

Use of Geothermal Energy in Snow Melting and Deicing of Transportation Infrastructures

Guney Olgun
Civil & Environmental Engineering, Virginia Tech

Allen Bowers
Schnabel Engineering

Moderator: Andy Alden, Virginia Tech Transportation Institute

Transportation Research Board July 21, 2016

Webinar Outline

- Background and concept
- Geothermal heat-exchange systems
- Applications related to transportation infrastructure
- Examples from recent research on bridge deck deicing
- Summary and conclusions

Learning Objectives

- Identify near-surface geothermal energy and heat exchange systems
- Understand different applications of geothermal energy in transportation systems
- Identify different case histories and research projects
- Understand the basic design principles of geothermal heat exchange systems

Webinar Outline

- Background and concept
- Geothermal heat-exchange systems
- Applications related to transportation infrastructure
- Examples from recent research on bridge deck deicing
- Summary and conclusions

U.S. Energy Flow Chart

Significant energy consumption in buildings mainly for heating and cooling

U.S. Geothermal Resources & Projects

Ground Temperatures & Heat Exchange

Seasonally constant temperature and the thermal storage capacity of the ground can be leveraged for geothermal heat exchange

Ground Temperature Profile

Geothermal Heat-Exchange Systems

Utilize the relatively constant temperature of the ground and use it for heating in the winter and cooling in the summer

Ground Source Heating/Cooling

- Geothermal heat exchange systems provide ground-source energy for heating and cooling
- The use of ground-source systems for heating and cooling has increased exponentially especially in Europe
- Basic idea been around for long time make use of the heat energy stored in the ground; access this energy using heat exchangers buried in the ground (fluid-filled HDPE loops)
- In ideal conditions these systems can provide majority of required heating/cooling energy and significantly reduce costs and carbon footprint

Geothermal Heat-Exchange Systems

Utilize the relatively constant temperature of the ground and use it for heating in the winter and cooling in the summer

Geothermal Resources

Webinar Outline

- Background and concept
- Geothermal heat-exchange systems
- Applications related to transportation infrastructure
- Examples from recent research on bridge deck deicing
- Summary and conclusions

Geothermal Heat Exchange Systems

Geothermal Boreholes

Horizontal Loops

Energy Piles

Geothermal Borehole Wells

Major cost is drilling and materials

- 4-6 inch diameter borehole
- 200 ft 500 ft deep
- Small residential to large commercial

Geothermal Borehole Wells

Geothermal Borehole Wells – Design Considerations

Horizontal Loops

Horizontal Loops

Recently built house in Blacksburg, VA with a trench loop system

Horizontal Loops

Horizontal loop systems within/beneath slabs

Geothermal Energy Piles

Geothermal Energy Piles – Dual Purpose Elements

Geothermal Energy Piles – Dual Purpose Elements

Performance of Heat Exchange Systems

Vertical

Н	\cap	17 <i>(</i>	onta	ı
1 1	UΙ	IΖV	טו ונס	u

Energy Pile

Poor ground quality

8 W/ft

1 W/ft²

8 W/ft

Average ground quality

15 W/ft

2.5 W/ft²

15 W/ft

Excellent ground quality

25 W/ft

4 W/ft²

25 W/ft

Frankfurt Main Tower

223 Energy piles were installed

Power: 500kW

Courtesy: R. Katzenbach, Technical University

of Darmstadt

Keble College, Oxford UK

First Energy Wall Project in the UK

Completion: 2002

Type of Absorber: Pile wall, 61 drilled shafts

Heating Capacity: 45 kW Cooling Capacity: 45 kW

Courtesy: Tony Amis, Geothermal International

- Heat exchanger foundation elements can be used to deice bridge decks in the winter.
- Can reduce bridge deck deterioration and aging.
- Bridge deck and the tubing system can be used for heat collection in the summer.
- Can also utilize the approach embankment as a thermal mass for heat storage and extraction.

Energy Tunnels

Energy tunnel/anchor systems (Brandl 2006)

Heat can be harvested from tunnels with the use of heat exchanger systems

Energy Tunnels

Energy tunnel/anchor systems (Brandl 2006)

Webinar Outline

- Background and concept
- Geothermal heat-exchange systems
- Applications related to transportation infrastructure
- Examples from recent research on bridge deck deicing
- Summary and conclusions

Geothermal Applications for Transportation

- Airports
 - Runway deicing
 - Terminal heating/cooling
- Road deicing and summer cooling
- Roadside facility heating/cooling
- Bridge deck deicing and stress control

- Terminal heating/cooling
 - Terminals can account for 75% of an airport's energy requirements
 - Of that, 25-80% is required for HVAC
 - Significant savings could be realized by utilizing geothermal energy
 - Nashville International Airport currently implementing this and expected to save more than \$430,000/yr

- Terminal heating/cooling Zurich Airport Terminal E
 - 310 of the 440 piles are energy piles, 30 m (100 ft) each
 - Supplies 85,200 m²
 - Heating seasonal performance factor of 3.9
 - Cooling seasonal performance factor of 2.7

- Runway and Apron Deicing
 - Usually airports employ a combination of mechanical and chemical methods: plows, salts, sand, etc.
 - Each time a plow has to clear the runway, operations are slowed
 - Chemicals can be damaging to the environment and runway concrete
 - A lot of ground volume beneath runways that could be utilized for geothermal energy
 - Note: Geothermally heated hot water could potentially be used to deice the planes
 - Example: Apron deicing at Greater Binghamton Airport, NY

