 1.0 2.7 - 1.0 2.2 3.0 

8 (0.31) 1.0 2.6 - 1.0 1.7 2.2 

9 (0.35) - - - 1.0 1.5 - 

 

Number of repeated loading cycles for unreinforced test sections to reach to 4, 5, 6, 7, 8, 

and 9 mm of rutting depth is shown in Table 5.2. The C16/C12 ratios shown in the Table are 

number of loading cycles applied on unreinforced test section with 40.6 cm base thickness (C16) 
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reaching to a specific rutting depth to the number of loading cycles applied on unreinforced test 

section with 30.5 cm base layer (C12) reaching to the same surface deformation. A comparison 

of C16/C12 ratios and TBRs for different rutting depths is documented in Table 5.2. As can be 

seen in this table, all calculated traffic benefit ratios for the specific rutting depth is more than the 

C16/C12 ratios. This implies that the 40.6 cm (16 in) base thickness of unreinforced pavement 

section can be reduced to 30.5 cm (12 in) base thickness when it is reinforced with biaxial or 

triaxial geogrid. 

Table 5.2: Comparison of TBR and C16/C12 

Rutting Depth Loading cycles Ratio TBR 

mm (inch) C16 C12 C16/C12 B12 T12 

4 (0.16) 60,500 - - - - 

5 (0.20) 121,000 60,500 2 3.0 4.0 

6 (0.24) 242,000 121,000 2 3.0 4.0 

7 (0.28) 544,500 363,000 1.5 2.2 3.0 

8 (0.31) 1,149,500 847,000 1.36 1.7 2.2 

9 (0.35) 2,117,500 1,573,000 1.35 1.5 - 

 

5.3.2.3. Base Course Reduction (BCR) 

Base Course Reduction Factor (BCR) essentially quantifies the amount of component 

thickness reduction that can take place in a geogrid-reinforced pavement layer with no loss of 

performance.  

5.3.2.3.1. BCR values based on rutting depth results 

With the TBR values found in the previous section and shown in Table 5.1, a simple 

analysis, using AASHTO 1993 pavement design procedure, is utilized to evaluate the impact of 

geogrid reinforcement on base course thickness reduction. The reinforced Equivalent Standard 

Axle Loads (ESALr) are calculated by dividing the unreinforced ESALu by the TBR value. The 
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ESALr values can be used to back calculate the structural number and then, the new base course 

depth. By dividing the reinforced base course to unreinforced base course thicknesses, the base 

course reduction factor is calculated. More details on the design method is provided in the 

following paragraphs and a sample calculation is described in Appendix II. 

In the AASHTO 1993 Pavement Design Procedure, the structural number (SN) is 

considered to determine the overall structural capacity of a roadway pavement section. The SN 

for paved section design is calculated from the following equation (AASHTO, AASHTO Guide 

for Design of Pavement Structures, 1993): 

 
𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝑚2 

Equation 5.1: Structural Number 

 

In Equation 5.1, D1 and D2 are the asphalt and aggregate base layers thicknesses, 

respectively (inch). a1 and a2 are layer structural coefficients for the asphalt and aggregate base 

layer, respectively. m2 is the drainage coefficient of the base course and it was assumed 1.0 in 

this investigation because the test sections were laboratory controlled. The layer coefficients a1 

and a2 are obtained (Van Til, McCullough, Vallerga, & Hicks, 1972) from the resilient modulus 

of materials reported in Chapter 3. More details on layer coefficient selection are available in 

Appendix II. 

The obtained structural number is utilized to calculate the total number of load 

applications (18-kip (80-kN) single-axle load) using the following equation (AASHTO, 

AASHTO Guide for Design of Pavement Structures, 1993): 
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log 𝑊𝑡18 = 9.36 log 𝑆𝑁 + 1 − 0.20 +
log  

∆𝑃𝑆𝐼
4.2 − 1.5

 

0.4 +
1094

 𝑆𝑁 + 1 5.19

+ 2.32 × log 𝑀𝑟 − 8.07 

Equation 5.2: AASHTO 1998 ESAL 

 

In equation 5.2, Wt18 is the number applications (18-kip (80 kN) single-axle load) before 

requiring the resurfacing maintenance; ΔPSI is initial design serviceability index minus design 

terminal serviceability index (ΔPSI of 1.5 was used in this investigation). Mr is resilient modulus 

of the subgrade soil which is calculated from the equation suggested by Nevada Department of 

Transportation ((NDOT), 2011): 

𝑀𝑟 = 145 × 100.0147×𝑅−𝑉𝑎𝑙𝑢𝑒 +1.23 

Equation 5.3: Resilient Modulus of Subgrade Soil 

 

Based on the subgrade R-value presented in Chapter 3 (R-value = 40), the subgrade 

resilient modulus is 9,536 Psi. The ESALr is calculated for all test pavement sections and the 

results are shown in Table 5.3. Same as the TBR, Base Course Reduction factor could be defined 

for a specific rutting depth. As can be seen in Table 5.3, the BCRs attributed to the triaxial 

geogrid reinforcement are more than that of the biaxial geogrid reinforcement for both 40.6 and 

30.5 cm base layer thicknesses. In other words, irrespective of the base layer thickness and 

geogrid location in paved section, triaxial geogrid is more effective than the biaxial geogrids in 

the reduction of the base layer thickness.  
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Table 5.3: Base course reduction values for the studied pavement sections 

Reinforcement 

type 

Test 

Pavement 

Section 

Rutting 

Depth, 

mm 

(Inch) 

TBR ESALr 

Base 

Layer 

Thickness 

Base 

Course 

Reduction 

Factor 

Base 

Course 

Reduction 

Percentage 

Unreinforced 

40.6 cm (16 

Inch)-thick 

base 

C16 - 1 2,176,581 16 - - 

Biaxial 

Reinforced 

40.6 cm (16 

Inch)-thick 

base 

B16 4 (0.16) 3 725,527 11.78 0.74 26.4 

B16 5 (0.20) 3 725,527 11.78 0.74 26.4 

B16 6 (0.24) 3 725,527 11.78 0.74 26.4 

B16 7 (0.28) 2.7 806,141 12.15 0.76 24.1 

B16 8 (0.31) 2.6 837,146 12.28 0.77 23.2 

Triaxial 

Reinforced 

40.5 cm (16 

Inch)-thick 

base 

T16 4 (0.16) 4 544,145 10.8 0.68 32.5 

T16 5 (0.20) 5 435,316 10.08 0.63 37.0 

T16 6 (0.24) 7.5 290,211 8.825 0.55 44.8 

Unreinforced 

30.6 cm (12 

Inch)-thick 

base 

C12 - 1 774,005 12 - - 

Biaxial 

Reinforced 

30.6 cm (12 

Inch)-thick 

base 

B12 5 (0.20) 3 258,002 8.48 0.71 29.3 

B12 6 (0.24) 3 258,002 8.48 0.71 29.3 

B12 7 (0.28) 2.2 351,820 9.41 0.78 21.6 

B12 8 (0.31) 1.7 455,297 10.22 0.85 14.8 

B12 9 (0.35) 1.5 516,003 10.63 0.89 11.4 

Triaxial 

Reinforced 

30.5 cm (12 

Inch)-thick 

base 

T12 5 (0.20) 4 193,501 7.66 0.64 36.2 

T12 6 (0.24) 4 193,501 7.66 0.64 36.2 

T12 7 (0.28) 3 258,002 8.48 0.71 29.3 

T12 8 (0.31) 2.2 351,820 9.41 0.78 21.6 

 

