AC 2007-397: USE OF SPREADSHEETS WITH SCALED GRAPHICS TO TEACH STRUCTURAL ENGINEERING

Jorge Tito-Izquierdo, University of Houston-Downtown

Alberto Gomez-Rivas, University of Houston-Downtown

Alberto Gomez-Rivas is Professor of Structural Analysis and Chair of Engineering Technology. Dr. Gomez-Rivas received Ph.D. degrees from the University of Texas, Austin, Texas, in Civil Engineering and from Rice University, Houston, Texas, in Economics. He received the Ingeniero Civil degree, with Honors, from the Universidad Javeriana in Bogotá, Colombia. He also served as Chief of Colombia's Department of Transportation Highway Bridge Division

Use of Spreadsheets with Scaled Graphics to Teach Structural Engineering

Abstract

Engineering is a profession where graphical presentation is very important in understanding and verifying results. Geometric proportions, spacing, and other features can be clearly perceived if a scaled graph is displayed together with the calculations, and thus, the engineering student can make better decisions about the final design. Overall, these spreadsheets with graphical capabilities help the learning process.

The use of Excel spreadsheets in engineering education and professional practice is frequent because this tool is versatile and powerful. However, a deficiency of spreadsheets is the lack of graphic representation. This may be solved by using the programming tools of Visual Basic for Applications ${ }^{\circledR}$ (VBA) that is included in the package of Microsoft Office ${ }^{\circledR}$. This paper presents a method to include scaled graphs into a spreadsheet, which completes the engineering calculations and helps in the final decision to accept or modify a design. These graphs are also useful in the drafting process, because the graphs can be easily transferred into any computer assisted drafting (CAD) program. Several actual class examples are included.

Introduction

Spreadsheets are frequently used as helpful tools during the structural design process, especially when the final outcome involves assumptions that require verification including design of beams, columns, channel sections, retaining walls, and footings, between others. Engineering is a profession where graphical presentation is very important in understanding and verifying results. Also, geometric proportions, spacing, and other features can be clearly perceived if a scaled graph is displayed on the spreadsheet, and thus, the engineer can make better decisions about the final design.

The use of Microsoft Excel ${ }^{\circledR}$ spreadsheets in engineering education and professional practice is frequent because this tool is versatile and powerful. However, a deficiency of spreadsheets is the lack of geometric presentation graphics and therefore, understanding of the results. This may be solved by using the programming tools of Visual Basic for Applications (VBA) that is included with the standard package of Microsoft Office $\circledR^{\circledR}{ }^{1}$.

This paper outlines one method to include scaled graphs into a spreadsheet; this graph presentation completes the engineering calculations and helps in the final decision to accept or modify a design. These graphs are also useful in the drafting process, because the graphs can be copy-pasted into any computer assisted drafting (CAD) program. Several actual class examples are included.

Prior to running the VBA program, the drawing data is listed and organized on the spreadsheet. VBA can then be accessed using a command button. The program follows a routine, consisting of reading the geometric data and desired scale, the location where the drawing will be
displayed, application of a suitable scale factor to the geometric data, drawing the geometry, and applying any special effects such as color or lines.

Spreadsheets with graphic capabilities improve the learning curve of the students, principally for topics involving design. Furthermore, these spreadsheets have a component of trial and error, since modification of input parameters and obtaining a final modified result is simple, quick, and straightforward. Thus, the use of Excel spreadsheets with subsequent VBA processing has been found by the authors to be an effective and useful tool in facilitating student learning in structural design courses.

Spreadsheet Organization

The spreadsheet may be organized according to the necessity of the problem; generally it is organized as input, partial calculations, results and graphics.

The students are encouraged to prepare a template in order to organize the presentation just once. This template may be used for different purposes. The template provides the typical information required for professional calculation sheets. A good printout, with the corresponding references, sketches and commentaries is a requisite for future use of the spreadsheet.

Sketches, where the variables are described, still may complement the input process as shown in Figure 1. This sketch is done using the drawing tools of excel, without scale. The sketch may be improved using the VBA tools "text box" or "label", which can be linked to the data input in the corresponding cell. Figure 2 describes a method to include the input data into the sketch.

Figure 1. Sketch used to describe the variables.

Figure 2. Sequence to Include the Input Data into the Sketch

The input data is located in one block, marked with clear color because the print out in black and white is clearer. The cells used for input shall be un-locked permitting the use of a protection for all the spreadsheet, except the input cells.

Intermediate calculations are performed using Excel functions. VBA becomes more effective when the calculations involve iterations or a significant amount of conditionals.

The problem conclusions may be presented using the capabilities of Excel, presenting programmed comments if the assumptions satisfy the design criteria.

Finally, and this is the main objective of this paper, the spreadsheet can present a scaled drawing of the problem. If the drawing has too much information, it is better to present a new sheet exclusive for the drawing. In the new spreadsheet there is no input, all the information respect to the problem is automatically imported from the calculation sheet. Only the drafting related information is manipulated on this sheet, such as scale and location of the drawing.

