AC 2007-397: USE OF SPREADSHEETS WITH SCALED GRAPHICS TO TEACH STRUCTURAL ENGINEERING

Jorge Tito-Izquierdo, University of Houston-Downtown

Alberto Gomez-Rivas, University of Houston-Downtown

Alberto Gomez-Rivas is Professor of Structural Analysis and Chair of Engineering Technology. Dr. Gomez-Rivas received Ph.D. degrees from the University of Texas, Austin, Texas, in Civil Engineering and from Rice University, Houston, Texas, in Economics. He received the Ingeniero Civil degree, with Honors, from the Universidad Javeriana in Bogotá, Colombia. He also served as Chief of Colombia's Department of Transportation Highway Bridge Division

Use of Spreadsheets with Scaled Graphics to Teach Structural Engineering

Abstract

Engineering is a profession where graphical presentation is very important in understanding and verifying results. Geometric proportions, spacing, and other features can be clearly perceived if a scaled graph is displayed together with the calculations, and thus, the engineering student can make better decisions about the final design. Overall, these spreadsheets with graphical capabilities help the learning process.

The use of Excel spreadsheets in engineering education and professional practice is frequent because this tool is versatile and powerful. However, a deficiency of spreadsheets is the lack of graphic representation. This may be solved by using the programming tools of Visual Basic for Applications® (VBA) that is included in the package of Microsoft Office®. This paper presents a method to include scaled graphs into a spreadsheet, which completes the engineering calculations and helps in the final decision to accept or modify a design. These graphs are also useful in the drafting process, because the graphs can be easily transferred into any computer assisted drafting (CAD) program. Several actual class examples are included.

Introduction

Spreadsheets are frequently used as helpful tools during the structural design process, especially when the final outcome involves assumptions that require verification including design of beams, columns, channel sections, retaining walls, and footings, between others. Engineering is a profession where graphical presentation is very important in understanding and verifying results. Also, geometric proportions, spacing, and other features can be clearly perceived if a scaled graph is displayed on the spreadsheet, and thus, the engineer can make better decisions about the final design.

The use of Microsoft Excel[®] spreadsheets in engineering education and professional practice is frequent because this tool is versatile and powerful. However, a deficiency of spreadsheets is the lack of geometric presentation graphics and therefore, understanding of the results. This may be solved by using the programming tools of Visual Basic for Applications (VBA) that is included with the standard package of Microsoft Office[®]¹.

This paper outlines one method to include scaled graphs into a spreadsheet; this graph presentation completes the engineering calculations and helps in the final decision to accept or modify a design. These graphs are also useful in the drafting process, because the graphs can be copy-pasted into any computer assisted drafting (CAD) program. Several actual class examples are included.

Prior to running the VBA program, the drawing data is listed and organized on the spreadsheet. VBA can then be accessed using a command button. The program follows a routine, consisting of reading the geometric data and desired scale, the location where the drawing will be

displayed, application of a suitable scale factor to the geometric data, drawing the geometry, and applying any special effects such as color or lines.

Spreadsheets with graphic capabilities improve the learning curve of the students, principally for topics involving design. Furthermore, these spreadsheets have a component of trial and error, since modification of input parameters and obtaining a final modified result is simple, quick, and straightforward. Thus, the use of Excel spreadsheets with subsequent VBA processing has been found by the authors to be an effective and useful tool in facilitating student learning in structural design courses.

Spreadsheet Organization

The spreadsheet may be organized according to the necessity of the problem; generally it is organized as input, partial calculations, results and graphics.

The students are encouraged to prepare a template in order to organize the presentation just once. This template may be used for different purposes. The template provides the typical information required for professional calculation sheets. A good printout, with the corresponding references, sketches and commentaries is a requisite for future use of the spreadsheet.

Sketches, where the variables are described, still may complement the input process as shown in Figure 1. This sketch is done using the drawing tools of excel, without scale. The sketch may be improved using the VBA tools "text box" or "label", which can be linked to the data input in the corresponding cell. Figure 2 describes a method to include the input data into the sketch.

Figure 1. Sketch used to describe the variables.

		D=0° O	ibelî o o o	or	From the text box. gether wi
Label1			ED("Forms.La		b. In
A	В	C	D	E	replace (EME
					corre
Label1		<i>f</i> ≈ =\$D\$32			descr
A	B	C	D	E	
	0 6 0		0000 6 0000	bois	The VB e grouped back of kcel tool
17 18 20 19 0 0 0 0 0 20 D = 1 21 0 0 0 0 22 21 Group	6 0				d. Grouț descripti
Image: Comparison Image	up				

a. From the toolbox of VBA select label or text box. Drag the icon to the sketch, together with the description.

> b. In the 'formula bar' of excel replace the default command (EMBED.....) by the cell correspondent to the variable to be described.

c. The VBA tool and the description can be grouped for clarity. If the description is back of the tool, use the 'send to front' excel tool of 'Draw'.

l. Group both the VBA tool and the lescription.

The input data is located in one block, marked with clear color because the print out in black and white is clearer. The cells used for input shall be un-locked permitting the use of a protection for all the spreadsheet, except the input cells.

Intermediate calculations are performed using Excel functions. VBA becomes more effective when the calculations involve iterations or a significant amount of conditionals.

The problem conclusions may be presented using the capabilities of Excel, presenting programmed comments if the assumptions satisfy the design criteria.

Finally, and this is the main objective of this paper, the spreadsheet can present a scaled drawing of the problem. If the drawing has too much information, it is better to present a new sheet exclusive for the drawing. In the new spreadsheet there is no input, all the information respect to the problem is automatically imported from the calculation sheet. Only the drafting related information is manipulated on this sheet, such as scale and location of the drawing.

Drawing using VBA

Scale definition. Create a scale options for the user. The Excel's "Data Validation" tool may be used to select the required scale for the drawing. This tool is found in Data – Validation – Setting – List, as shown in Figure 3.

Figure 3. Scale selection

When the scale is selected, the program employs the "vlookup" function and opts for a factor that is used to scale the coordinates, as indicated in Figure 3. The user adjusts the modification factors for horizontal and vertical dimensions accordingly to the printer available. The zoom factor depends on the percentage of the normal size selected in the page setup for the spreadsheet and it can be automatically found using the VBA expression "ActiveSheet.PageSetup.Zoom / 100". The scale factor, the modification factors and the zoom factor are used to scale the point coordinates useful for drawing.

Delete Old Drawings. This control button is necessary to clear the spreadsheet of old lines, circles, or any other drawing. The VBA code is shown in Figure 4. This Delete button shall be activated (clicked) before the drawing of the final sketch.

Private Sub cmdEraser_Click() Set myShapes = ActiveSheet.Shapes 'Delete Polylines For Each shp In myShapes	'Delete Shapes For Each shp1 In myShapes If Left(shp1.Name, 9) = "AutoShape" Then shp1.Delete
If Left(shp.Name, 8) = "Freeform" Then shp.Delete	End If Next
End If	
Next	'Delete Text Box
	For Each shp1 In myShapes
'Delete Lines	If Left(shp1.Name, 8) = "Text Box" Then
For Each shp1 In myShapes	shp1.Delete
If Left(shp1.Name, 4) = "Line" Then	End If
shp1.Delete	Next
End If	
Next	'Delete oval
	For Each shp1 In myShapes
'Delete Rectangles	If Left($shp1.Name$, 4) = "Oval" Then
For Each shp1 In myShapes	shp1.Delete
If Left(shp1.Name, 9) = "Rectangle" Then	End If
shp1.Delete	Next
End If	End Sub
Next	

Figure 4. VBA Code to Delete Old Drawings in the Spreadsheet

Drawing Location. The drawing can be located in the place where better adjust for the user. VBA defines the origin of coordinates in the upper left corner of the screen, the x-axis is positive toward right and the y-axis is positive downward. It is possible to translate the origin to other position using the columns and rows of the spreadsheet. The width of each column and the height of each row are defined in "points", each point is 1/72 inch, and they may be found using VBA codes. The code given in Figure 5 helps to move the origin of coordinates to the desired position.