5.3.2.3.2. BCR values based on vertical stresses results 

A concern may be raised on the use of geogrid in strong soil, such as the one available in 

nearly all locations throughout Nevada. If chosen to use pressure variations between 

unreinforced and geogrid-reinforced section, a new term called “Pressure Benefit Ratio (PBR)” 
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can be introduced.  PBR is defined as the ratio of average vertical stresses at the center of 

subgrade layer for geogrid-reinforced pavement sections to the equivalent unreinforced test 

sections. For this study, PBR for geogrid-reinforced pavement sections are shown in Table 5.4. 

 

Table 5.4: Pressure Benefit Ratio for the studied pavement sections 

Test section PBR 

B16 1.23 

T16 1.33 

B12 1.20 

T12 1.29 

 

Same as Base Course Reduction (BCR) method discussed in Section 5.3.2.3, PBR ratios 

are utilized to perform a simple analysis using AASHTO 1993 pavement design guide. 

Reinforced equivalent standard axle loads are calculated by dividing the unreinforced number of 

passes by PBR ratio. Similar to the example presented in Appendix II, base course reduction 

percentages using PBR ratios for the four reinforced studied pavement sections were calculated. 

The results are shown in Table 5.5. 

Table 5.5: Base Course Reduction percentages using PBR ratios 

Test 

Pavement 

section 

PBR ESAL 
Base layer 

thickness 

Base Course 

Reduction Factor 

Base course 

reduction 

percentage 

C16 1 2,176,581 16 1 --- 

B16 1.23 1,769,578 15.136 0.946 5.40 

T16 1.33 1,636,527 14.82 0.26 7.38 

C12 1 774,005 12 1 --- 

B12 1.2 619,204 11.23 0.936 6.42 

T12 1.29 609,453 11.18 0.932 6.83 
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As can be seen in Table 5.5, using PBR values, base course reduction percentages 

remained approximately between 5 and 8% for the studied biaxial and triaxial geogrid-reinforced 

sections.  

5.3.2.1. Effective Structural Capacity and Spectrapave4-PRO software 

The test section properties and results were used to calculate an effective layer coefficient 

for the base course layer of geogrid-reinforced test sections using the AASHTO Pavement 

Design Guide. The effective base course structural coefficient represents an adjustment to the 

standard base course coefficient which accounts for the actual passes sustained by the test section 

and the actual base course thickness. Same as BCR method, TBR values are used to calculate the 

reinforced Wt18, and reinforced structural numbers. While in BCR method the new SN was used 

to calculate the reduced base layer thickness, the resulted SN in this method is used to calculate 

the effective base layer coefficient with the same thickness. Thus, the effective base course 

structural coefficient is higher for the geogrid-reinforced pavement. Calculation details and 

procedures are presented in Appendix III. The resulted values are summarized in Table 5.6. 

A pavement design procedure is presented in the SpectraPave4-PRO
TM

 software 

developed by Tensar Company. This software was first released in 1998 and has been updated 

regularly. This software contains procedures for both unpaved and paved road sections. The 

SpectraPave4-PRO User's Manual states that the pavement optimization design module complies 

with AASHTO R-50, Standard Practice for Geosynthetic Reinforcement of the Aggregate Base 

Course of Flexible Pavement Structures. 
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Table 5.6: Effective Layer Coefficients and Structural Numbers for studied for studied pavement sections 

Reinforcement 

type 

Test 

Section 

Rutting 

Depth, 

mm 

(Inch) 

HMA Aggregate Base Course 
Effective 

Structural 

Number 

SpectraPave4 

Base Effective 

Layer 

Coefficient 

Thickness, 

cm (in) 

Layer 

Coefficient 

Thickness, 

cm (in) 

Effective 

Layer 

Coefficient 

Drainage 

Coefficient 

Unreinforced 

40.6 cm (16 

Inch)-thick base 

C16 - 7.6 (3) 0.34 40.6 (16) 0.12 1 2.94 0.12 

Biaxial 

Reinforced 40.6 

cm (16 Inch)-

thick base 

B16 4 (0.16) 7.6 (3) 0.34 40.6 (16) 0.159 1 3.556 

0.124 

B16 5 (0.20) 7.6 (3) 0.34 40.6 (16) 0.159 1 3.556 

B16 6 (0.24) 7.6 (3) 0.34 40.6 (16) 0.159 1 3.556 

B16 7 (0.28) 7.6 (3) 0.34 40.6 (16) 0.155 1 3.492 

B16 8 (0.31) 7.6 (3) 0.34 40.6 (16) 0.153 1 3.468 

Triaxial 

Reinforced 40.6 

cm (16 Inch)-

thick base 

T16 4 (0.16) 7.6 (3) 0.34 40.6 (16) 0.170 1 3.74 

0.165 T16 5 (0.20) 7.6 (3) 0.34 40.6 (16) 0.179 1 3.876 

T16 6 (0.24) 7.6 (3) 0.34 40.6 (16) 0.196 1 4.148 

Unreinforced 

30.5 cm (12 

Inch)-thick base 

C12 - 7.6 (3) 0.34 30.5 (12) 0.12 1 2.46 0.16 

Biaxial 

Reinforced 30.5 

cm (12 Inch)-

thick base 

B12 5 (0.20) 7.6 (3) 0.34 30.5 (12) 0.163 1 2.976 

0.135 

B12 6 (0.24) 7.6 (3) 0.34 30.5 (12) 0.163 1 2.976 

B12 7 (0.28) 7.6 (3) 0.34 30.5 (12) 0.150 1 2.82 

B12 8 (0.31) 7.6 (3) 0.34 30.5 (12) 0.140 1 2.7 

B12 9 (0.35) 7.6 (3) 0.34 30.5 (12) 0.135 1 2.64 

Triaxial 

Reinforced 30.5 

cm (12 Inch)-

thick base 

T12 5 (0.20) 7.6 (3) 0.34 30.5 (12) 0.176 1 3.126 

0.18 
T12 6 (0.24) 7.6 (3) 0.34 30.5 (12) 0.176 1 3.126 

T12 7 (0.28) 7.6 (3) 0.34 30.5 (12) 0.163 1 2.9736 

T12 8 (0.31) 7.6 (3) 0.34 30.5 (12) 0.150 1 2.82 
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In fact, the SpectraPave4-PRO flexible pavement design module follows the empirically 

based 1993 AASHTO Guide for Design of Pavement Structures. The design approach uses 

enhanced layer coefficients to account for the benefits of the geogrid. Tensar mentioned “these 

coefficients are based on extensive testing (laboratory, field, accelerated, etc.) and over 30 years 

of field performance.” These coefficients are specific to the selected Tensar biaxial and triaxial 

geogrids and are functions of the technical specifications of the geogrid, thickness of the asphalt 

layer, thickness of the aggregate base course, and subgrade strength. The enhanced layer 

coefficients for the test pavement sections are shown in Table 5.6. More details on software input 

and output data are presented in Appendix IV.   
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6.  CHAPTER 6      

      CONCLUSTIONS AND RECOMMENDATIONS 

6.1. Conclusions 

As stated earlier, this investigation was intended to determine the extent to which geogrid 

could 1-decrease surface rutting, 2-lower vertical stresses experienced at subgrade-base interface, 

and 3-assist in reducing base course thickness of the studied flexible pavement sections 

reinforced with biaxial or triaxial geogrid.  