Drawing using VBA

Scale definition. Create a scale options for the user. The Excel's "Data Validation" tool may be used to select the required scale for the drawing. This tool is found in Data - Validation - Setting - List, as shown in Figure 3.

Data	Window Help	
A \downarrow	Sort...	
	Eilter	*
	Form...	
	Sublotals...	
	Validation...	
	Iable...	
	Text to Columns...	
	Consolidate...	
	Group and Outine	,
即	PivotTable and PivotChart Report...	
	Import External Data	*
	List	,
	XML	-
!	Refresh Data	

Data Validation					
Settings Input Message Error Alert					
Validation criteria					
Allow:					
List \checkmark Ignore blank					
Data: \quad In-cell dropdown					
between \checkmark					
\square Apgly these changes to all other cells with the same settings					
Clear All			OK	Cancel	

List	
$1 / 8^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	8.53
$1 / 4^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	17.06
$3 / 8^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	25.59
$1 / 2^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	34.12
$5 / 8^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	42.65
$3 / 4^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	51.18
$7 / 8^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	59.71
$1^{\prime \prime}=1^{\prime} 0^{\prime \prime}$	68.24
Dixels	1

Click on tab and select the scale wanted

Figure 3. Scale selection

When the scale is selected, the program employs the "vlookup" function and opts for a factor that is used to scale the coordinates, as indicated in Figure 3. The user adjusts the modification factors for horizontal and vertical dimensions accordingly to the printer available. The zoom factor depends on the percentage of the normal size selected in the page setup for the spreadsheet and it can be automatically found using the VBA expression "ActiveSheet.PageSetup.Zoom / 100 ". The scale factor, the modification factors and the zoom factor are used to scale the point coordinates useful for drawing.

Delete Old Drawings. This control button is necessary to clear the spreadsheet of old lines, circles, or any other drawing. The VBA code is shown in Figure 4. This Delete button shall be activated (clicked) before the drawing of the final sketch.
Private Sub cmdEraser_Click()
Set myShapes $=$ ActiveSheet.Shapes
'Delete Polylines
For Each shp In myShapes
If Left(shp.Name, 8) = "Freeform" Then
shp.Delete
End If
Next
'Delete Lines
For Each shp1 In myShapes
If Left(shp1.Name, 4) = "Line" Then
shp1.Delete
End If
Next
'Delete Rectangles
For Each shp1 In myShapes
If Left(shp1.Name, 9) = "Rectangle" Then
shp1.Delete
End If
Next
'Delete Shapes
'Delete Shapes
For Each shp1 In myShapes
For Each shp1 In myShapes
If Left(shp1.Name, 9) = "AutoShape" Then
If Left(shp1.Name, 9) = "AutoShape" Then
shp1.Delete
shp1.Delete
End If
End If
Next
Next
'Delete Text Box
'Delete Text Box
For Each shp1 In myShapes
For Each shp1 In myShapes
If Left(shp1.Name, 8) = "Text Box" Then
If Left(shp1.Name, 8) = "Text Box" Then
shp1.Delete
shp1.Delete
End If
End If
Next
Next
'Delete oval
'Delete oval
For Each shp1 In myShapes
For Each shp1 In myShapes
If Left(shp1.Name, 4) = "Oval" Then
If Left(shp1.Name, 4) = "Oval" Then
shp1.Delete
shp1.Delete
End If
End If
Next
Next
End Sub
End Sub

Figure 4. VBA Code to Delete Old Drawings in the Spreadsheet

Drawing Location. The drawing can be located in the place where better adjust for the user. VBA defines the origin of coordinates in the upper left corner of the screen, the x-axis is positive toward right and the y-axis is positive downward. It is possible to translate the origin to other position using the columns and rows of the spreadsheet. The width of each column and the height of each row are defined in "points", each point is $1 / 72$ inch, and they may be found using VBA codes. The code given in Figure 5 helps to move the origin of coordinates to the desired position.

```
                                myColum1
    LLocation of The Drawing: 
for the drawing
'Locate the position of (0,0)
'PositionX and PositionY are the new coordinates in points of the origin for the drawing
PositionX = 0
PositionY = 0
myColumn = ActiveSheet.Range("myColumn1") 'Read the Location desired for the Drawing
myRow = ActiveSheet.Range("myRow1") 'Read the Location desired for the Drawing
'Loop to find the value in points of origin to be used for the drawing
For I = 1 To myColumn
    PositionX = PositionX + ActiveSheet.Columns(I).Width
Next I
For I = 1 To myRow
    PositionY = PositionY + ActiveSheet.Rows(I).Height
Next I
```

Column and Row desired for the origin of coordinates

Figure 5. Excel Input Cells and VBA Code to Find the Origin of Coordinates for the Drawing

Reading Data. Using the standard commands of VBA, the input data is read from the spreadsheet and stored in previously dimensioned VBA variables. It is preferable to define with explicit names the cells to be used as input, as this permits future changes in the spreadsheet without affecting the original programming. For example, the cell V33, which defines the scale factor, may be called "Scale1" in the spreadsheet using the function "insert-name-define", as shown in Figure 3. Note that the name of the cells is case-sensitive.