Figure 5. Excel Input Cells and VBA Code to Find the Origin of Coordinates for the Drawing

Reading Data. Using the standard commands of VBA, the input data is read from the spreadsheet and stored in previously dimensioned VBA variables. It is preferable to define with explicit names the cells to be used as input, as this permits future changes in the spreadsheet without affecting the original programming. For example, the cell V33, which defines the scale factor, may be called "Scale1" in the spreadsheet using the function "insert-name-define", as shown in Figure 3. Note that the name of the cells is case-sensitive.

Object	Coordinates of	Dimensions	Code
Line	Start and End		Shapes.AddLine Xstart,Ystart,Xend,Yend
Rectangle	Lower left corner. 'Y' is positive downward	Width and Height	Shapes.AddShape msoShapeRectangle, X, Y, Width, Height
Oval or circle	Center	Width and Height	Shapes.AddShape msoShapeOval, X, Y, Width, Height
Polyline	Vertices of the polygon. It may be opened or closed. The coordinates shall be stored in an array		Dim CoordPoints(1 To M, 1 To N) As Single CoordPoints (1, 1) = a CoordPoints (1, 2) = b CoordPoints (2, 1) = c CoordPoints (2, 2) = d CoordPoints (M, 1) = e CoordPoints (M, N) = f Shapes.AddPolyline CoordPoints

Table 1. Data Needed to Draw Objects in VBA

Drawing. The dimensions corrected by the scale and modification factors, used for the scaled drawing, shall be assigned to different variables in order to maintain the original dimensions for other purposes. The drawing may be performed using different geometric options. It may be used different objects, like circles, rectangles, polylines, lines, text boxes, etc. It is important to define the coordinates of the shape respect to the origin of the drawing previously defined, remembering that VBA always use the positive x-axis toward the right and the y-axis downward of the screen. The VBA codes have options to change the line width, color, continuity, and other attributes of the object. VBA has specific codes to draw each one of the objects. Table 1 shows the coordinates needed to draw some objects. VBA has a help function that is a good start for the code writing.

Examples

Footing Design. In this example, the dimension of a footing is input to the excel spreadsheet to verify the soil capacity using the classical methods of foundation engineering². After the verification of the soil pressures, the foundation is drawn using the VBA code in another spreadsheet. This combination of analysis and drafting allows the student to visualize the problem and the solution found, appreciating the effect of the different parameters, like a virtual laboratory. Figure 6 shows the spreadsheet used to verify the foundation. This spreadsheet computes the geometric properties of the footing, combine the loads, translate the loads from the top of the pedestal to the bottom of the footing, computes the soil pressure in the four corners of the footing, and compare the allowable soil bearing pressure with the actual soil stress.

Figure 7 shows the scaled drawing of the different views of the footing, which is done using VBA; this drawing can be exported to other Computed Assisted Drafting (CAD) programs. Figure 8 shows the VBA programming code to make the drawing. The programming code is divided in data reading, location of the origin, and drawing, as explained before.

Reinforced Concrete Design – Beams. This spreadsheet permits the user verify a given cross section of a rectangular or T-beam, including the longitudinal steel and stirrups. The spreadsheet is based on the ACI-318-05³. The user can input the geometry with the help of sketches and the steel dimensions for each layer of reinforcement. Excel functions are used to verify the beam capacity and a different sheet is used to present a scaled cross section of the beam. Figure 9 shows the spreadsheet calculations and the scaled drawing.

Using this spreadsheet, the student can appreciate the geometry of the beam, the location and size of the rebar and the stirrup with the specified cover. All this information is important for the beam design and it can be copied to the final drawings. This spreadsheet is also used to study the effect of the change of the design parameters on the final design, permitting the global understanding of the reinforced concrete beam design.

UNIVERSITY OF HOUSTON - DOWNTOWN

SUBJECT:

DESIGN BY: DATE: 1/8/2007

DATE. 1/0/2007

CHKD. BY: DATE: FILE: FILE: E:\Paper ASEE2007\|Focting-MultipleColumn.xls]Calculation

Program Name:

E:\Paper ASE E2007 \[Footing-MultipleColumn xls]Drawing

HOUSTON, TX

SHEET N° OF JOB N°

Page 1 of 3

UNIVERSITY OF HOUSTON - DOWNTOWN

U	IVER	SITY C)F H	OUST	ON -	DO	NNTO\	NN							HOUS	TON, '	TX
DESIGN BY:		DATE:	1/8/20	07	SI	UBJEC	T:							8	SHEET N	0 OF	
CHKD, BY:		DATE:												J	JOB N ^o		
	Paper ASE	E2007\[Fool	ing-Multi	pleColumr	.xls]Calci	ulation								-			
Program Name:																	
-	ASE E 2007 (F	Footing-Multi	pleColum	n xls]Drawi	ng												
WEIGHT	OF COLU	MNS			10 kip	,											
	OF EARTH				94 kip												
WEIGHT	OF SLAB:				135 kip)											
TOTAL V	VEIGHT OF	FFOOTING).		238 kip		TO BE ADD	ED TO DE	AD LOAD C	ASE ONLY							
TOTAL N	IOMENT D	UE COLUN	IN WEIG	GHT:	0 kip	≻ft	TO BE ADD	ED TO DE	AD LOAD C	ASE ONLY							
TOTAL N	IOMENT D	UE COLUN	IN WEIG	GHT:	0 kip	≻ft	TO BE ADD	ED TO DE	AD LOAD C	ASE ONLY							
		OF COL	UMN: [)ATA													
COLUM		Vy	AXI	AL N	/bx	My	TORSION	Mx at	My at	Х	Y	Z		Vy*Z	P*Y	Vx*Z	P*X
	kip	kip	ki			kip-ft	kip-ft	base	base								
	1 -1 2 -2		-	-100 -150	-80 -60	-60 -70	0			8 -8	5.5 5.5		7 7	-140 -175	-550 -825	- 105 - 140	-800 1200
		su -2 10 -3	-	-125	-00 -60	-70	0			-8	-5.5		7	-1/5	-820 687.5	-140	1000
	4 -1	-	-	-90	-95	- 110	Ő			8	-5.5		7	-175	495	- 105	-720
								212.5	-1500					-700	-192.5	- 490	680
LIVE LO/ COLUM		Vy	AXI	ΔI Ν	٨x	Mv	TORSION	Mx at	Mv at	х	Y	z		Vy*Z	P*Y	Vx*Z	P*X
COLDIN	kip	kip	ki	-		kip-ft	kip-ft	base	base	~	1	-		vy 2		VA 2	
		-	0	0	0	0	-			8	5.5		7	0	0	0	0
	-	-	0	0	0	0	-			-8	5.5		7	0	0	0	0
	-	-	0	0	0	0	-			-8 8	-5.5 -5.5		7 7	0	0	0	0 0
	7	•	•	v		v	v	0	0		-0.0		1	Ő	ő	ő	ŏ
	DAD SOUT																
COLUM		Vy	AXI	-	/tx	My	TORSION	Mx at	Myat	Х	Y	Z		Vy*Z	P*Y	Vx*Z	P*X
	kip 1	kip 0	ki 0	р кі 0	p-ft 0	kip-ft 0	kip-ft 0	base	base	8	5.5		7	0	0	0	0
		-	0	ŏ	ŏ	ő				-8	5.5		7	ŏ	ő	ő	ŏ
	-	-	0	0	0	0				-8	-5.5		7	0	0	0	0
	4	0	0	0	0	0	0			8	-5.5		7	0	0	0	0
WINDLO	DAD WEST	-EAST						0	0					0	0	0	0
COLUM		Vy	AXI	AL N	/tx	My	TORSION	Mx at	My at	Х	Y	Z		Vy*Z	P*Y	Vx*Z	P*X
	kip	kip	ki			kip-ft	kip-ft	base	base								
			0	0	0	0				8 -8	5.5 5.5		7 7	0	0	0	0
		•	0	0	0	0	-			-8 -8	-5.5		7	0	0	0	0
		-	0	õ	ŏ	Ő				8	-5.5		7	ő	ő	ő	0
								0	0					0	0	0	0