Six laboratory tests were conducted using a steel cylindrical mold. The base thickness of 

three tests was 30.5 cm (12 in), whereas base thickness of 40.6 cm (16 in) was used for the 

remaining three tests. A layer of biaxial or triaxial geogrid was placed at the mid-depth of 

aggregate base course for the tests with 40.6 cm (16 in) of base layer. For the tests which the 

base layer was 30.5 cm (12 in), the geogrid was placed at the subgrade-base interface. A 

hydraulic actuator provided 40 kN (9 kips) sinusoidal vertical load through a 305 mm (12 in) 

circular steel plate at a frequency of 0.77 Hz. The repeated loading was continued for at least 3 

million cycles for each test. Performances of biaxial-reinforced and triaxial-reinforced sections 

were compared with that of companion unreinforced sections. AASHTO design method 

(AASHTO, R50-09, 2009) was used to evaluate the results. TBR and BCR ratios were calculated 

for the reinforced test sections. The main results and conclusions of the study are described 

below.  

6.1.1. Test results 

The results of the laboratory program included rutting depth, vertical stresses, and 

geogrid tensile stain for the six tested pavement sections.  
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6.1.1.1. Rutting depth 

 The inclusion of geogrid reduced the rutting depth of the studied pavement 

sections. Irrespective of the base layer thickness and number of load repetition, 

use of triaxial geogrid was more effective than biaxial geogrid in reducing surface 

rutting of flexible pavements.  

 Use of biaxial and triaxial geogrids in the mid-depth of a 40.6 cm (16 in) 

aggregate base layer resulted in 17 and 30%, respectively, lower rutting depth at 3 

million loading cycles. 

 After 3 million loading cycles, the rutting depth of the studied pavement sections 

approximately decreased by 8 and 16% when the pavement section with 30.5 cm 

(12 in) base layer thickness was reinforced with biaxial and triaxial geogrids, 

respectively.  

6.1.1.2. Vertical stresses 

 Irrespective of the test section properties and the location of the pressure cells, the 

magnitude of vertical stresses remained fairly steady throughout 3 million loading 

cycles.  

 Independent of the aggregate base layer thickness, the stresses experienced at the 

subgrade and base layer for biaxial geogrid-reinforced test sections were less than 

that of unreinforced test sections. Triaxial geogrid-reinforced test sections, 

showed lesser pressure values in all locations as compared to unreinforced and 

biaxial geogrid-reinforced test sections for both base layer thicknesses. 
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 By reinforcing the C16 test section with biaxial geogrid, the average vertical 

stresses at base center, subgrade center, quarter radius off center, and half radius 

off center, reduced by 26, 19, 11, and 7%, respectively. These reductions for the 

triaxial geogrid-reinforced pavement section were 37, 25, 16 and 6% when 

compared to those of companion unreinforced test section. 

 The average vertical stresses at base center, subgrade center, quarter radius off 

center, and half radius off center of the test section with 30.5 cm (12 in) of 

aggregate base layer decreased by 20, 17, 9, and 2%, respectively, for biaxial 

geogrid-reinforced section. These reductions were by 21, 23, 11, and 1%, 

respectively, when triaxial geogrid was used. 

6.1.1.3. Geogrid tensile strain 

 Negligible to no tensile strain readings were recorded at the level where geogrids 

were installed in all studied test sections. 

6.1.2. Design methods 

Traffic Benefit Ratio (TBR), Base Course Reduction (BCR) using rutting depth and 

subgrade center point pressure values, and Effective Base Layer Coefficient were used to 

evaluate the results of this study.  

6.1.2.1. Traffic Benefit Ratio 

TBR is defined as the ratio of the number of load cycles of a geogrid-reinforced section 

to the number of load cycles of an unreinforced section for a given rutting depth.  
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 TBRs of triaxial geogrid-reinforced test sections were more than biaxial geogrid-

reinforced test sections at both studied base layer thicknesses. Triaxial geogrid-

reinforced sections produced higher TBRs than those recorded for the biaxial 

geogrid-reinforced pavement sections.  

 Comparison of TBRs and C16/C12 ratios revealed that the 40.6 cm (16 in) base 

thickness of unreinforced pavement section can be reduced to 30.5 cm (12 in) 

base thickness when it is reinforced with biaxial or triaxial geogrid. 

 The Traffic Benefit Ratio (TBR) of 3, 7.5, 3, and 4 was recorded for the B16, 

T16, B12, and T12 test sections, respectively, at the rutting depth of 6 mm. 

6.1.2.2. Base Course Reduction 

Base Course Reduction Factor (BCR) essentially quantifies the amount of component 

thickness reduction that can take place in a geogrid-reinforced pavement layer with no loss of 

performance. AASHTO 1993 pavement design guide was performed to have a simple analysis to 

assess the impact of geogrid reinforcement on base layer thickness reduction.  

 Triaxial geogrid was found to be more effective than biaxial geogrid in reducing 

base layer thickness. 

 Considering the TBR corresponding to 6 mm (0.24 in) rutting depth, the 40.6 cm 

(16 in) thickness of aggregate base layer of unreinforced pavement sections can 

be reduced by 26 and 45% when reinforced with biaxial and triaxial geogrids, 

respectively. Similarly, the base thickness of C12 test section can be reduced by 

29 and 36%. 
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 Based on the average stress reductions in the subgrade center point of geogrid-

reinforced pavement sections, a Pressure Benefit Ratio (PBR) was defined and 

utilized to calculate base layer reduction percentages. PBR of the studied biaxial 

and triaxial geogrid-reinforced sections were averagely 1.22 and 1.31, 

respectively. Using the obtained PBRs, the base course layer thickness of biaxial 

and triaxial geogrid-reinforced pavement sections reduced by nearly 5 to 8%. 

6.1.2.3. Effective Base Layer Coefficient 

By reinforcing the test sections with biaxial and triaxial geogrids, an effective layer 

coefficient can be used. The effective base course structural coefficient represents an adjustment 

to the standard base course coefficients used in AASHTO 1993 design method. Similar to other 

two previously mentioned design methods, effective structural numbers suggested for triaxial 

geogrid-reinforced sections were more than the companion biaxial geogrid-reinforced sections. 