Table 1. Data Needed to Draw Objects in VBA

Object	Coordinates of	Dimensions	Code
Line	Start and End	--	Shapes.AddLine Xstart,Ystart,Xend,Yend
Rectangle	Lower left corner. 'Y' is positive downward	Width and Height	Shapes.AddShape msoShapeRectangle, X, Y, Width, Height
Oval or circle	Center	Width and Height	Shapes.AddShape msoShapeOval, X, Y, Width, Height
Polyline	Vertices of the polygon. It may be opened or closed. The coordinates shall be stored in an array		Dim CoordPoints(1 To M, 1 To N) As Single CoordPoints (1, 1) = a CoordPoints (1, 2) = b $\ldots .$. CoordPoints (2, 1) = c CoordPoints (2, 2) = d

Drawing. The dimensions corrected by the scale and modification factors, used for the scaled drawing, shall be assigned to different variables in order to maintain the original dimensions for other purposes. The drawing may be performed using different geometric options. It may be used different objects, like circles, rectangles, polylines, lines, text boxes, etc. It is important to define the coordinates of the shape respect to the origin of the drawing previously defined, remembering that VBA always use the positive x -axis toward the right and the y -axis downward of the screen. The VBA codes have options to change the line width, color, continuity, and other attributes of the object. VBA has specific codes to draw each one of the objects. Table 1 shows the coordinates needed to draw some objects. VBA has a help function that is a good start for the code writing.

Examples

Footing Design. In this example, the dimension of a footing is input to the excel spreadsheet to verify the soil capacity using the classical methods of foundation engineering ${ }^{2}$. After the verification of the soil pressures, the foundation is drawn using the VBA code in another spreadsheet. This combination of analysis and drafting allows the student to visualize the problem and the solution found, appreciating the effect of the different parameters, like a virtual laboratory. Figure 6 shows the spreadsheet used to verify the foundation. This spreadsheet computes the geometric properties of the footing, combine the loads, translate the loads from the top of the pedestal to the bottom of the footing, computes the soil pressure in the four corners of the footing, and compare the allowable soil bearing pressure with the actual soil stress.

Figure 7 shows the scaled drawing of the different views of the footing, which is done using VBA; this drawing can be exported to other Computed Assisted Drafting (CAD) programs. Figure 8 shows the VBA programming code to make the drawing. The programming code is divided in data reading, location of the origin, and drawing, as explained before.

Reinforced Concrete Design - Beams. This spreadsheet permits the user verify a given cross section of a rectangular or T-beam, including the longitudinal steel and stirrups. The spreadsheet is based on the ACI-318-05 ${ }^{3}$. The user can input the geometry with the help of sketches and the steel dimensions for each layer of reinforcement. Excel functions are used to verify the beam capacity and a different sheet is used to present a scaled cross section of the beam. Figure 9 shows the spreadsheet calculations and the scaled drawing.

Using this spreadsheet, the student can appreciate the geometry of the beam, the location and size of the rebar and the stirrup with the specified cover. All this information is important for the beam design and it can be copied to the final drawings. This spreadsheet is also used to study the effect of the change of the design parameters on the final design, permitting the global understanding of the reinforced concrete beam design.

Page 1 of 3

Figure 6. Spreadsheet to Verify the Soil Pressure under a Proposed Footing (Part I / III)

Figure 6. Spreadsheet to Verify the Soil Pressure under a Proposed Footing (Part II / III)
FILE: FILE: E:IFaper ASEE2007 VFooting-MultipleColumn.ds1Calculation
Program Name:
E: Paper ASE E2007 VFoofing-MultipleColumn xlsidrawing LOADS AT BOTTOM AND CENTER OF FOUNDATION

DEAD		LIVE	WIND S-N WIND W-E			
AXIAL LOAD	-703	0	0	0		
Vx	-70	0	0	0		
Vy	-100	0	0	0		
Mx	213	0	0	0		
My	-1500	0	0	0		

TRESSE S DUE LOAD CASES						
	DEAD	LIVE	WIND	WIND		
	LOAD	LOAD	S-N	W-E		
	(ksf)	(ksf)	(ksf)	(ksf)	X	Y
Point 1	0.581	0.000	0.000	0.000	10	7.5
Point 2	3.581	0.000	0.000	0.000	-10	7.5
Point 3	4.128	0.000	0.000	0.000	-10	-7.5
Point 4	1.128	0.000	0.000	0.000	10	-7.5

COMBINATIONS
COMBO DL LL WL $\mathrm{W}_{\mathrm{N}-\mathrm{s}} \mathrm{WL}_{\mathrm{E} \cdot \mathrm{W}} \quad$ Max.qa Minq

1	1.0	1.0	0.0	0.0	4.5	0.0
2	1.0	0.5	1.0	0.0	6	0.0
3	1.0	0.5	-1.0	0.0	6	0.0
4	1.0	0.5	0.0	1.0	6	0.0
5	1.0	0.5	0.0	-1.0	6	0.0
6	0.6	0.0	1.0	0.0	6	0.0
7	0.6	0.0	-1.0	0.0	6	0.0
8	0.6	0.0	0.0	1.0	6	0.0
9	0.6	0.0	0.0	-1.0	6	0.0