- Apron Deicing at Greater Binghampton Airport
 - \$1,300,000 in construction costs
 - 4,000ft² of apron and walkway heated area
 - Twenty 500ft vertical and two 140ft horizontal geothermal wells
 - Operating costs \$15,000/yr or \$0.16/passenger
 - Utilized for terminal cooling in the summer

Road Deicing and Summer Cooling

- During winter storm events, roads can often be covered with snow/ice.
 - Dangerous for motorists
 - Expensive to remove (plowing)
 - Can be damaging to environment (from deicing chemicals)
- During the summer, the cyclic heating and cooling can degrade the pavement
- Geothermal energy can heat the roads in the winter and cool them during the summer
- Example: SERSO road in Switzerland

Road Deicing

- SERSO Pilot Plant in Switzerland (EGEC 2007)
 - Collects heat during summer and stores in ground for winter
 - 91 borehole heat exchangers to a depth of 70 m

Roadside Facility Heating/Cooling

- Tollbooths and toll plazas
 - Vehicles approach toll plazas at a high rate of speed and decelerate quickly
 - This can be dangerous during winter weather for both motorists and tollbooth operators
 - Can geothermally heat the pavements of the toll plaza to prevent snow and ice formation/accumulation
 - Can also heat the tollbooths and cool them in the summer

Bridge Deck Deicing and Stress Control

- Winter weather-related problems with bridge decks:
 - ■Preferential icing
 - Accelerated corrosion (from chemicals)
 - Environmental contamination (from chemicals)
- Cyclic stressing and straining of bridges in the summer can also be problematic and lead to accelerated deterioration

Ground-Source Bridge Deck Deicing

Ground-source deicing:

Fluid is warmed as it circulates through the energy piles and approach embankment and then circulated in the deck, heating the deck

- Can be operated in reverse during the summer
- Not meant to replace mechanical removal

Webinar Outline

- Background and concept
- Geothermal heat-exchange systems
- Applications related to transportation infrastructure
- Examples from recent research on bridge deck deicing
- Summary and conclusions

Experimental Investigation

The Setup:

- Two 1.3m x 3.3m x 25cm doubly reinforced concrete slabs
 - PEX circulation tubes
 - Loops spaced 20 and 30cm
 - Total of 36 thermistors
- Four 33m Energy Piles
 - Spaced 2.6m apart
 - Only 1 used for the experimental results
- Three observation boreholes to monitor temperature

Model-Scale Experiments

The Setup:

- One side was heated (20cm), other side was left as a control (30cm)
- Temperature was measured in all 36 thermistors, but only showing the results from 3 near the deck surface

Experimental Results

Mild Winter Storm: January 21, 2014

- 2.1cm of snow fell while ambient temperature was -0.5°C
- Turned on system before the start of snowfall and left running during snowfall
- The side that was operated remained snow free the entire time

Mild Winter Storm

Moderate Winter Storm

Moderate Winter Storm: February 25-26, 2015

- 7.6 cm (3 in) of snow fell while the ambient air temperature was -2 to -3°C
- Turned on system before the start of snowfall and left running during snowfall
- The side that was operated had a surface temperature >0°C the entire time and remained snow-free

Moderate Winter Storm

Bridge Deck Temperature Gradients

Maximum and Minimum Design Gradients

Sensor Locations and Depths

Bridge Deck Temperature Gradients

Bridge Deck Temperature Gradients

Summary of Experimental Tests

- Tests in mild, moderate, and severe winter storms demonstrated:
 - The system was capable of handling moderate amounts of snow in moderate weather conditions without the need of external energy (heat pump)
 - Whenever the system was not capable of handling the snow by itself, it was able to maintain a surface temperature above 0°C → when combined with mechanical removal a snow-free surface will exist
 - The system is self-adjusting → when more energy is needed it is able to generate it (through gradients)
 - Operation of system in summer reduces the extreme temperature gradients experienced by the bridge deck

Numerical Modeling of Bridge Heating

Modeled the experimental bridge deck slab for validation.

4

Understanding System Performance

- Time how long does it take to heat?
- Temperature can the bridge deck maintain a temperature above freezing?
- Energy how much energy is this process requiring?
- Snow-Free is the system able to keep the deck snow free? If not, is it able to melt it?
- **Examined:**
 - Ambient and initial temperature
 - Inlet fluid temperature
 - Wind speed
 - Rate of snowfall
 - Circulation tube spacing
 - Fluid flow rate
 - Concrete thermal conductivity
 - Concrete heat capacity
 - Insulation under the slab

Parametric Study - Tube Spacing

■ Surface temperature distribution for 15, 20, 25, and 30 cm tube spacing when the average surface temperature = 0°C

Parametric Study - Tube Spacing

 Average surface temperature as compared to the total (top) surface area greater than 0°C

Summary of Numerical Research

- 3-Dimensional numerical models have been developed to simulate bridge deck deicing using geothermal energy
- Parametric analyses have showed the feasibility of these systems over a wide range of conditions
- The results from the analyses have been used to develop design tables that will be published

Summary and Conclusions

- Ground can be utilized as a renewable energy source as a result of its relatively constant temperatures and thermal storage capacity.
- Use of geothermal heat exchangers can be an environmental friendly and feasible way for heating and cooling of transportation facilities.
- There are a variety of geothermal heat exchange technologies including, borehole heat exchangers, geothermal energy piles, etc.
- The applications related to transportation infrastructure includes deicing of bridge decks and airport runways, heating and cooling of airport terminals, roadside facilities.
- Potential issues with long term performance of bridge deck deicing systems due to continued heat extraction. Thermal recharge may need to be utilized to provide supplemental heat energy.

Thank You!

Transportation Research Board July 21, 2016

TRB Technical Committee AFP40
Physicochemical and Biological Processes in Soils