 While the real structural number for the aggregate base materials in this study was 

0.12, the average effective structural number for biaxial and triaxial geogrid-

reinforced base layers were 0.16 and 0.18, respectively, for 40.6 (16 in) thick base 

layer sections.  

 The effective structural coefficient averagely increased to 0.15 and 0.17 when 

biaxial and triaxial geogrids, respectively, were used to reinforce the 30.5 cm (12 

in) thick aggregate base layer test sections. 

6.2. Recommendations 

This study has been focused on the laboratory evaluation of biaxial and triaxial geogrid-

reinforced flexible pavements. Based on the findings of this investigation, the following 
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recommendations are made for the future studies on the inclusion of geogrid in flexible 

pavements: 

 Laboratory study of geogrid-reinforced flexible pavement sections with base 

layer thicknesses of less than 30.5 cm (12 in). 

 Large scale field study to obtain correlations between field and laboratory results. 

 Laboratory and field studies for biaxial and triaxial geogrid-reinforced unpaved 

sections. 
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7. APPENDIX I 

As described in Chapter 5, the Traffic Benefit Ratio is defined as the ratio of the number 

of passes necessary to reach a given rutting depth for a section containing reinforcement and the 

number of passes necessary to reach the same rutting depth for an unreinforced section with the 

same base thickness and subgrade properties. TBR calculation process for the studied pavement 

sections is explained here and the results are shown in Table I-1.  

The first column of Table I-1 is rutting depths of 4, 5, 6, 7, 8, 9, and 10 mm. For each test 

section, number of loading cycles applied to reach to a specific rutting depth was provided. By 

dividing the reinforced section’s number of loadings to unreinforced number of the loadings 

required to reach to a specific rutting depth, Traffic Benefit Ratio was obtained. For example, 

test section B12, which is a biaxial-reinforced section with base layer thickness of 30.5 cm (12 

in), required 786,500 loading cycles for the rutting depth of 7 mm. The unreinforced test section 

with the same base thickness, which is C12, needed 363,000 loading cycles for the rutting depth 

of 7 mm. Hence, TBR of B12 test section at the rutting depth of 7 mm was 786,500 divided by 

363,000 which is 2.2 (see table I-1, column B12). 
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Table I.1: TBR calculation 

 C16 B16 T16 C12 B12 T12 

Rutting 

Depth 
No. of cycles No. of cycles TBR No. of cycles TBR No. of cycles No. of cycles TBR No. of cycles TBR 

4mm 60,500 181,500 3.0 242,000 4.0 --- 60,500 --- 121,000 --- 

5mm 121,000 363,000 3.0 605,000 5.0 60,500 181,500 3.0 242,000 4.0 

6mm 242,000 726,000 3.0 1,815,000 7.5 121,000 363,000 3.0 484,000 4.0 

7mm 544,500 1,452,000 2.7 --- --- 363,000 786,500 2.2 1,089,000 3.0 

8mm 1,149,500 2,964,500 2.6 --- --- 847,000 1,452,000 1.7 1,875,500 2.2 

9mm 2,117,500 --- --- --- --- 1,573,000 2,420,000 1.5 --- ---- 

10mm --- --- --- --- --- 2,783,000 --- --- --- --- 
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8. APPENDIX II 

Base Course Reduction Factor (BCR), for B12 test section at the rutting depth of 7 mm is 

calculated here as an example for the BCRs provided in Table 5.3. 

As mentioned in Section 5.3.2.3, in order to calculate the BCR of a geogrid-reinforced 

test section (B12), Wt18 for the unreinforced section with the same base layer thickness (C12) 

was calculated as the first step. 

The total number of 18-kip (80-kN) single-axle load applications was estimated by 

Equation 5-2 suggested by (AASHTO, AASHTO Guide for Design of Pavement Structures, 

1993): 

log 𝑊𝑡18 = 9.36 log 𝑆𝑁 + 1 − 0.20 +
log  

∆𝑃𝑆𝐼
4.2 − 1.5

 

0.4 +
1094

 𝑆𝑁 + 1 5.19

+ 2.32 × log 𝑀𝑟 − 8.07            

In the above equation, Wt18 is the total number of 18-kip (80 kN) single-axle load 

applications, and ΔPSI is the difference between the initial design serviceability index and the 

design terminal serviceability index which is assumed 1.5 in this study. Mr is resilient modulus 

of the subgrade soil which is obtained from Equation 5-3 suggested by NDOT: 

𝑀𝑟 = 145 × 100.0147×𝑅−𝑉𝑎𝑙𝑢𝑒 +1.23 

 

R-value of the subgrade soil is 40. The resilient modulus of the subgrade soil (Mr) is 

𝑀𝑟 = 145 × 10(0.0147×40)+1.23 = 9536 𝑝𝑠𝑖 

 

The Structural Number (SN) used in Equation 5-2, is defined as: 



106 

𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝑚2 

 

Where D1 and D2 are the thickness of the HMA and base layer in inch unit, which is 3 

and 12 inches, respectively, for the C12 test section. a1, layer coefficient for the HMA layer, is 

0.34 based on the correlation suggested by (Van Til, McCullough, Vallerga, & Hicks, 1972) 

shown in Figure II-1. 

 

Figure II.1: HMA layer coefficient 

 

According to HMA properties provided in Table 3.3, the modulus of HMA was 260 Ksi, 

and based on the above correlation, the structural coefficient (a1) became 0.34. 
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a2 is the layer coefficient of the aggregate base layer. The correlation of CBR and layer 

coefficient for untreated base layers, suggested by (Van Til, McCullough, Vallerga, & Hicks, 

1972), is used to calculate a2 (Figure II-2). 

 

Figure II.2: Base layer coefficient 

 

The R-value of the aggregate base is 77 (Table 3.2) and above correlation, suggested a2 

of 0.12 for the base layer.  

m2 is the drainage coefficient of the base course and it was assumed 1.0 in this 

investigation because the test sections were laboratory controlled. 
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Having D1, D2, a1, a2, and m2 values available and using Equation 5-1, the Structural 

Number for C12 test section is calculated: 

𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝑚2 = 0.34 × 3 + 0.12 × 12 × 1 = 2.46 

Now Wt18 for C12 test section can be calculated: 

log 𝑊𝑡18 = 9.36 log 2.46 + 1 − 0.20 +
log  

1.5
4.2 − 1.5

 

0.4 +
1094

 2.46 + 1 5.19

+ 2.32 × log 9536 − 8.07

= 5.8887 

→  𝑊𝑡18 = 105.8887 = 774,005 

Meaning that, the unreinforced test section with base layer thickness of 30.5 cm (12 in) 

could have 774,005 18-kip (80 kN) single-axle load applications before the resurfacing 

maintenance is required. 