Page 2 of 3

	UNI	VERSI		нои	STON	- DOV	VNTO	WN			HOUSTO	DN, TX
DESIGN	BY:	1	DATE:	1/8/2007		SUBJEC	T:				SHEET Nº	OF
CHKD. B	BY:	1	DATE:								JOB N ^o	
FILE:	FILE: E:\Pap	er ASEE20	07\[Footing	g-MultipleCo	lumn.xls]Ca	alculation						
Program	Name:											
	E:\Paper ASE											
					WIND W-E							
A	XIAL LOAD	-703	0	0	0							
	Vx Vv	-70 - 100	0	0	0							
	Mk	213	0	0	0							
NG PROP		-1500	0	0	0							
1011101	Area=	300 f	t²	Cx=	10	ft	Cy=	7.5 ft				
	lxx =	5625 1	ŧ4	lyy =	10000	ft ⁴						
	STRE SSE	S DUE I		SE S								
	01112002	DEAD	LIVE	WIND	WIND							
		LOAD (ksf)	LOAD (ksf)	S-N (ksf)	W-E (ksf)	x	Y					
	Point 1	0.561	0.000	0.000	0.000	10	7.5					
	Point 2 Point 3	3.561 4.128	0.000	0.000	0.000	-10 -10	7.5 -7.5					
	Point 4	1.128	0.000	0.000	0.000	10	-7.5					
COMBIN	ATIONS											
	COMBO	DL	LL	WL _{N-8}	WL _{E-W}		Max. qa	Min qa				
	1	1.0	1.0	0.0	0.0		4.5					
	2	1.0 1.0	0.5 0.5	1.0 - 1.0	0.0		6					
	4	1.0	0.5	0.0	1.0		6	0.0				
	5	1.0	0.5	0.0 1.0	- 1.0 0.0		6					
	7	0.6	0.0	- 1.0	0.0		6	0.0				
	8	0.6	0.0	0.0	1.0 - 1.0		6					
	-						-					
	COMBO	q1 (ksf)	q2 (ksf)	q3 (ksf)	q4 (ksf)	Max q	Muniq (ksf)	CRITERIA				
	1	0.56	3.56	(KST) 4.13	(KST)	(ksf) 4.13	0.58	ок	0			
	2	0.56 0.56	3.56 3.56	4.13 4.13	1.13 1.13	4.13 4.13	0.58 0.58		0			
	4	0.58	3.58	4.13	1.13	4.13	0.58	ок	0			
	5	0.58 0.34	3.58 2.14	4.13 2.48	1.13 0.68	4.13 2.48	0.58 0.34		0			
	7	0.34	2.14	2.48	0.68	2.48	0.34	ок	0			
	8	0.34	2.14 2.14	2.48 2.48	0.68 0.68	2.48 2.48	0.34		0	0		
	5	0.34	2.14	2.40	0.00	2.40	0.34					
												Page 3 of 3

Figure 6. Spreadsheet to Verify the Soil Pressure under a Proposed Footing (Part III / III)

Figure 7. Scaled Drawing of the Proposed Footing Designed and Data Necessary

Private Sub cmdDrawFooting_Click() Dim Ncolumns, I As Integer Dim Scale1, myColumn, myRow, myZoom As Double Dim PositionX, PositionY, ModifX, ModifY As Double Dim ScaleX, ScaleY, Fact, ColEarthDist As Double Dim Base, Length, Thickness, DistViews As Double Dim Base1, Length1, Thickness1 As Double Dim Longi As String Dim Radius, CenterEast, CenterNorth As Double Dim EarthOn, FoundDepth As Double Dim Ncols, fila As Integer Dim TypeCol As String Dim LengthX, LengthY, HeightCol As Double 'GENERAL INPUT DATA 'Modify scale according to the printer used ModifX = ActiveSheet.Range("ModifX") ModifY = ActiveSheet.Range("ModifY") Fact = ModifX / ModifY Base1 = ActiveSheet.Range("Base1") Length1 = ActiveSheet.Range("Heigth1") Thickness1 = ActiveSheet.Range("Thickness1") 'The Scale of the lines is defined. Correct for a PageSetup 'different of 100% ActiveSheet.Range("MyZoom") = ActiveSheet.PageSetup.Zoom / 100 myZoom = ActiveSheet.PageSetup.Zoom / 100 Scale1 = ActiveSheet.Range("Scale1") / myZoom ScaleX = Scale1 * ModifX ScaleY = Scale1 * ModifY 'Read Earth Depth on Footing EarthOn = Range("EarthOn") * ScaleY FoundDepth = Range("EarthOn") + Thickness1 ColEarthDist = Range("ColEarthDist") 'LOCATE THE POSITION (0,0) 'PositionX and PositionY are the new coordinates in 'points of the origin for the drawing PositionX = 0PositionY = 0myColumn = ActiveSheet.Range("myColumn1") 'Read the Location desired for the Drawing myRow = ActiveSheet.Range("myRow1") 'Read 'the Location desired for the Drawing 'Loop to find the value in points of origin to be used 'for the drawing For I = 1 To myColumn PositionX = PositionX + ActiveSheet.Columns(I).Width Next I For I = 1 To myRow PositionY = PositionY + ActiveSheet.Rows(I).Height Next I

'Variables for drawing Base = Base1 * ScaleX Length = Length1 * ScaleYThickness = Thickness1 * ScaleY DistViews = Range("DistViews") * ScaleY 'DRAWING 'DRAW RECTANGLE: Plan View a = PositionXb = PositionYc = Based = LengthWith_ActiveSheet.Shapes.AddShape(msoShapeRectangle,_ a, b, c, d) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(255, 255, 255) End With 'DRAW RECTANGLE: South View a = PositionXb = PositionY + Length + DistViews c = Based = ThicknessWith _ ActiveSheet.Shapes.AddShape(_ msoShapeRectangle, a, b, c, d) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(255, 255, 255) End With 'DRAW RECTANGLE: East View a = PositionX + Base + DistViews b = PositionY + Length - Thicknessc = Length * Factd = Thickness With ActiveSheet.Shapes.AddShape(_ msoShapeRectangle, a, b, c, d) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(255, 255, 255) End With 'DRAW AXIS X or EAST-WEST a = PositionX + Base / 2b = PositionY + Length / 2c = PositionX + Base + DistViews * 0.5d = bWith ActiveSheet.Shapes.AddLine(a, b, c, d).Line .DashStyle = msoLineDashDotDot .ForeColor.RGB = RGB(125, 0, 0).EndArrowheadLength = msoArrowheadLong .EndArrowheadStyle = msoArrowheadTriangle .EndArrowheadWidth = msoArrowheadWide End With

Figure 8. VBA Code to Draw the Proposed Footing (part I / III)