COMBO	$\begin{gathered} \text { q1 } \\ (\mathrm{ksf}) \end{gathered}$	$\begin{gathered} \text { q2 } \\ \text { (ksf) } \end{gathered}$	$\underset{\text { (ksf) }}{\mathrm{q}^{2}}$	$\begin{gathered} q^{4} \\ (\mathrm{ksf}) \end{gathered}$	Max q (ksf)	Minq (ksf)	CRITERIA	
1	0.58	3.56	4.13	1.13	4.13	0.58	OK	0
2	0.58	3.56	4.13	1.13	4.13	0.58	OK	0
3	0.58	3.58	4.13	1.13	4.13	0.58	OK	0
4	0.58	3.58	4.13	1.13	4.13	0.58	OK	0
5	0.58	3.58	4.13	1.13	4.13	0.58	OK	0
6	0.34	2.14	2.48	0.88	2.48	0.34	OK	0
7	0.34	2.14	2.48	0.88	2.48	0.34	OK	0
8	0.34	2.14	2.48	0.68	2.48	0.34	OK	0
9	0.34	2.14	2.48	0.88	2.48	0.34	OK	0

HOUSTON, TX
SHEETN O O JOBN ${ }^{\circ}$

Figure 6. Spreadsheet to Verify the Soil Pressure under a Proposed Footing (Part III / III)

UNIVERSITY OF HOUSTON - DOWNTOWN

DESIGN BY:	DATE: $1 / 8 / 2007$	SUBJECT:
CHKD. BY:	DATE:	
FILE FILE:	FILE: E:Paper ASEE2007/Footing-MultipleColumn.x\|s]Drawing	
Program Nam		

HOUSTON, TX
SHEET N° OF JOB N°

Program Name:

Figure 7. Scaled Drawing of the Proposed Footing Designed and Data Necessary

Private Sub cmdDrawFooting_Click()	'Variables for drawing Base $=$ Base $1 *$ ScaleX
Dim Ncolumns, I As Integer	Length $=$ Length $1 *$ ScaleY
Dim Scale1, myColumn, myRow, myZoom As Double	Thickness = Thickness1 * ScaleY
Dim PositionX, PositionY, ModifX, ModifY As Double	DistViews $=$ Range("DistViews") * ScaleY
Dim ScaleX, ScaleY, Fact, ColEarthDist As Double	
Dim Base, Length, Thickness, DistViews As Double	'DRAWING
Dim Base1, Length1, Thickness1 As Double	'DRAW RECTANGLE: Plan View
Dim Longi As String	$\mathrm{a}=$ PositionX
Dim Radius, CenterEast, CenterNorth As Double	$\mathrm{b}=$ Position Y
Dim EarthOn, FoundDepth As Double	$\mathrm{c}=$ Base
Dim Ncols, fila As Integer	$\mathrm{d}=$ Length
Dim TypeCol As String	With_ ActiveSheet.Shapes.AddShape(msoShapeRectangle,_
Dim LengthX, LengthY, HeightCol As Double	a, b, c, d) .Line. DashStyle $=$ msoLineSolid
'GENERAL INPUT DATA	.Fill.ForeColor.RGB $=\operatorname{RGB}(255,255,255)$
'Modify scale according to the printer used	End With
ModifX = ActiveSheet.Range("ModifX")	
ModifY = ActiveSheet.Range("ModifY")	'DRAW RECTANGLE: South View
Fact = ModifX / ModifY	$\mathrm{a}=$ PositionX
Base1 = ActiveSheet.Range("Base1")	$\mathrm{b}=$ Position $\mathrm{Y}+$ Length + DistViews
Length1 = ActiveSheet.Range("Heigth1")	$\mathrm{c}=$ Base
Thickness1 = ActiveSheet.Range("Thickness1")	$\mathrm{d}=$ Thickness
'The Scale of the lines is defined. Correct for a PageSetup 'different of 100%	With _ ActiveSheet.Shapes.AddShape(_ msoShapeRectangle, a, b, c, d)
ActiveSheet.Range("MyZoom") =	.Line.DashStyle $=$ msoLineSolid
ActiveSheet.PageSetup.Zoom / 100	.Fill.ForeColor.RGB $=$ RGB $(255,255,255)$
myZoom = ActiveSheet.PageSetup.Zoom / 100	End With
Scale1 = ActiveSheet.Range("Scale1") / myZoom	
ScaleX = Scale1 * ModifX	'DRAW RECTANGLE: East View
ScaleY = Scale1 * ModifY	$\mathrm{a}=$ PositionX + Base + DistViews
'Read Earth Depth on Footing	$\mathrm{b}=$ Position $\mathrm{Y}+$ Length - Thickness
EarthOn = Range("EarthOn") * ScaleY	$\mathrm{c}=$ Length $*$ Fact
FoundDepth = Range("EarthOn") + Thickness1	$\mathrm{d}=$ Thickness
ColEarthDist = Range("ColEarthDist")	With ActiveSheet.Shapes.AddShape(_ msoShapeRectangle, a, b, c, d)
'LOCATE THE POSITION (0,0)	.Line.DashStyle $=$ msoLineSolid
'PositionX and PositionY are the new coordinates in 'points of the origin for the drawing	.Fill.ForeColor. $\mathrm{RGB}=\operatorname{RGB}(255,255,255)$ End With
Position $\mathrm{X}=0$	
PositionY $=0$	'DRAW AXIS X or EAST-WEST
myColumn = ActiveSheet.Range("myColumn1") 'Read the	$\mathrm{a}=$ PositionX + Base / 2
Location desired for the Drawing	$\mathrm{b}=$ Position $\mathrm{Y}+$ Length $/ 2$
myRow $=$ ActiveSheet.Range("myRow1") \quad 'Read 'the	$\mathrm{c}=$ PositionX + Base + DistViews * 0.5
Location desired for the Drawing	$\mathrm{d}=\mathrm{b}$
'Loop to find the value in points of origin to be used 'for the drawing	With ActiveSheet.Shapes.AddLine(a, b, c, d).Line DashStyle $=$ msoLineDashDotDot
For $\mathrm{I}=1$ To myColumn	.ForeColor.RGB $=$ RGB $(125,0,0)$
PositionX = PositionX + ActiveSheet.Columns(I).Width	.EndArrowheadLength $=$ msoArrowheadLong
Next I	.EndArrowheadStyle = msoArrowheadTriangle
For $\mathrm{I}=1$ To myRow	.EndArrowheadWidth = msoArrowheadWide
Position $\mathrm{Y}=$ Position $\mathrm{Y}+$ ActiveSheet.Rows(I).Height	End With
Next I	

```
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationHorizontal, c, d, 15, 15)
    .Line.Transparency = 1
    TextFrame.Characters.Text = "E"
End With
'DRAW AXIS Y OR SOUTH-NORTH
a = PositionX + Base / 2
\(\mathrm{b}=\) PositionY + Length \(/ 2\)
\(\mathrm{c}=\mathrm{a}\)
\(\mathrm{d}=\) Position \(\mathrm{Y}+\) Length / 2 - Length
With ActiveSheet.Shapes.AddLine(a, b, c, d).Line
    DashStyle = msoLineDashDotDot
    .ForeColor. \(\mathrm{RGB}=\mathrm{RGB}(125,0,0)\)
    .EndArrowheadLength \(=\) msoArrowheadLong
    .EndArrowheadStyle = msoArrowheadTriangle
    .EndArrowheadWidth = msoArrowheadWide
End With
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationHorizontal, c * 1.03, d, 15, 15)
    Line.Transparency = 1
    TextFrame.Characters.Text = "N"
End With
```