Calculation of BCR for B12 test section at the rutting depth of 7 mm was the goal of this 

example. Traffic Benefit Ratio for the B12 test section at rutting depth of 7 mm is 2.2, as shown 

in Table 5.1. By dividing the Wt18 of C12 test section by the TBR value of B12 test section, the 

reinforced Wt18 (ESALr) was obtained: 

774,005

2.2
= 351,820 

Reinforced Wt18 values was used to back calculate the structural number and then, the 

new base course depth. 

log 351,820 = 5.5463 

Using Equation 5-2: 
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5.5463 = 9.36 log 𝑆𝑁 + 1 − 0.20 +
log

1.5
4.2 − 1.5

0.4 +
1094

 𝑆𝑁 + 1 5.19

+ 2.32 × log(9536) − 8.07 

→ 𝑆𝑁 = 2.1490 

So the structural number for the reinforced test section was 2.1490. The layer coefficients 

for the HMA and base layer were 0.34 and 0.12, respectively. The HMA thickness was 3 inches 

and the drainage coefficient (m2) was 1.0. Having all these values, the reinforced base layer 

thickness was evaluated through Equation 5-1: 

𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝑚2 → 2.1490 = 0.34 × 3 + 0.12 × 𝑥 × 1 → 𝑥 = 9.41 𝑖𝑛 

Therefore, the base layer thickness for the reinforced test section was 9.41 inches which 

is shown in Table 5.3. By dividing the reinforced base layer thickness to the unreinforced base 

layer thickness, the Base Course Reduction (BCR) Factor was obtained: 

9.41

12
= 0.78 

In other words, by reinforcing the C12 test section with biaxial geogrid, the base layer 

thickness can be reduced from 12 to 9.41 inches. The base course reduction percentage can also 

be calculated: 

(12 − 9.41)

12
= 21.6 % 

Same calculation process was carried out for all other test sections and rutting depths. 

The results are shown in Table II-1. 
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Test 

Section 

Rutting 

Depth 
TBR Wt Log(Wt) Mr ΔPSI SN a1 

D1 

(in) 
a2 m1 D2 (in) 

Base 

Course 

Reduction 

Reduction 

Percentage 

C16 - 1 2,176,581 6.33777 9536 1.5 2.94 0.34 3 0.12 1 16 --- --- 

B16 4mm 3 725,527 5.86065 9536 1.5 2.433 0.34 3 0.12 1 11.775 0.74 26.41 

B16 5mm 3 725,527 5.86065 9536 1.5 2.433 0.34 3 0.12 1 11.775 0.74 26.41 

B16 6mm 3 725,527 5.86065 9536 1.5 2.433 0.34 3 0.12 1 11.775 0.74 26.41 

B16 7mm 2.7 806,141 5.90641 9536 1.5 2.477 0.34 3 0.12 1 12.145 0.76 24.09 

B16 8mm 2.6 837,146 5.92280 9536 1.5 2.494 0.34 3 0.12 1 12.28 0.77 23.25 

T16 4mm 4 544,145 5.73571 9536 1.5 2.316 0.34 3 0.12 1 10.8 0.68 32.50 

T16 5mm 5 435,316 5.63880 9536 1.5 2.229 0.34 3 0.12 1 10.075 0.63 37.03 

T16 6mm 7.5 290,211 5.46271 9536 1.5 2.079 0.34 3 0.12 1 8.825 0.55 44.84 

C12 - 1 774,005 5.88874 9536 1.5 2.46 0.34 3 0.12 1 12 --- --- 

B12 5mm 3 258,002 5.41162 9536 1.5 2.038 0.34 3 0.12 1 8.48 0.71 29.33 

B12 6mm 3 258,002 5.41162 9536 1.5 2.038 0.34 3 0.12 1 8.48 0.71 29.33 

B12 7mm 2.2 351,820 5.54632 9536 1.5 2.149 0.34 3 0.12 1 9.41 0.78 21.58 

B12 8mm 1.7 455,297 5.65829 9536 1.5 2.246 0.34 3 0.12 1 10.22 0.85 14.83 

B12 9mm 1.5 516,003 5.71265 9536 1.5 2.296 0.34 3 0.12 1 10.63 0.89 11.42 

T12 5mm 4 193,501 5.28668 9536 1.5 1.939 0.34 3 0.12 1 7.66 0.64 36.17 

T12 6mm 4 193,501 5.28668 9536 1.5 1.939 0.34 3 0.12 1 7.66 0.64 36.17 

T12 7mm 3 258,002 5.41162 9536 1.5 2.038 0.34 3 0.12 1 8.48 0.71 29.33 

T12 8mm 2.2 351,820 5.54632 9536 1.5 2.149 0.34 3 0.12 1 9.41 0.78 21.58 
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9. APPENDIX III 

For demonstration purpose, the calculation process used to obtain the effective base layer 

coefficient of the B12 test section at rutting depth of 7 mm is presented in Appendix III.  The 

calculation of the effective structural coefficient was same as BCR method. At first, the Wt18 for 

C12 test section was needed. With the same explanation provided in Appendix II, Wt18 for C12 

test section was 774,005. 

The TBR for B12 test section at the rutting depth of 7 mm is 2.2 (Table 5.1). Therefore, 

the reinforced Wt18 became: 

774,005 × 2.2 = 1,702,811 

Reinforced Wt18 values were used to back calculate to determine the structural number 

and then, the new base layer coefficient. 

log 1,702,811 = 6.2312 

 

6.2312 = 9.36 log 𝑆𝑁 + 1 − 0.20 +
log

1.5
4.2 − 1.5

0.4 +
1094

 𝑆𝑁 + 1 5.19

+ 2.32 × log(9536) − 8.07 

→ 𝑆𝑁 = 2.8177 

Therefore, the structural number for the reinforced test section was determined to be 

2.8177. The layer coefficient for the HMA is 0.34. The HMA and base layer thicknesses are 3 

and 12 inches, respectively, and the drainage coefficient (m2) is 1.0. Having all these values, the 

effective base layer coefficient can be calculated through Equation 5-1: 



112 
 

𝑆𝑁 = 𝑎1𝐷1 + 𝑎2𝐷2𝑚2 → 2.8177 = 0.34 × 3 + 𝑥 × 12 × 1 → 𝑥 = 0.15 

Hence, the effective base layer coefficient for the B12 test section was 0.15. In other 

words, by reinforcing the C12 test section with a layer of biaxial geogrid, the base layer 

coefficient increased from 0.12 to 0.15.  

A similar calculation process was carried out for other test sections and rutting depths. 

The results are shown in Table III-1. 
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Rut 

depth 
TBR Wt18 Log(Wt) Mr ΔPSI SN D1 (in) a1 D2 (in) m2 

Effective 

layer 

coeff. 