With ActiveSheet.Shapes.AddTextbox(msoTextOrientationHorizontal, c, d, 15, 15) .Line.Transparency = 1.TextFrame.Characters.Text = "E" End With 'DRAW AXIS Y OR SOUTH-NORTH a = PositionX + Base / 2b = PositionY + Length / 2c = ad = PositionY + Length / 2 - LengthWith ActiveSheet.Shapes.AddLine(a, b, c, d).Line .DashStyle = msoLineDashDotDot .ForeColor.RGB = RGB(125, 0, 0).EndArrowheadLength = msoArrowheadLong .EndArrowheadStyle = msoArrowheadTriangle .EndArrowheadWidth = msoArrowheadWide End With With ActiveSheet.Shapes.AddTextbox(______ msoTextOrientationHorizontal, c * 1.03, d, 15, 15) .Line.Transparency = 1.TextFrame.Characters.Text = "N" End With WRITE DIMENSIONS 'Write Base in the Plan-View a = PositionX + Base / 2 - 20b = PositionY + Length + 10Longi = Int(Base1) & "'-" & Round((Base1 - Int(Base1)) * 12, 1) & """" With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationHorizontal, a, b, 40, 15) .Line.Transparency = 1.TextFrame.Characters.Text = Longi '.Fill.ForeColor.RGB = RGB(250, 0, 250)End With a = PositionX + Base / 2 - 20b = PositionY + Length + 25Longi = "PLAN VIEW" With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationHorizontal, a, b, 80, 15) .Line.Transparency = 1.TextFrame.Characters.Text = Longi End With 'Write Base in the South-View a = PositionX + Base / 2 - 20b = PositionY + Length + Thickness + DistViews + 10Longi = Int(Base1) & "'-" & Round((Base1 - Int(Base1)) * 12, 1) & """" With ActiveSheet.Shapes.AddTextbox(______ msoTextOrientationHorizontal, a, b, 40, 15) .Line.Transparency = 1.TextFrame.Characters.Text = Longi

End With

a = PositionX + Base / 2 - 20 b = PositionY +Length+ Thickness + DistViews + 25 Longi = "SOUTH VIEW" With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationHorizontal, a, b, 80, 15) .Line.Transparency = 1 .TextFrame.Characters.Text = Longi End With

Write Length in the Plan-View a = PositionX - 40 b = PositionY + Length / 2 Longi = Int(Length1) & "'-" & _ Round((Length1 - Int(Length1)) * 12, 1) & """" " With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationUpward, a, b, 15, 40) .Line.Transparency = 1 .TextFrame.Characters.Text = Longi End With

'Write Length in the East-View a = PositionX + Base + DistViews + Base / 2 - 45b = PositionY + Length + 15Longi = Int(Length1) & "'-" & Round((Length1 -Int(Length1)) * 12, 1) & """ With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationHorizontal, a, b, 45, 15) .Line.Transparency = 1.TextFrame.Characters.Text = Longi End With a = PositionX + Base + DistViews + Base / 2 - 60 b = PositionY + Length + 35Longi = "EAST VIEW" With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationHorizontal, a, b, 60, 15) .Line.Transparency = 1.TextFrame.Characters.Text = Longi End With

'Write Thickness in the East-View a = PositionX + Base + DistViews - 20 b = PositionY + Length - Thickness / 2 - 12 Longi = Int(Thickness1) & "'-" & Round((Thickness1 -Int(Thickness1)) * 12, 1) & _ """" With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationUpward, a, b, 15, 25) .Line.Transparency = 1 .TextFrame.Characters.Text = Longi End With 'Write Thickness in the South-View a = PositionX - 25 b = PositionY + Length + DistViews + Thickness / 2 - 10 Longi = Int(Thickness1) & "'-" & Round((Thickness1 -Int(Thickness1)) * 12, 1) & """" "

Figure 8. VBA Code to Draw the Proposed Footing (part II / III)

With ActiveSheet.Shapes.AddTextbox(msoTextOrientationUpward, a, b, 15, 25) .Line.Transparency = 1.TextFrame.Characters.Text = Longi End With 'Write Earth-Depth in the South-View a = PositionX + Base + 40b = PositionY + Length + DistViews + Thickness -FoundDepth * ScaleY / 2 - 10 Longi = Int(FoundDepth) & "'-" & Round((FoundDepth -Int(FoundDepth)) * 12, 1) & """ " With ActiveSheet.Shapes.AddTextbox(_ msoTextOrientationUpward, a, b, 15, 25) .Line.Transparency = 1.TextFrame.Characters.Text = Longi End With 'DRAW THE PLAN VIEW OF COLUMNS Ncols = ActiveSheet.Range("Ncols") fila = Range("Ncols").Row + 1 For I = 1 To Ncols TypeCol = ActiveSheet.Cells(fila + I, 2) LengthX = ActiveSheet.Cells(fila + I, 4) * ScaleX LengthY = ActiveSheet.Cells(fila + I, 5) * ScaleY CenterEast = ActiveSheet.Cells(fila + I, 8) * ScaleX CenterNorth = ActiveSheet.Cells(fila + I, 9) * ScaleY If TypeCol = "Oval" Then a = PositionX + Base / 2 + CenterEast - LengthX / 2 b = PositionY + Length / 2 - CenterNorth - LengthY/2With ActiveSheet.Shapes.AddShape(_ msoShapeOval, a, b, LengthX, LengthY) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(250, 250, 250)End With ElseIf TypeCol = "Rectangular" Then a = PositionX + Base / 2 + CenterEast - LengthX / 2b = PositionY + Length / 2 - CenterNorth - LengthY / 2 With ActiveSheet.Shapes.AddShape(_ msoShapeRectangle, a, b, LengthX, LengthY) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(250, 250, 250)End With Else MsgBox ("Review Data respect to Column Type, the program accept Oval or Rectangular") End If Next I

'DRAW THE EARTH LINE a = PositionX * 0.9b = PositionY + Length + DistViews - EarthOnc = (PositionX + Base) * 1.1d = PositionY + Length + DistViews - EarthOn With ActiveSheet.Shapes.AddLine(a, b, c, d).Line .DashStyle = msoLineSolid .ForeColor.RGB = RGB(50, 0, 128)End With a = (PositionX + Base + DistViews) * 0.9b = PositionY + Length - Thickness - EarthOn c = (PositionX + Base + DistViews + Length) * 1.1d = PositionY + Length - Thickness - EarthOn With ActiveSheet.Shapes.AddLine(a, b, c, d).Line .DashStyle = msoLineSolid .ForeColor.RGB = RGB(50, 0, 128)End With 'DRAW THE ELEVATION VIEW OF COLUMNS For I = 1 To Ncols LengthX = ActiveSheet.Cells(fila + I, 4) * ScaleX LengthY = ActiveSheet.Cells(fila + I, 5) * ScaleY HeightCol = ActiveSheet.Cells(fila + I, 6) * ScaleY CenterEast = ActiveSheet.Cells(fila + I, 8) * ScaleX CenterNorth = ActiveSheet.Cells(fila + I, 9)*ScaleY a = PositionX + Base / 2 + CenterEast - LengthX / 2b = PositionY + Length + DistViews - HeightColWith ActiveSheet.Shapes.AddShape(_____ msoShapeRectangle, a, b, LengthX, HeightCol) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(250, 250, 250) End With $a = PositionX + Base + DistViews + Length * Fact /2 _ +$ CenterNorth * Fact - LengthY * Fact / 2 b = PositionY + Length - Thickness - HeightCol With ActiveSheet.Shapes.AddShape(msoShapeRectangle, a, b, LengthY * Fact, HeightCol) .Line.DashStyle = msoLineSolid .Fill.ForeColor.RGB = RGB(250, 250, 250) End With Next I End Sub

Figure 8. VBA Code to Draw the Proposed Footing (part III / III)