'WRITE DIMENSIONS

```
'Write Base in the Plan-View
\(\mathrm{a}=\) PositionX + Base / 2 - 20
\(\mathrm{b}=\) Position \(\mathrm{Y}+\) Length +10
Longi \(=\operatorname{Int}(\) Base1) \& "'-" \& Round((Base1 \(-\operatorname{Int}(\) Base1)) *
12, 1) \& """"
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationHorizontal, a, b, 40, 15)
.Line.Transparency = 1
.TextFrame.Characters.Text = Longi
'.Fill.ForeColor.RGB \(=\) RGB \((250,0,250)\)
End With
a = PositionX + Base / \(2-20\)
\(\mathrm{b}=\) PositionY + Length +25
Longi = "PLAN VIEW"
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationHorizontal, a, b, 80, 15)
.Line.Transparency = 1
.TextFrame.Characters.Text = Longi
End With
'Write Base in the South-View
\(\mathrm{a}=\) PositionX + Base / 2-20
\(\mathrm{b}=\) PositionY + Length + Thickness + DistViews +10
Longi \(=\operatorname{Int}(\) Base1) \& "'-" \& Round((Base1 \(-\operatorname{Int}(\) Base1)) *
12, 1) \& """ "
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationHorizontal, a, b, 40, 15)
Line.Transparency \(=1\)
.TextFrame.Characters.Text = Longi
```

```
End With
a = PositionX + Base / 2-20
b \(=\) PositionY + Length + Thickness + DistViews +25
Longi = "SOUTH VIEW"
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationHorizontal, a, b, 80, 15)
    Line.Transparency \(=1\)
    TextFrame.Characters.Text = Longi
End With
'Write Length in the Plan-View
\(\mathrm{a}=\) PositionX -40
\(\mathrm{b}=\) Position \(\mathrm{Y}+\) Length \(/ 2\)
Longi \(=\operatorname{Int}(\) Length 1\() ~ \& ~ " '-" ~ \& ~\)
Round((Length \(1-\operatorname{Int}(\) Length 1\()) * 12,1) \& " " " "\)
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationUpward, a, b, 15, 40)
    Line.Transparency \(=1\)
    .TextFrame.Characters.Text = Longi
End With
'Write Length in the East-View
\(\mathrm{a}=\) PositionX + Base + DistViews + Base / 2-45
\(\mathrm{b}=\) Position \(\mathrm{Y}+\) Length +15
Longi \(=\operatorname{Int}(\) Length1) \& "'-" \& Round((Length1 -
\(\operatorname{Int(Length1))~*~12,~1)~\& ~"""'~"~}\)
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationHorizontal, a, b, 45, 15)
    .Line.Transparency \(=1\)
    .TextFrame.Characters.Text = Longi
End With
\(\mathrm{a}=\) PositionX + Base + DistViews + Base \(/ 2-60\)
\(\mathrm{b}=\) Position \(\mathrm{Y}+\) Length +35
Longi \(=\) "EAST VIEW"
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationHorizontal, a, b, 60, 15)
    .Line.Transparency \(=1\)
    .TextFrame.Characters.Text = Longi
End With
'Write Thickness in the East-View
\(\mathrm{a}=\) PositionX + Base + DistViews - 20
\(\mathrm{b}=\) Position \(\mathrm{Y}+\) Length - Thickness \(/ 2\) - 12
Longi \(=\operatorname{Int}(\) Thickness1) \& "'-" \& Round((Thickness1 -
Int(Thickness1)) * 12, 1) \& _ """ "
With ActiveSheet.Shapes.AddTextbox(
msoTextOrientationUpward, a, b, 15, 25)
    .Line.Transparency = 1
    .TextFrame.Characters.Text = Longi
End With
'Write Thickness in the South-View
a = PositionX - 25
b \(=\) Position \(Y+\) Length + DistViews + Thickness \(/ 2\) - 10
Longi \(=\operatorname{Int}(\) Thickness1) \& "'-" \& Round((Thickness1 -
\(\operatorname{Int}(T h i c k n e s s 1)) * 12,1) \& " "\)
```

```
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationUpward, a, b, 15, 25)
    .Line.Transparency = 1
    .TextFrame.Characters.Text = Longi
End With