C16 --- 1 2,176,581 6.33777 9536 1.5 2.94 3 0.34 16 1 0.12 

B16 4mm 3 6,529,742 6.8149 9536 1.5 3.556 3 0.34 16 1 0.1585 

B16 5mm 3 6,529,742 6.8149 9536 1.5 3.556 3 0.34 16 1 0.1585 

B16 6mm 3 6,529,742 6.8149 9536 1.5 3.556 3 0.34 16 1 0.1585 

B16 7mm 2.7 5,876,768 6.76914 9536 1.5 3.492 3 0.34 16 1 0.1545 

B16 8mm 2.6 5,659,110 6.75275 9536 1.5 3.468 3 0.34 16 1 0.153 

T16 4mm 4 8,706,323 6.93983 9536 1.5 3.74 3 0.34 16 1 0.17 

T16 5mm 5 10,882,903 7.03674 9536 1.5 3.876 3 0.34 16 1 0.1785 

T16 6mm 7.5 16,324,355 7.21284 9536 1.5 4.148 3 0.34 16 1 0.1955 

C12 --- 1 774,005 5.88874 9536 1.5 2.46 3 0.34 12 1 0.12 

B12 5mm 3 2,322,015 6.36587 9536 1.5 2.976 3 0.34 12 1 0.163 

B12 6mm 3 2,322,015 6.36587 9536 1.5 2.976 3 0.34 12 1 0.163 

B12 7mm 2.2 1,702,811 6.23117 9536 1.5 2.82 3 0.34 12 1 0.15 

B12 8mm 1.7 1,315,809 6.11919 9536 1.5 2.7 3 0.34 12 1 0.14 

B12 9mm 1.5 1,161,008 6.06484 9536 1.5 2.64 3 0.34 12 1 0.135 

T12 5mm 4 3,096,020 6.4908 9536 1.5 3.126 3 0.34 12 1 0.1755 

T12 6mm 4 3,096,020 6.4908 9536 1.5 3.126 3 0.34 12 1 0.1755 

T12 7mm 3 2,322,015 6.36587 9536 1.5 2.974 3 0.34 12 1 0.1628 

T12 8mm 2.2 1,702,811 6.23117 9536 1.5 2.82 3 0.34 12 1 0.15 
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10. APPENDIX IV 

The SpectraPave4-PRO software inputs are aggregate base and HMA layers thicknesses, 

layer coefficients, subgrade resilient modulus, and geogrid type. The output of the software is the 

effective layer coefficient. The biaxial geogrid utilized in this study (BX1100), was available to 

be chosen as “BX Type 1” in the software, but unfortunately the triaxial geogrid (TX130s) was 

not recognized by the program. However, the properties of “TX5” category in SpectraPave4-

PRO, was similar to TX130s geogrid and it was chosen instead. The software input and output 

data are shown in Figures IV-1 through IV-4. As can be seen, the software suggested base layer 

coefficient of 0.124 for the test sections with 40.6 cm (16 in) of base layer thickness and biaxial 

geogrid reinforcement. Also, base layer coefficient of 0.165 was proposed for triaxial geogrid-

reinforced test sections with the same base layer thickness. Figure IV-3 illustrates the software 

response to biaxial geogrid reinforcement of 30.5 cm (12 in) thick base layer pavements. The 

software suggested effective layer coefficient of 0.135. SpectraPave4-PRO suggested layer 

coefficient of 0.18 for triaxial geogrid-reinforced sections with 30.5 cm (12 in) base layer 

thickness. All these values are also shown in Table 5.4 and compared with the calculated 

effective layer coefficients.  



115 
 
 

 

 

Figure IV.1: SpectraPave4-PRO software response to B16 test section 
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Figure IV.2: SpectraPave4-PRO software response to T16 test section 
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Figure IV.3: SpectraPave4-PRO software response to B12 test section 
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Figure IV.4: SpectraPave4-PRO software response to T12 test section  

 

 

  



119 
 
 

11. REFERENCES 

(NDOT), N. D. (2011). Uniform Standard Specifications. Clark County Area. 

AASHTO. (1993). AASHTO Guide for Design of Pavement Structures. Washington, D.C: 

American Association of State Highway and Transportation Officials. 

AASHTO. (2009). Standard Practice for Geosynthetic Reinforcement of the Aggregare Base 

Course of Flexible Pavement Structures. Washington, D.C.: American Association of 

State Highway and Transportation Officials. 

Abd El Halim, A., Haas, R., & Chang, W. (1983). Geogrid reinforcement of asphalt pavements 

and verification of elastic layer theory. Transp.Res.Rec.(949), 55-65. 

Abu-Farsakh, M. Y., & Chen, Q. (2011). Evaluation of geogrid base reinforcement in flexible 

pavement using cyclic plate load testing. International Journal of Pavement Engineering, 

12(03), 275- 288. 

Abu-Farsakh, M., Souci, G., Voyiadjis, G. Z., & Chen, Q. (2011). Evaluation of factors affecting 

the performance of geogrid-reinforced granular base material using repeated load triaxial 

tests. Journal of Materials in Civil Engineering, 24(1), 72- 83. 

Al-Qadi, I., Brandon, T., Valentine, R., Lacina, B., & Smith, T. (1994). Laboratory evaluation of 

geosynthetic-reinforced pavement sections. Transportation Research Record 1439, 21(2), 

25-31. 

Al-Qadi, I., Dessouky, S., Kwon, J., & Tutumluer, E. (2008). Geogrid in flexible pavements: 

validated mechanics. Transportation Research Record: Journal of the Transportation 

Board, 2045, 102-109. 

Al-Qadi, I., Dessouky, S., Kwon, J., & Tutumluer, E. (2012, September). Geogrid-Reinforced 

Low-Volume Flexible Pavements: Pavement Response and Geogrid Optimal Location . 

Journal of Transportation Engineering , 138(9), 1083-1090. 

Al-Qadi, I., Dessouky, S., Tutumluer, E., & Kwon, J. (2011, April). Geogrid mechanism in low-

volume flexible pavements: accelerated testing of full-scale heavily instrumented 

pavement sections. International Journal of Pavement Engineering , 12(2), 121-135. 

Aran, S. (2006). Base reinforcement with biaxial geogrid-long term performance. Transportation 

Research Board 1975, 115-123. 



120 
 
 

ArchiEXPO. (2015). Geomembranes. Retrieved from THE ONLINE ARCHITECTURE AND 

DESIGN EXHIBITION: http://www.archiexpo.com/architecture-design-

manufacturer/geomembrane-3830.html 

ArchiExpo. (2015). Products. Retrieved from Tensar: http://www.archiexpo.com/prod/tensar-

international/product-63203-245808.html 

Barksdale , R., Brown, S., & Chan, F. (1989). Potential Benefits of Geosynthetics in Flexible 

Pavement Systems. National Cooperative Highway Research Program Report No 315, 

Transportation Research Board. Washigton D.C, USA: National Research Council. 

Bender, D. A., & Barenberg, E. J. (1978). Design and behavior of soil-fabric-aggregate systems. 

(671). 

Berg, R. R., Christopher, B. R., & Perkins, S. W. (2000). Geosynthetic reinforcement of the 

aggregate base course of flexible pavement structures. GMA White Paper II, 

Geosynthetic Materials Association, Roseville, MN, USA, 130p. 

Berg, R., & Association, G. M. (2000). Geosynthetic reinforcement of the aggregate 

base/subbase courses of pavement structures. Geosynthetic Materials Association. 