3Y DATE	SUBJECT						SHEET M	HOUS	
HKD BY DATE							JOB NO		
E: E:\Paper ASEE2007\[Reinf.Concrete	BeamDesign-2	2006.xls1Ream I	Desian						
	-	-	-				k	⊨ bf = 90.0	
ONCRETE T-BEAM WITH S	FEEL IN C	OMPRESS	ION						c 🖡 1.76
FLEXURE	ACI 318-05 (Ch. 10						• • • • • • • • • • • • • • • • • • • •	
oncrete Strength 28 days, f _c :	5,000	psi							
lltimate Strain at Concrete = ε _{cu} =	0.003		Art. 10.3.3			h =	d = 26 30.0	.61	•
.65< β ₁ = 1.05 - 0.05*fc/1000 < 0.85=	0.80		art. 10.2.7	.3		11 =	30.0		
ongitudinal Steel Yielding, f.:	60,000	psi	It may be	grade 40.	60 or 75				
lodulus of Elasticiy of Steel, E =	29,000,000		,,	J ,					
tirrup Steel Yielding, fys:	60,000	psi	Grade 60	or lower. A	Art 11.5.2		_	bw	φ _b M _n = 8
leight of T-Beam (h):	30.0							▲ 16.0	10 11 1
/idth of T-Beam (bw):	16.0	in						10.0	ha
entral, End or Isolated T-Beam?	Central	-	End End	Centra			X1 . X2.	X3 、	hs
/idth of Flange for Isolated T-Beam = bf lear Span of the T-Beam = In =	30.0	in ft	Input this v	value for is	solated 1-	beam	end .	central	<u>+</u>
antilever dist.(End T-Beam Only), X1	0.0		Effective C	antilovor	_	0	in		
lear Dist. Between T-Beams @Right=X2	10.0			Janaiever		0			
lear Dist. Between T-Beams @Left=X3	10.0								
hickness of Slab = hs =	8.0	in			Note: Fo	r Rectangula	ar beams a	ssume hs =	• h
or Central T-Beam: bf = min(In/4, X1/2+b				90	136	144		90	
or End T-Beam: bf = min(min(X1,6hs,In/1			?)+bw+X2/2	2,min(X1,6	hs,ln/12)+	·bw+ 6hs)		46	
or Isolated T-Beam: Verify that bf = min(bi								64	IN
fective Width of the Flange = bf =	90.0	in	art. 8.10						
ructure Type (B,E,S):	Beam		🖸 Beam	. Joist	Slab				
assas i jpe (b,c,c).	E					our Against Ea	rth		
ltimate Moment = Mu = (+:Tension at	-		- I Out Age	amstarion		our Against La	ilui		
ottom, -: Tension at top)	550	kip-ft		550	kip-ft	Tension at:	Bottom		
inimum Steel Ratio = pmin =	0.0035	For General Be	eams: GB		0.0071	For Isostatic	Cantilever	Beams:ICB	
ype of Beam	GB	💽 Simply suppo	rted or Cont	tinuous Bea	🖸 Isostat	ic Cantilever B	eams		
linimum Steel Ratio = ρ _{min} =	0.00354								
s minimum = ρ _{min} *bw*d	1.51	in ²							
	1.01								
/idth of Beam (bw):	16.0								
/idth of Beam (bw): ffective Width of the Flange = bf' =	16.0 90.0	in in	Tension a	ıt:	Bottom				
Vidth of Beam (bw): iffective Width of the Flange = bf' = linimum cover:	16.0 90.0 1.50	in in in	art. 7.7.1						
VERIFICATION OF BEAM Vidth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: lowingl Stigur Diagnoter, dbst;	16.0 90.0 1.50 4	in in in				2			
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: ominal Stirrup Diameter, dbst:	16.0 90.0 1.50	in in in	art. 7.7.1			2			
/idth of Beam (bw): ffective Width of the Flange = bt' = inimum cover: tirrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and	16.0 90.0 1.50 4	in in in	art. 7.7.1			2			
/idth of Beam (bw): ffective Width of the Flange = bf' = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar:	16.0 90.0 1.50 4 0.50	in in in	art. 7.7.1			2			
/idth of Beam (bw): ffective Width of the Flange = bf' = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar:	16.0 90.0 1.50 4 0.50	in in in	art. 7.7.1 Number of			2	Minimum		
/idth of Beam (bw): ffective Width of the Flange = bf' = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar:	16.0 90.0 1.50 4 0.50	in in in in	art. 7.7.1 Number of Nominal	f Stirrup Le	egs: Steel	_	Minimum Spacing	Spacing	Verification
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension	16.0 90.0 1.50 4 0.50	in in in Nominal Rebar	art. 7.7.1 Number of Nominal Diameter	f Stirrup Le Max db	egs: Steel Area	Centroid of	Minimum Spacing between	between	of Beam
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: itrrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars	16.0 90.0 1.50 4 0.50 1 Rebar Size	in in in in Nominal Rebar Area (in²)	art. 7.7.1 Number of Nominal Diameter db(in)	f Stirrup Le	egs: Steel	_	Minimum Spacing	between	of Beam Width
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: irrup #: ominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4	16.0 90.0 1.50 4 0.50 1 Rebar Size:	in in in in Nominal Reban Area (in²) 1.27	art. 7.7.1 Number of Nominal Diameter db(in) 1.27	f Stirrup Le Max db	egs: Steel Area	Centroid of	Minimum Spacing between	between	of Beam Width <mark>OK if</mark>
fidth of Beam (bw): ffective Width of the Flange = bf' = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars	16.0 90.0 1.50 4 0.50 1 Rebar Size	in in in in Nominal Rebar Area (in²) 1.27 1	art. 7.7.1 Number of Nominal Diameter db(in)	f Stirrup Le Max db (in)	egs: Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in)	between rebars (in)	of Beam Width OK if splices are
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0	16.0 90.0 1.50 4 0.50 1 Rebar Size:	in in in in Nominal Reban Area (in²) 1.27	Art. 7.7.1 Number of Diameter db(in) 1.27 1.128	f Stirrup Le Max db	egs: Steel Area	Centroid of	Minimum Spacing between	between rebars (in)	of Beam Width <mark>OK if</mark>
fidth of Beam (bw): ffective Width of the Flange = bf = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0	16.0 90.0 1.50 4 0.50 1 Rebar Size 10 9 8	in in in in Nominal Rebar Area (in²) 1.27 1	Art. 7.7.1 Number of Diameter db(in) 1.27 1.128	f Stirrup Le Max db (in)	egs: Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in)	between rebars (in)	of Beam Width OK if splices are
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: irrup #: iominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 0	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1	in in in Nominal Rebau Area (in²) 1.27 1 0.79	Art. 7.7.1 Number of Nominal Diameter db(in) 1.27 1.128 1	f Stirrup Le Max db (in)	egs: Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in)	between rebars (in)	of Beam Width OK if splices are
Vidth of Beam (bw): ffective Width of the Flange = bf = linimum cover: linimum cover: lominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 0	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1	in in in Nominal Reban Area (in²) 1.27 1 0.79 in	Art. 7.7.1 Number of Nominal Diameter db(in) 1.27 1.128 1	f Stirrup Le Max db (in)	egs: Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27	between rebars (in)	of Beam Width OK if splices are
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: In. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer #	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1	in in in Nominal Rebar Area (in²) 1.27 1.27 1 0.79 in Nominal Rebar	Norminal Diameter db(in) 1.27 1.128 1 Norminal Diameter	f Stirrup Le Max db (in)	egs: Steel Area Layer 5.08	Centroid of Layer (in) 2.64 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between	between rebars (in) 2.06 Spacing between	of Beam Width OK if splices are not used!!! Verification of Beam
/idth of Beam (bw): ffective Width of the Flange = bf = linimum cover: irrup #: iominal Stirrup Diameter, dbst: lin. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer #	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 1 1	in in in Nominal Rebat Area (in ²) <u>1.27</u> <u>1</u> 0.79 in Nominal Rebat Area (in ²)	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in)	f Stirrup Le Max db (in)	egs: Steel Area Layer 5.08 Steel	Centroid of Layer (in) 2.64 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between	between rebars (in) 2.06 Spacing	of Beam Width OK if splices are not used!!! Verification