'Write Earth-Depth in the South-View
a = PositionX + Base + 40
b}=\mathrm{ PositionY + Length + DistViews + Thickness -
FoundDepth * ScaleY / 2-10
Longi = Int(FoundDepth) & "'-" & Round((FoundDepth -
Int(FoundDepth)) * 12, 1) & """ "
With ActiveSheet.Shapes.AddTextbox(_
msoTextOrientationUpward, a, b, 15, 25)
    .Line.Transparency = 1
    .TextFrame.Characters.Text = Longi
End With
'DRAW THE PLAN VIEW OF COLUMNS
Ncols = ActiveSheet.Range("Ncols")
fila = Range("Ncols").Row + 1
For I = 1 To Ncols
TypeCol = ActiveSheet.Cells(fila + I, 2)
LengthX = ActiveSheet.Cells(fila + I, 4) * ScaleX
LengthY = ActiveSheet.Cells(fila + I, 5) * ScaleY
CenterEast = ActiveSheet.Cells(fila + I, 8) * ScaleX
CenterNorth = ActiveSheet.Cells(fila + I, 9) * ScaleY
If TypeCol = "Oval" Then
    a = PositionX + Base / 2 + CenterEast - LengthX / 2
    b}=\mathrm{ PositionY + Length / 2- CenterNorth - LengthY/2
    With ActiveSheet.Shapes.AddShape(_
msoShapeOval, a, b, LengthX, LengthY)
        .Line.DashStyle = msoLineSolid
        .Fill.ForeColor.RGB = RGB(250, 250, 250)
    End With
ElseIf TypeCol = "Rectangular" Then
    a = PositionX + Base / 2 + CenterEast - LengthX / 2
    b}=\mathrm{ PositionY + Length / 2- CenterNorth - LengthY / 2
With ActiveSheet.Shapes.AddShape(_
msoShapeRectangle, a, b, LengthX, LengthY)
            .Line.DashStyle = msoLineSolid
            .Fill.ForeColor.RGB = RGB(250, 250, 250)
    End With
Else
MsgBox ("Review Data respect to Column Type, the
program accept Oval or Rectangular")
End If
Next I
```

```
'DRAW THE EARTH LINE
\(\mathrm{a}=\) PositionX \(* 0.9\)
b \(=\) PositionY + Length + DistViews - EarthOn
\(\mathrm{c}=(\) Position \(\mathrm{X}+\) Base \() * 1.1\)
d \(=\) PositionY + Length + DistViews - EarthOn
With ActiveSheet.Shapes.AddLine(a, b, c, d).Line
    .DashStyle \(=\) msoLineSolid
    .ForeColor. \(\mathrm{RGB}=\operatorname{RGB}(50,0,128)\)
End With
\(\mathrm{a}=(\) PositionX + Base + DistViews) \(* 0.9\)
\(\mathrm{b}=\) PositionY + Length - Thickness - EarthOn
\(\mathrm{c}=(\) PositionX + Base + DistViews + Length \() * 1.1\)
d \(=\) PositionY + Length - Thickness - EarthOn
With ActiveSheet.Shapes.AddLine(a, b, c, d).Line
    .DashStyle \(=\) msoLineSolid
    .ForeColor. \(\mathrm{RGB}=\mathrm{RGB}(50,0,128)\)
End With
'DRAW THE ELEVATION VIEW OF COLUMNS
For I = 1 To Ncols
    LengthX = ActiveSheet.Cells(fila + I, 4) * ScaleX
    Length \(\mathrm{Y}=\) ActiveSheet.Cells(fila \(+\mathrm{I}, 5\) ) \(*\) Scale Y
    HeightCol = ActiveSheet.Cells(fila + I, 6) * ScaleY
    CenterEast \(=\) ActiveSheet.Cells(fila + I, 8) \(*\) ScaleX
    CenterNorth \(=\) ActiveSheet.Cells(fila + I, 9) *ScaleY
    \(\mathrm{a}=\) PositionX + Base \(/ 2+\) CenterEast - LengthX \(/ 2\)
    b \(=\) PositionY + Length + DistViews - HeightCol
    With ActiveSheet.Shapes.AddShape(
msoShapeRectangle, a, b, LengthX, HeightCol)
        .Line.DashStyle = msoLineSolid
        .Fill.ForeColor.RGB \(=\operatorname{RGB}(250,250,250)\)
    End With
\(\mathrm{a}=\) PositionX + Base + DistViews + Length * Fact /2 _ +
CenterNorth * Fact - LengthY * Fact / 2
b \(=\) Position Y + Length - Thickness - HeightCol
With ActiveSheet.Shapes.AddShape(_
msoShapeRectangle, a, b, LengthY * Fact, HeightCol)
        .Line.DashStyle \(=\) msoLineSolid
        Fill.ForeColor.RGB \(=\) RGB(250, 250, 250)
    End With
Next I
```

