C.N.M.C.A. – PRATICA DI MARE – EUROPE IR 22-JUL-2004 10:30 U.T.C. 🧾

Use of microwave radiances for weather forecasting

Roger Saunders SFCG-24 20 Sep 2004

Cloud is common

Band	Instrument	Cloud-	free	Cloud-free upper-trop
INFRARED	AIRS (14 km)	5%	•••	30%
MICROWAV	E AMSU (50 km)	70%	0 0	95%

© Crown copyright 2004

Page 3

In situ vs satellite data coverage

Page 4

The Advanced Microwave Sounding Unit

- Microwave sounders have become very important to the accuracy of NWP
- High information content in persistently cloudy data sparse areas.
- AMSU is the current operational generation

NOAA-16 AMSU-A Brightness Temperatures Channel(Level): 01 (surface) (C) Tb (K) 24-hr ending: 2004/04/05 (096) 01:51 UTC Ascending Passes (1:59 PM local time) 10-MSFC -280 0--270 -10--260 60N-20--250 -30 -240 -40-30N -230 -50--220 -60--210 ΕQ -70--200 -80--190 30S--90--180 -100--170 60S -110--160 -120--150 -130-140 60E 120W ទប់រ 120E 180

Met Office

Global composite of brightness temperature (K) from AMSU-A Channel 3

AMSU cloud liquid water index

The AMSU window channels indicate the location of the highest liquid water contents These occur near the storm head and also along the trailing cold front The infra-red imagery gives an indication of this to the experienced eye but is not so quantitatively precise

NOAA15 AVHRR IR & AMSU cloud index composite imagery LOCAL DATA

Image generated: 06/26/2000 11:46:07 UTC — Most recent overpass time: 1118 (Slot time: 1100)

Microwave spectrum used by Met Satellites

Met Office

© Crown copyright 2004

Current use of microwave spectrum for meteorology

Frequency (GHz)	Bandwidth (MHz)	Measurement	Sensor
6.92	200	SST	AMSR
10.65	100	Rain rate, snow, ice, SST, ocean wind	AMSR, TMI
18.7	200	Rain rate, ice, water vapour, wind speed	AMSR, TMI, SSM/I
23.8	400	Water vapour, liquid water, atmos sounding	SSM/I, AMSU-A
31.4	500	Atmospheric temp, liquid water	AMSU-A
50-55	5000	Atmospheric temp	AMSU-A
89 + 150 + 157	3000	Atmospheric temp, water vapour + surface	AMSU-A/B
183+/-7	14000	Atmospheric temp, water vapour + surface	AMSU-B

Weighting functions

Use of 24 GHz channel for weather forecasting

- 24 GHz channel is used for identifying best footprints for sounding channels
- Also used for inferring water vapour, cloud water and surface properties

RFI would exceed 0.2K threshold 38% of the time over land.
A threshold of 0.03K is required to reduce significant interference to < 5% over land

Microwave imagers: SSM/I, AMSR, TMI...

 Wind speed information from vertical and horizontal polarised microwave radiometer data is well established. Met Office

Wind Scatterometers

Sea-ice, Snow

© Crown copyright 2004

• Calibrated radar operating at frequencies which are only weakly affected by atmosphere

• Measures surface backscatter at several azimuth angles

ECMWF forecasts 1981-2003

Anomaly correlation of 500hPa height forecasts

Forecasts from all NWP centres

Recent improvement in the accuracy of forecasts Annual-mean r.m.s. errors against analyses from WMO scores 500hPa height (m) Northern hemisphere ECMWF ---- MET OFFICE NCEP 70 60 D+5 50 D+440 30 D+3

92 93 94 95 96 97 98 99 00

01

02

03

20-

90

91

Forecast skill vs time

Satellite vs conventional: NH height

© Crown copyright 2004

© Crown copyright 2004

© Crown copyright 2004

Page 22

- The additional information provided by the observations is very small in any given assimilation cycle - does it actually have any impact?
 - 1-2 days forecast improvement in the SH
 - 1/3-1/2 days forecast improvement in the NH
 - Humidity information is most important in the tropics
- AMSU is the most important current source of satellite data, providing most of this impact.

Thanks

and please keep the channels we use free of interference.

Global NWP Index Analysis based – 12 Month Mean – Normalised to Mar 2000

© Crown copyright 2004