Retrieved from 

http://www.textileconnect.com/documents/resources/WPIIFINALGMA.pdf 

Bhatia, S., & Smith, J. (1996). Geotextile characterization and pore-size distribution: Part I. A 

review of manufacturing processes. Geosynthetics International, 3(1), 85-105. 

Binquet, J., & Lee, K. L. (1975). Bearing capacity analysis of reinforced earth slabs. Journal of 

the geotechnical Engineering Division, 101(12), 1257-1276. 

Bouazza, A., & Avalle, D. L. (2006). Effectiveness of rolling dynamic compaction on an old 

waste tip. ISSMGE 5th International Congress on Environmental Geotechnics, Cardiff, 

(pp. 1-7). 

Button, J., & Lytton, R. (2015). Guidelines for using geosynthetics with hot-mix asphalt overlays 

to reduce reflective cracking. Transportation Research Record: Journal of the 

Transportation Research Board. 

Cancelli, A., & Montanelli, F. (1999). In-ground test for geosynthetic reinforced flexible paved 

roads. Proceedings of the Conference Geosynthetics '99 (pp. 863-878). Roseville, 

Minnesota, USA : IFAI. 

Carroll, R., Walls, J., & Haas, R. (1987). Granular base reinforcement of flexible pavements 

using geogrids. Proceedings of Geosynthetics (pp. 46-57). St Paul, Minnesota, USA: 

IFAI. 



121 
 
 

Chen, Q., Abu-Farsakh, M., & Tao, M. (2009). Laboratory Evaluation of Geogrid Base 

Reinforcement and Corresponding Instrumentation Program. Geotechnical Testing 

Journal, 32(6). 

Cox, B., McCartney, J., Wood, C., & Curry, B. (2010). Performance evaluation of full-scale 

geosynthetic-reinforced flexible pavements using field cyclic plate load tests. TRB 2010 

Annual Meeting (CD-ROM), Transportation Research Board. Washington D.C, USA. 

Das, B. (2010). Use of Geogrid in Subgrade-Ballast System of Railroads Subjected to Cyclic 

Loading for Reducing Maintenance. California State University, Sacramento, USA. 

Dong, Y., Han, J., & Bai, X. (2010). A numerical study on the stress-strain responses of biaxial 

geogrids under rension at different directions. ASCE G-I GeoFlorida Conference.  

Dong, Y.-L., Han, J., & Bai, X.-H. (2011). Numerical analysis of tensile behavior of geogrids 

with rectangular and triangular apertures. Geotextiles and Geomembranes, 29(2), 83-91. 

Duncan-Williams, E., & Attoh-Okine, N. (2008). Effect of geogrid in granular base strength - An 

experimental investigation . Journal of Construction and Building Materials, 22, 2180-

2184. 

Giroud, J., & Han, J. (2004). Design method for geogrid-reinforced unpaved roads. I: 

Development of design method. Journal of Geotechnical and Geoenvironmental 

Engineering , 130(8), 775-786. 

Giroud, J., & Noiray, L. (1981). Geotextile-reinforced unpaved road design. Journal of 

Geotechnical Engineering, 107(9), 1233-1254. 

Giroud, J.-P. (1984). Geotextiles and Geomembranes definitions, Properties and design.Selected 

Papers, Revisions and Comments. 

Göbel, C. H., Weisemann, U. C., & Kirschner, R. A. (1994). Effectiveness of a reinforcing 

geogrid in a railway subbase under dynamic loads. Geotextiles and Geomembranes, 

13(2), 91-99. 

Haas, R., Wall, J., & Carroll, R. (1988). Geogrid reinforcement of granular bases in flexible 

pavements. Transportation Research Record 1188, 19-27. 

Helstrom, C., Humphrey, D., & Hayden, S. (2007). Geogrid reinforced pavement structure in a 

cold region. Proceedings of the 13th International Conference on Cold Regions 

Engineering, (pp. 1- 12). 

Henry, K. S. (1999). Geotextile Reinforcement of Low-Bearing-Capacity Soils.Comparison of 

Two Design Methods Applicable to Thawing Soils. 



122 
 
 

Henry, K., Clapp, J., Davids, W., Humphrey, D., & Barna, L. (2009). Structural improvements of 

flexible pavements using geosynthetics for base course reinforcement. U.S. Army Corps 

of Engineers in conjunction with U.S. Department of Transportation, Pooled Fund, 

Federal Highway Administration, McLean, Virginia, USA. 

Hillier, S. a. (2008). Bentonites. Retrieved from The James Hutton Institute: 

http://www.claysandminerals.com/materials/bentonites 

Holz, R., Christopher, B. R., & Berg, R. R. (1998). Geosynthetic design and construction 

guidelines. 

Inversiones, I. (2011). Geomallas Uniaciales. Retrieved from Products: 

http://www.icainversiones.com/?cat=1013&title=Geomallas%20Uniaxiales%20&lang=es 

Jersey, S., Tingle, J., Norwood, G., Kwon, J., & Wayne, M. (2012). Full-Scale Evaluation of 

Geogrid-Reinforced Thin Flexible Pavements . Transportation Research Record: Journal 

of the Transportation Research Board(2310), 61-71. 

Knapton, J., & Barber, S. (1979). THE BEHAVIOUR OF A CONCRETE BLOCK 

PAVEMENT. ICE Proceedings, 66, pp. 277-292. 

Koerner, R. M. (2015). Designing with geosynthetics. Xlibris Corporation. 

Koerner, R. M., & Soong, T.-Y. (2005). Analysis and design of veneer cover soils. Geosynthetics 

International, 12(1), 28-49. 

Kwon, J. (2007). Development of a mechanistic model for geogrid reinforced flexible 

pavements. Dissertation Abstracts International, 68(06). 

Kwon, J., Tutumluer, E., & Al-Qadi, I. L. (2009). Validated mechanistic model for geogrid base 

reinforced flexible pavements. Journal of Transportation Engineering. 

Leng, J., Ju, T., & Gabr, M. (2002). Characteristics of geogrid-reinforced aggregate under cyclic 

load . Transportation Research Record 1786, 29-35. 

Love, J., Burd, H., Milligan, G., & Houlsby, G. (1987). Analytical and model studies of 

reinforcement of a layer of granular fill on a soft clay subgrade. Canadian Geotechnical 

Journal, 24(4), 611-622. 

McCartney, J., Cox, B., Wood, C., & Curry, B. (2010). Evaluation of Geosynthetic-Reinforced 

Flexible Pavements using Static Plate Load Tests. 9th International Conference on 

Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, (pp. 1445-

1450). 



123 
 
 

Meccai, K. A., & Al Hasan, E. (2004). Geotextiles in transportation applications. Proc. 2nd Gulf 

Conference on ‘Roads, (pp. 1-13). 

Moghaddas-Nejad, F., & Small, J. C. (2003). Resilient and permanent characteristics of 

reinforced granular materials by repeated load triaxial tests. ASTM geotechnical testing 

journal, 26(2), 152- 166. 