End Sub

End Sub
\qquad DATE \qquad SUBJECT \qquad SHEET N \qquad OF \qquad

FILE: E:IPaper ASEE2007\[Reinf.Concrete-BeamDesign-2006.x|s]Beam Design
CONCRETE T-BEAM WITH STEEL IN COMPRESSION

Concrete Strength 28 days, f_{0} :

Ultimate Strain at Concrete $=\varepsilon_{\text {cu }}=$
$0.65<\beta_{1}=1.05-0.05^{\star} \mathrm{fc} / 1000<0.85=$ Longitudinal Steel Yielding, f:
Modulus of Elasticiy of Steel, $\mathrm{E}=$ Stirrup Steel Yielding, fys:
Height of T-Beam (h):
Width of T-Beam (bw):
Central, End or Isolated T-Beam?
Width of Flange for Isolated T-Beam = bf Clear Span of the T-Beam $=\ln =$
Cantilever dist.(End T-Beam Only), X1
Clear Dist. Between T-Beams @Right=X2
Clear Dist. Between T-Beams @Left=X3
Thickness of Slab $=$ hs $=$
Thickness of Slab $=\mathrm{hs}=$
For Central T-Beam: $b f=\min (\ln / 4, \mathrm{X} 1 / 2+\mathrm{bw}+\mathrm{X} 2 / 2,8 \mathrm{hs}+\mathrm{bw}+8 \mathrm{hs}$
For End T-Beam: $b f=\min (\min (X 1,6 \mathrm{hs}, \mathrm{In} / 12)+\mathrm{bw}+\ln / 12, \min (\mathrm{X} 1,6$
For Isolated T-Beam: Verify that $b f=\min \left(\mathrm{bf}^{\prime}, 4^{*} \mathrm{bw}\right)$ and $\mathrm{hs}>=\mathrm{bw} / 2$
Effective Width of the Flange $=\mathrm{bf}=$
90.0 in

ACl 318-05 Ch. 10

Structure Type (B,E,S):
Ultimate Moment $=\mathrm{Mu}=(+\cdot$ Tension at
bottom, -:Tension at top)
Minimum Steel Ratio $=\rho$ min $=$
Type of Beam
Minimum Steel Ratio $=\rho_{\min }=$
As minimum $=\rho_{\text {min }}{ }^{*} b w^{*} d$

550 kip-ft Tension at: Bottom 0.0071 For Isostatic Cantilever Beams:ICB

CB Simply supported or Continuous Bet Is Istatic Cantilever Beams
0.00354

$$
1.51 \quad \mathrm{in}^{2}
$$

VERIFICATION OF BEAM
Width of Beam (bw):
Effective Width of the Flange $=b f^{\prime}=$ Minimum cover:
Stirrup \#:
Nominal Stirrup Diameter, dbst:
Min. Distance Between Stirrup Face and Face of Adjacent Rebar:
Layer \# 1: Rebar in Tension

Number of bars	Rebar Size:	Nominal Rebar Area (in ${ }^{2}$)	Nominal Diameter db (in)	Max db (in)	Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in)	Spacing between rebars (in)	Verification of Beam Width
4	10	1.27	1.27						OK if
0	9	1	1.128						splices are
0	8	0.79	1	1.27	5.08	2.64	1.27	2.06	not used!!!