fidth of Beam (bw): ffective Width of the Flange = bf = inimum cover: inrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size:	in in in Nominal Rebat Area (in²) 1.27 1 0.79 in Nominal Rebat Area (in²) 1.27	Art. 7.7.1 Number of Nominal Diameter db(in) 1.27 Nominal Diameter db(in) 1.27	f Stirrup Le Max db (in)	egs: Steel Area Layer 5.08 Steel Area	Centroid of Layer (in) 2.64 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between	between rebars (in) 2.06 Spacing between	of Beam Width OK if splices are not used!!! Verification of Beam
idth of Beam (bw): fective Width of the Flange = bf = inimum cover: imrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 Rebar Size: 10 10 10 10	in in in Nominal Rebar Area (in²) 1.27 1.27 in Nominal Rebar Area (in²) 1.27 1.27	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in)	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
idth of Beam (bw): fective Width of the Flange = bf = nimum cover: minup #: ominal Stirrup Diameter, dbst: n. Distance Between Stirrup Face and ice of Adjacent Rebar: yer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 0	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10	in in in Nominal Reban Area (in ²) 1.27 1 0.79 in Nominal Reban Area (in ²) 1.27 1.27 1.27 1.27	Art. 7.7.1 Number of Nominal Diameter db(in) 1.27 Nominal Diameter db(in) 1.27	f Stirrup Le Max db (in)	egs: Steel Area Layer 5.08 Steel Area	Centroid of Layer (in) 2.64 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam
idth of Beam (bw): fective Width of the Flange = bf = inimum cover: imrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ice of Adjacent Rebar: iyer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Layer dars 2 0 0	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10	in in in Nominal Reban Area (in ²) 1.27 1 0.79 in Nominal Reban Area (in ²) 1.27 1.27 1.27 1.27 1.27 1.27 in ²	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in)	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
idth of Beam (bw): fective Width of the Flange = bf = ininum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebar (A) Centroid of Rebars, x _g	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 1 1 10 10 10 10 5 7.62 5 3.39	in in in in Nominal Rebat Area (in ²) <u>1.27</u> <u>1</u> 0.79 <u>in</u> Nominal Rebat Area (in ²) <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u>	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in)	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
idth of Beam (bw): fective Width of the Flange = bf = inimum cover: imup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebar (A)	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 1 1 10 10 10 10 5 7.62 5 3.39	in in in Nominal Reban Area (in ²) 1.27 1 0.79 in Nominal Reban Area (in ²) 1.27 1.27 1.27 1.27 1.27 1.27 in ²	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in)	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
fidth of Beam (bw): fective Width of the Flange = bf = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer #1: Rebar in Tension Number of bars 4 0 0 Layer #2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebar (A) Centroid of Rebars, x _e Effective depth = d = h - cg	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 1 1 10 10 10 10 5 7.62 5 3.39	in in in in Nominal Rebat Area (in ²) <u>1.27</u> <u>1</u> 0.79 <u>in</u> Nominal Rebat Area (in ²) <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u>	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in)	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
fidth of Beam (bw): fective Width of the Flange = bf = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer #1: Rebar in Tension Number of bars 4 0 0 Layer #2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebar (A) Centroid of Rebars, x _e Effective depth = d = h - cg	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 26.61	in in in Nominal Rebat Area (in ²) 1.27 1 0.79 in Nominal Rebat Area (in ²) 1.27 1.27 1.27 1.27 1.27 in ² in in	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in)	of Beam Width OK if splices are not used!!! Verification of Beam Width
idth of Beam (bw): fective Width of the Flange = bf = inimum cover: imrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 Total Area of Rebars, χ_g Effective depth = d = h - cg	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 26.61	in in in in Nominal Rebat Area (in ²) 1.27 1.27 in Nominal Rebat in in Nominal Rebat	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27 1.27	Max db (in) 1.27	Steel Area Layer 5.08 Steel Area Layer 2.54	Centroid of Layer (in) 2.64 Centroid of Layer (in)	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in) 9.46	of Beam Width OK if splices are not used!!! Verification of Beam Width OK
idth of Beam (bw): fective Width of the Flange = bf = inimum cover: imrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 Total Area of Rebars, χ_g Effective depth = d = h - cg	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 26.61	in in in Nominal Rebat Area (in ²) 1.27 1 0.79 in Nominal Rebat Area (in ²) 1.27 1.27 1.27 1.27 1.27 in ² in in	Art. 7.7.1 Number of Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer 2.54 Steel	Centroid of Layer (in) 2.64 Centroid of Layer (in) 4.91	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in) 9.46 Spacing	of Beam Width OK if splices are not used!!! Verification of Beam Width OK
fidth of Beam (bw): ffective Width of the Flange = bf = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebars, x _g Effective depth = d = h - cg ayer # 3: Compression Rebar	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 26.61	in in in in Nominal Rebat Area (in ²) 1.27 1.27 in Nominal Rebat in in Nominal Rebat	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	Steel Area Layer 5.08 Steel Area Layer 2.54	Centroid of Layer (in) 2.64 Centroid of Layer (in) 4.91 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in) 9.46 Spacing between	of Beam Width OK if splices are not used!!! Verification of Beam Width OK
fidth of Beam (bw): ffective Width of the Flange = bf = linimum cover: tirrup #: ominal Stirrup Diameter, dbst: In. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebar (A) Centroid of Rebars, & Effective depth = d = h - cg ayer # 3: Compression Rebar Number of bars	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 26.61	in in in in Nominal Rebat Area (in ²) 1.27 1.27 in Nominal Rebat in in Nominal Rebat	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	egs: Steel Area Layer 5.08 Steel Area Layer 2.54 Steel	Centroid of Layer (in) 2.64 Centroid of Layer (in) 4.91	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in) 9.46 Spacing between	of Beam Width OK if splices are not used!!! Verification of Beam Width OK
fidth of Beam (bw): ffective Width of the Flange = bf = inimum cover: irrup #: ominal Stirrup Diameter, dbst: in. Distance Between Stirrup Face and ace of Adjacent Rebar: ayer # 1: Rebar in Tension Number of bars 4 0 0 Layer # 2: Spacing with layer # Number of bars 2 0 0 Total Area of Rebars, x _g Effective depth = d = h - cg ayer # 3: Compression Rebar	16.0 90.0 1.50 4 0.50 1 Rebar Size: 10 9 8 1 1 1 1 1 1 1 Rebar Size: 10 10 10 10 10 10 10 10 10 2 6.61	in in in in Nominal Rebat Area (in ²) <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u> <u>1.27</u>	Nominal Diameter db(in) 1.27 1.128 1 Nominal Diameter db(in) 1.27 1.27	Max db (in) 1.27	Steel Area Layer 5.08 Steel Area Layer 2.54	Centroid of Layer (in) 2.64 Centroid of Layer (in) 4.91 Centroid of	Minimum Spacing between rebars (in) 1.27 Minimum Spacing between rebars (in) 1.27	between rebars (in) 2.06 Spacing between rebars (in) 9.46 Spacing between	of Beam Width OK if splices are not used!!! Verification of Beam Width OK