Montanelli, F., Zhao, A., & Rimoldi, P. (1997). Geosynthetic-Reinforced Pavement System: 

Testing and Design. Proceedings of Geosynthetics '97. IFAI, 2, pp. 619-632. Long Beach, 

California, USA. 

Morian, N. E. (2007). Effect of geotextile fabrics on reflective cracking of hot mix asphalt 

overlays in Washoe County, Nevada. University of Nevada, Reno. 

Nazzal, M. (2007). Laboratory Characterization and Numerical Modeling of Geogrid 

Reinforced Bases in Flexible Pavements. PhD Dissertation, Louisiana State University 

and Agricultural and Mechanical College, USA, Department of Civil Engineering. 

Palmeira, E. M., & Milligan, G. W. (1989). Large scale direct shear tests on reinforced soil. 

土質工学会論文報告集, 29(1), 18-30. 

Perkins , S. (1999). Mechanical response of geosynthetic-reinforced flexible pavements. 

Geosynthetics International, 6(5), 347-382. 

Perkins, S. (1999). Geosynthetic Reinforcement of Flexible Pavements: Laboratory Based 

Pavement Test Sections. Report No. FHWA/MT-99-001/8138, U.S. Department of 

Transportation, Federal Highway Administration, Washington D.C., USA . 

Perkins, S. (2002). Evaluation of geosynthetic reinforced flexible pavement systems using two 

pavement test facilities. Report No. FHWA/MT-02-008/20040, U.S. Department of 

Transportation, Federal Highway Administration, Washington D.C., USA . 

Perkins, S. W. (2001). Mechanistic-Empirical Modeling and Design Model Development of 

Geosynthetic Reinforced Flexible Pavements: Final Report. Montana Department of 

transportation, Helena, Montana. 

Perkins, S., Christopher, B., Cuelho, E., Eiksund, G., Hoff, I., Schwartz, C., . . . Watn, A. (2004). 

Development of Design Methods for Geosynthetic Reinforced Flexible Pavements. Report 

No. DTFH61-01-X-00068, U.S. Department of Transportation, Federal Highway 

Administration, Washington D.C., USA. 

Perkins, S., Ismerik, M., Fogelsong, M., Wang, Y., & Cuelho, E. (1998). Geosynthetic-

Reinforced Pavements: Overview and Preliminary Results. In Balkema (Ed.), 



124 
 
 

Proceedings of the Fourth International Conference on Geotextiles, Geomembranes and 

Related Products, 1, pp. 177-182. The Hague, The Netherlands. 

Qian, Y., Han, J., Pokharel, S., & Parsons, R. (2011). Stress Analysis on Triangular-Aperture 

Geogrid-Reinforced Bases over Weak Subgrade Under Cyclic Loading. Transportation 

Research Record: Journal of the Transportation Research Board(2204), 83-91. 

Saad, B., Mitri, H., & Poorooshasb, H. (2006). 3D FE analysis of flexible pavement with 

geosynthetic reinforcement. Journal of Transportation Engineering, 132(5), 402-415. 

Shukla, S. K. (2002). Geosynthetics and their applications. Thomas Telford. 

Stadler, A. T. (2001). Geogrid Reinforcement of Piedmont Residual Soil. Charlotte: North 

Carolina Department of Transportation. 

Staff, C. C. (2012). Roads and Highways. Retrieved from Stabilizing Roads: 

http://www.concreteconstruction.net/roads-and-highways/stabilizing-roads.aspx 

(2004). Standard Terminology for Geosynthetics. American Society for Testing and Materials. 

ASTM International. 

(2013). Standard Test Method for Index Puncture Resistance of Geomembranes and Related 

Products. West Conshohocken, PA: ASTM International. 

(2014). Standard Test Method for Stiffness of Fabrics. West Conshohocken, PA: ASTM 

International. 

(2012). Standard Test Methods for Linear Density of Textile Fibers. West Conshohocken, PA: 

ASTM International. 

Stormont, J. C., Henry, K. S., & Evans, T. (1997). Water retention functions of four nonwoven 

polypropylene geotextiles. Geosynthetics International, 4(6), 661-672. 

Tensar. (2015). Rib Testing. Retrieved from TriAx: http://www.tensar.co.uk/site/scientifically-

proven/Rib-testing.aspx 

Tensar. (2015). RoaDrain™ Roadway Drainage System. Retrieved from 

http://www.tensarcorp.com/: http://www.tensarcorp.com/Systems-and-

Products/Roadrain-roadway-drainage-system 

Tensar. (2015). Tensar Biaxial BX grogrids. Retrieved from Tensar: 

http://www.tensarcorp.com/Systems-and-Products/Tensar-geogrids/Tensar-Biaxial-BX-

geogrids 



125 
 
 

Tensar. (2015). Tensar TriAx (TX) Gogrids. Retrieved from Tensar: 

http://www.tensarcorp.com/Systems-and-Products/Tensar-geogrids/Tensar-Triax-geogrid 

Thompson, N. E. (2009). Small soil column investigation of soil-geotextile capillary barrier 

systems. 

Tingle, J., & Webster, S. (2003). Corps of Engineers Design of Geosynthetic-Reinforced 

Unpawed Roads. Transportation Research Record: Journal of the Transportation 

Research Board(1849), 193- 201. 

USFabrics. (2015). Geotextiles, Geogrids & Geomembranes for the construction industry. 

Retrieved from Geotextiles: http://www.usfabricsinc.com/products/geotextiles 

Uzan, J. (2004). Permanent deformation in flexible pavements. Journal of Transportation 

Engineering, 130(1), 6-13. 

Van Til, C., McCullough, B., Vallerga, B., & Hicks, R. (1972). NCHRP Report 128: Evaluation 

of AASHO Interim Guides for Design of Pavement Structures. Transportation Research 

Board, Washington, DC. 

Wathugala, G., & Desai, C. (1993). Constitutive model for cyclic behavior of clays. I: Theory. 

Journal of Geotechnical Engineering, 119(4), 714-729. 

Wathugala, G., Huang, B., & Pal, S. (1996). Numerical simulation of geosynthetic-reinforced 

flexible pavements. Transportation Research Record: Journal of the Transportation 

Research Board(1534), 58-65. 

Webster, S. (1993). Geogrid Reinforced Base Course for Flexible Pavements for Light Aircraft, 

Test Section Construction, Behavior under Traffic, Laboratory Test, Design criteria. 

Technical Report GL-93-6, Waterways Experiment Station, U.S Army Corps of 

Engineers, Vicksburg, MS, USA. 

Zornberg, J. G., & LaRocque, C. J. (2008). Technical Report Documentation Page 1. Report No. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Nevada Department of Transportation 

Rudy Malfabon, P.E. Director 

Ken Chambers, Research Division Chief 

(775) 888-7220 

kchambers@dot.nv.gov 

1263 South Stewart Street 

Carson City, Nevada 89712 

 


	327-12-803 Final Report - Cover Page
	Final Report - Disclaimer - Behind Cover Page
	327-12-803 Final Report
	Final Report - Back Cover