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part I / III)

BYDATE CHKD BY DATE	SUBJECT				_ SHEET NO JOB NO	OF
					_ 500 110	
FILE: E:\Paper ASEE2007\[Reinf.Concrete-E			Design			
Area of Rebar in Compression (Apc):		in ²				
= "Effective depth = d Area of Rebar in Tension Asp1=As-Asp	2.56 5.62	in				
Area of Nebal III Tension Asp 1-As-Asp-	5.02					
Part I: Use if a <= hs						
Whitney block=a=Asp1*fy / (0.85*f'c*bf)=	0.88	in		c = a/β1 =	1.10 i	n
Strain at compression steel $\varepsilon'_s = \varepsilon_{cu}/c^*(c-d') =$	-0.00398		εy = fy / Es =	0.00207 in/in		
Recalculation of c if $\epsilon_s' < \epsilon_y$. c =	1.76		A = 306000	B = -283200	D= -	446136
Strain at compression steel =ε _{cu} /c*(c-d') =	-0.00138					
Stress at compression steel = fcs =	0	psi				
Vhitney block adjusted: a =	1.40	in				
In1 = (As*fy-Aspc*fcs)*(d-a/2))/12000 =	987.1	k-ft				
M _{n2} = (Aspc*fcs)*(d-d'))/12000 =	0.0	k-ft				
$M_n = M_{n1} + M_{n2} =$	987.1	k-ft				
/erification than a <hs:< td=""><td>OK, a<=hs</td><td></td><td></td><td>hs =</td><td>8 i</td><td>n</td></hs:<>	OK, a<=hs			hs =	8 i	n
Part II: Use if a > hs						
Steel As1 = 0.85*(bf-bw)*hs*fc / fy =	0.00 ir	1 ²				
In1 = As1 * fy * (d-hs/2)/12000 =	0.0 k					
Asp2 = Asp1 - As1	0.00 ir	1 ²				
a = Asp2 * fy / (0.85*f'c*bw) =	0.00 ir	ı		c = a/β1 =	0.00 i	n
Strain at compression steel = ecu/c*(c-d') =	0.00000			B 0000000	-	
Recalculation of c if $\varepsilon_s' < \varepsilon_y$. c =	0.00		A = 306000	B = 2232800	D= -	446136
Strain at compression steel = $e_{ou}/c^*(c-d')$ =	0.0000					
Stress at compression steel = fcs = Vhitney block adjusted: a =	0 0.00	psi				
Mn2 = (As*fy-Asp2*fcs) * (d-a/2) / 12000 =	0.0 k	ip-ft				
Mn3 = Aspc*fcs*(d-d')/12000 =	0.0 k					
In = Mn1 + Mn2 + Mn3=	0.0 k	ip-ft				
Verification of Ductility and Calcula						
31 = Block of Whitney = a =	0.80 1.40 ir	,				
Neutral Axis, c =	1.76 ir					
Ultimate Strain at Concrete = ε _{cu} =	0.003		Art. 10.3.3			
Strain at steel = ε _t = ε _{cu} /c*(d-c) =	0.0425		OK!!! art. 10.3.	5		
bb=0.65+(7250*εt-0.25*fy)/(145-fy)<=0.9	0.90		fy in ksi	-		
M _n =	987.1	k-ft	.,			
From Data: M _u =		N-11		ΦuVIn Ξ	888	k_ft
i en Batal ing	550.0	k_ft	OK!!! Elexure	φ _b M _n =	888 Diff =	k-ft 61.5%
	550.0	k-ft	OK!!! Flexure	φ _b Μ _n =	888 Diff =	k-ft 61.5%
HEAR STRENGTH					Diff =	61.5%
	Vu <= ϕ_v * Vn	=	⊦Vsn) ACI 318-	Note: For seismic are	Diff =	61.5%
Iltimate Acting Shear = Vu =	Vu <= φ _v * Vn <mark>65</mark> k	=	⊦Vsn) ACI 318-		Diff =	61.5%
Iltimate Acting Shear = Vu = ϕ_v =	Vu <= φ _v * Vn <mark>65</mark> k	=	⊦Vsn) ACI318- Typeofe	Note: For seismic are	Diff =	61.5%
Iltimate Acting Shear = Vu = ϕ_v =	Vu <= ¢ _v * Vn <mark>65</mark> k 0.75	= ∳ _v * (Vcn + ip	⊦Vsn) ACI318- Typeofe	Note: For seismic are	Diff =	61.5%
Jltimate Acting Shear = Vu = $\varphi_v = \label{eq:phi}$ Concrete Capacity, Vc:	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p	= ¢ _v * (Vcn + ip si	+ Vsn) ACI 318- Type of ∉ art. 9.3.2.3	Note: For seismic are element: Beam	Diff = eas see Chapt	61.5% er 21
Jltimate Acting Shear = Vu = ϕ_v = Concrete Capacity, Vc: fc ^{0.6}	Vu <= _{∲v} * Vn <u>65</u> k 0.75 70.71 p 60.21 k	= ¢ _v * (Vcn + ip si	Vsn) ACI 318- Type of 6 art. 9.3.2.3 art 11.1.2	Note: For seismic are element: Beam For Slabs: frc ^{0.5} <= 11	Diff = eas see Chapt	61.5% er 21
Itimate Acting Shear = Vu = ϕ_v = Concrete Capacity, Vc: $fc^{0.5}$ $Vc = 2^*(f^*c)^{0.5} * bw^*d =$ $\phi_v^*Vcn =$	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k	= _{\$v} * (Vcn + ip si ip ip	Vsn) ACI 318 Type of a art. 9.3.2.3 art. 11.1.2 art. 11.3.1.1 continue Note: Fo	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar	61.5% er 21 shear steel change. nd shallow beam
Concrete Capacity, Vc: $fc^{0.5}$ Vc =2*(f'c) ^{0.5} * bw*d = ϕ_v *Vcn = Stirrup Contribution, Vs:	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup	= _{∲v} * (Vcn + ip si ip ip ip ss, Vu>fv*Vc	Vsn) ACI 318 Type of a art. 9.3.2.3 art. 11.1.2 art. 11.3.1.1 continue Note: Fo	Note: For seismic are element: Beam For Slabs: f ^{c0.5} <= 10 beams have no limit,	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar	61.5% er 21 shear steel change. nd shallow beam
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vu <= ∳ _V * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k	= _{∲v} * (Vcn + ip si ip ip s, Vu>fv*Vc	Vsn) ACI 318 Type of a art. 9.3.2.3 art. 11.1.2 art. 11.3.1.1 continue Note: Fo	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar	61.5% er 21 shear steel change. nd shallow beam
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirru 26.46 k	= _{∲v} * (Vcn + ip si ip ip s, Vu>fv*Vc	Vsn) ACI 318- Type of 6 art. 9.3.2.3 art. 11.1.2 art. 11.3.1.1 continue Note: Fo is r art. 11.5.4.3	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art	61.5% er 21 shear steel change. nd shallow beam 11.5.5.1)
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k Provide Stirrup 26.46 k 120.4 k	= _{∲v} * (Vcn + ip ip ip ip ip vs, Vu>fv*Vc ip	Vsn) ACI 318- Type of 6 art. 9.3.2.3 art. 11.1.2 art. 11.3.1.1 continue Note: Fo is r art. 11.5.4.3	Note: For seismic are element: Beam For Slabs: f'c ^{0.5} <= 10 beams have no limit, r Slabs, footings, Jois iot necessary minimu	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art	61.5% er 21 shear steel change. nd shallow beam 11.5.5.1)
Jitimate Acting Shear = Vu = $\varphi_v =$ concrete Capacity, Vc: $fc^{0.5}$ Wc =2*(fc) ^{0.5} * bw*d = φ_v *Vcn = Stirrup Contribution, Vs: Is necessary stirrups' Vs = Vu/ φ_v - Vc $4^{*t}c^{0.5}$ * bw*d = Max Vs <= 8^{*t}c^{0.5} * bw*d =	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k Provide Stirrup 26.46 k 120.4 k 240.84 k	= _{∲v} * (Vcn + ip si ip ip ss, Vu>fv*Vc ip ip	• Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc ^{0.5} *b*d = art. 11.5.6.9	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
Jitimate Acting Shear = Vu = $\varphi_v =$ concrete Capacity, Vc: $fc^{0.5}$ Vc =2*(fc) ^{0.5} * bw*d = φ_v *Vcn = tirrup Contribution, Vs: Is necessary stirrups' Vs = Vu/ φ_v - Vc 4*fc ^{0.5} * bw*d = Max Vs <= 8*fc ^{0.5} * bw*d = Stirrup #: Number of Stirrup Legs	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 120.4 k 240.84 k 4 240.84 k 2 4 2 (1)	= ,	• Vsn) ACI 318- Type of 6 art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc ^{0.5} *b*d =	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
Iltimate Acting Shear = Vu = φ_v = concrete Capacity, Vc: $fc^{0.5}$ + bw*d = φ_v *Vcn = stirrup Contribution, Vs: Is necessary stirrups' $Vs = Vu/\varphi_v - Vc$ $4*fc^{0.5} + bw*d =$ Max Vs <= 8*fc ^{0.5} + bw*d = Stirrup H Number of Stirrup Legs Nominal Stirrup Pia	Vu <= ∳, * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 120.4 k 240.84 k 240.84 k 240.84 k 2(0.50 ir	= $\phi_v * (Vcn + ip)$ si ip ip ip s, Vu>fv*Vc ip ip ip Closed stirrup	• Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc ^{0.5} *b*d = art. 11.5.6.9	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
Iltimate Acting Shear = Vu = φ_v = concrete Capacity, Vc: $fc^{0.5}$ * bw*d = φ_v *Vcn = tirrup Contribution, Vs: Is necessary stirrups' Vs = Vu/ φ_v - Vc $4*fc^{0.5}$ * bw*d = Stirrup # Number of Stirrup Legs Nominal Stirrup Dia Nominal Stirrup Area	Vu <= ∳ _v * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k Provide Stirrup 26.46 k 120.4 k 240.84 k 240.84 k 20.50 ir 0.2 ir	= $\phi_v * (Vcn + ip)$ si ip ip os, Vu>fv*Vc ip ip closed stirrup n ² per leg	• Vsn) ACI 318- Type of 6 art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc ^{0.5} *b*d = art. 11.5.6.9 ps are used, then this	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
Iltimate Acting Shear = Vu = φ_v = concrete Capacity, Vc: $fc^{0.5}$ + bw*d = φ_v *Vcn = tirrup Contribution, Vs: Is necessary stirrups' $Vs = Vu/\varphi_v - Vc$ $4*fc^{0.5}$ + bw*d = Max Vs <= 8*fc ^{0.5} + bw*d = Stirrup H, Number of Stirrup Legs Nominal Stirrup Dia	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k Provide Stirrup 26.46 k 120.4 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.84 k 240.85 k 25.85 k 26.95 k 26.95 k 27.95 k 27.9	= $\phi_v * (Vcn + ip)$ si ip ip os, Vu>fv*Vc ip ip ip Closed stirrup i 2 per leg	• Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc ^{0.5} *b*d = art. 11.5.6.9	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
Iltimate Acting Shear = Vu = φ_v = concrete Capacity, Vc: $fc^{0.5}$ + bw*d = φ_v *Vcn = stirrup Contribution, Vs: Is necessary stirrups' $Vs = Vu/\varphi_v - Vc$ $4*fc^{0.5} + bw*d =$ Max Vs <= 8*fc ^{0.5} + bw*d = Stirrup Eqs Nominal Stirrup Eqs Nominal Stirrup Area Maximum Spacing of Stirrup area = Av = Number of Legs * stirrup area =	Vu <= ∳, * Vn 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 120.4 k 240.84 k 240.84 k 240.84 k 240.84 k 20.50 ir 0.2 ir 13.305 ir 10 ji 0.4 ji	= , , * (Vcn + ip si ip ip ip Closed stirru 1 2 per leg	EVsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*Pc ^{0.5} *b*d = art. 11.5.6.9 ps are used, then this art. 11.5.4	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50%
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 240.84 k 240.84 k 240.84 k 240.84 k 240.85 ir 0.2 ir 13.305 ir 0.4 ir 0.4 ir 0.4 ir 0.1410 ir	= ϕ_v * (Vcn + ip ip ip ip ip Closed stirrup 1 ² per leg	EVsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*Pc ^{0.5} *b*d = art. 11.5.6.9 ps are used, then this art. 11.5.4	Note: For seismic are element: Beam For Slabs: fc ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois tot necessary minimu =>Maximum Spacing Continue	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. nd shallow beam 11.5.5.1) all be reduced 50%
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 120.4 k 240.84 k 240.84 k 240.84 k 240.85 i 13.305 i 0.050 i 0.2 i 0.2 i 0.30 i 0.1410 i 6.3.86 k	= ϕ_v * (Vcn + ip ip ip ip ip closed stirru 1 closed stirru 1 p p per leg	 Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc^{0.5*}b*d = art. 11.5.6.9 ps are used, then this art. 11.5.4 OK 	Note: For seismic are element: Beam For Slabs: f'c ^{0.5} <= 10 beams have no limit, r Slabs, footings, Jois iot necessary minimul =>Maximum Spacing Continue is an even number. If	Diff = eas see Chapt 00 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha	61.5% er 21 shear steel change. nd shallow beam 11.5.5.1) all be reduced 50%
$\label{eq:concrete} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k 70000 Stirrup 26.46 k 240.84 k 240.84 k 240.84 k 240.84 k 240.85 ir 0.50 ir 0.25 ir 0.25 ir 0.25 ir 0.41 ii 0 ir 0.41 ii 0 ir 6.8.86 k 47.9	= o _v * (Vcn + ip si ip ip ip ip closed stirrup 1 2 per leg 1 1 2 2 1 1 2 2 1	 Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc^{0.5}*b*d = art. 11.5.6.9 ps are used, then this art. 11.5.4 OK 	Note: For seismic are element: Beam For Slabs: ft ^{0.5} <= 11 beams have no limit, r Slabs, footings, Jois iot necessary minimu =>Maximum Spacing Continue is an even number. f	Diff = eas see Chapt D0 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha For slabs use "	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50% 0°)
Iltimate Acting Shear = Vu = φ_v = concrete Capacity, Vc: $fc^{0.5}$ Vc =2*(fc) ^{0.5} * bw*d = φ_v *Vcn = tirrup Contribution, Vs: Is necessary stirrups' Vs = Vu/ φ_v - Vc $4*fc^{0.5} * bw*d =$ Stirrup # Number of Stirrup Legs Nominal Stirrup Legs Nominal Stirrup Area Maximum Spacing art. 11.5.4.1 = smax = Spacing of Stirrup z = s = Av = Number of Legs * stirrup area = Min. Av =max(0.75*fc^{0.5}, 50)*w*fxys = Provided Vsn = Av * fys * d / s =	$Vu \le \phi_v * Vn$ 65 k 0.75 70.71 p 60.21 k 45.16 k 7 Provide Stirrup 26.46 k 120.4 k 240.84 k 4 240.84 k 4 240.84 k 4 240.84 k 120.4 ir 0.50 ir 13.305 ir 0.2 ir 13.305 ir 0.2 if 10 ir 0.4 ir	= o _v * (Vcn + ip si ip ip ip ip closed stirrup 1 2 per leg 1 1 2 2 1 1 2 2 1	 Vsn) ACI 318- Type of e art. 9.3.2.3 art 11.1.2 art.11.3.1.1 continue Note: Fo is r art. 11.5.4.3 If Vs>=4*fc^{0.5}*b*d = art. 11.5.6.9 ps are used, then this art. 11.5.4 OK 	Note: For seismic are element: Beam For Slabs: f'c ^{0.5} <= 10 beams have no limit, r Slabs, footings, Jois iot necessary minimul =>Maximum Spacing Continue is an even number. If	Diff = eas see Chapt D0 psi the minimum t as art 8.11 ar m stirrups. (art of Stirrups sha For slabs use "	61.5% er 21 shear steel change. hd shallow beam 11.5.5.1) all be reduced 50% 0°)

Page 2 of 2

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part II / III)

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part III / III)

Conclusions

These spreadsheets with the help of scaled graphic commands are very useful educational tools; they permit the student trials with different materials, geometry and other variables. The graphical spreadsheets avoid impractical solutions, mainly because the designer can visualize the possible design. As the spreadsheet is easy to change, the students can create their own spreadsheet based on the one given by the instructor.

Finally, the students may perform their own research about the relative importance of the parameters involved in the design. These tools are practically virtual laboratories.

Bibliography

- 1. Microsoft Office Excel 2003, part of Microsoft Office Professional Edition 2003. Microsoft Corporation.
- 2. Bowles, Joseph E., "Foundation Analysis and Design", 4th Ed., McGraw-Hill, 1998.
- 3. American Concrete Institute, ACI 318-05, Building Code Requirements for Structural Concrete and Commentaries.

Acknowledgement

The authors want recognize the support of Scholars Academy of the University of Houston Downtown for their support.