Number of bars	Rebar Size:	Nominal Rebar Area (in^{2})	Nominal Diameter db(in)		Steel Area Layer	Centroid of Layer (in)	Minimum Spacing between rebars (in)	Spacing between rebars (in)	Verification of Beam Width
2	9	1	1.128						
0	10	1.27	1.27						
0	10	1.27	1.27	1.128	2	2.56	1.13	8.87	OK

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part I / III)

UNIVERSITY OF HOUSTON - DOWNTOWN					HOUS
BY DATE ___ SUBJECT					SHEET NO
CHKD BY ___ DATE					
FILE: E:IPaper ASEE2007 ${ }^{\text {Reinf.Concrete-BeamDesign-2006.x\|s]Beam Design }}$					
Area of Rebar in Compression ($\mathrm{A}_{\text {poc }}$):	2.00	in ${ }^{2}$			
Effective depth $=\mathrm{d}^{\prime}=$	2.56	in			
Area of Rebar in Tension Asp1=As-Asp=	5.62				
Part I: Use if $\mathrm{a}<=\mathbf{h s}$					
Whitney block=a=Asp1*fy / ($0.85{ }^{*} \mathrm{fc}^{*} \mathrm{~b}$ f) $)=$	0.88	in		$c=a / \beta 1=$	1.10 in
Strain at compression steel $\varepsilon_{s}^{\prime}=\varepsilon_{\text {cu }} / c^{*}\left(\mathrm{c}-\mathrm{d}^{\prime}\right)=$	-0.00398		gy $=\mathrm{fy} / \mathrm{Es}=$	$0.00207 \mathrm{in} / \mathrm{in}$	
Recalculation of c if $\varepsilon_{\mathrm{s}}{ }^{\prime}<\varepsilon_{\mathrm{y}}$. $\mathrm{c}=$	1.76		$A=306000$	$B=-283200$	$D=-446136$
Strain at compression steel $=\varepsilon_{01} / \mathrm{c}^{*}\left(\mathrm{c}-\mathrm{d}^{\prime}\right)=$	-0.00138				
Stress at compression steel $=$ fcs $=$	0	psi			
Whitney block adjusted: $\mathrm{a}=$	1.40	in			
$\mathrm{M}_{\mathrm{n} 1}=\left(\mathrm{As}^{*} \mathrm{fy} \text { - } \mathrm{Aspc}^{*} \mathrm{fcs}\right)^{*}(\mathrm{~d}-\mathrm{a} / 2)$)/12000 $=$	987.1	k-ft			
$\mathrm{M}_{\mathrm{n} 2}=(\text { Aspc*fcs })^{*}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right) / \mathbf{1 2 0 0 0}=$	0.0	k-ft			
$\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n} 1}+\mathrm{M}_{\mathrm{n} 2}=$	987.1	k-ft			
Verification than $\mathrm{a}<$ hs:	OK, $\mathrm{a}<=\mathrm{hs}$			$\mathrm{hs}=$	8 in
Part II: Use if a > hs					
Steel As1 $=0.85^{*}(\mathrm{bf-bw})^{*} \mathrm{hs} \mathrm{s}^{*} \mathrm{fc} / \mathrm{fy}=$	0.00				
$\mathrm{Mn} 1=\mathrm{As} 1{ }^{*}$ fy * (d-hs/2)/12000 $=$	0.0				
Asp2 $=$ Asp1 - As1	0.00				
$\mathrm{a}=\mathrm{Asp} 2{ }^{*} \mathrm{fy} /\left(0.85 * \mathrm{fc} \mathrm{c}^{*} \mathrm{bw}\right)=$	0.00			$c=a / \beta 1=$	0.00 in
Strain at compression steel $=\mathrm{ecu} / \mathrm{c}^{*}\left(\mathrm{c}-\mathrm{d}^{\prime}\right)=$	0.00000				
Recalculation of c if $\varepsilon_{\mathrm{s}}{ }^{\prime}<\varepsilon_{\mathrm{y}}$. $\mathrm{c}=$	0.00		$A=306000$	$B=2232800$	$D=-446136$
Strain at compression steel $=\mathrm{e}_{\mathrm{u}} / \mathrm{c}^{*}\left(\mathrm{c}-\mathrm{d}^{\prime}\right)=$	0.0000				
Stress at compression steel $=\mathrm{fcs}=$	0	psi			
Whitney block adjusted: $\mathrm{a}=$	0.00				
Mn2 $=\left(\mathrm{As}^{*} \mathrm{fy} \text { - } \mathrm{Asp2}^{*} \mathrm{fcs}\right)^{*}(\mathrm{~d}-\mathrm{a} / 2) / 12000=$	0.0				
$\mathrm{Mn} 3=\mathrm{Aspc}^{*} \mathrm{fcs}{ }^{*}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right) / 12000=$	0.0				
$\mathrm{Mn}=\mathrm{Mn} 1+\mathrm{Mn} 2+\mathrm{Mn} 3=$	0.0				

Verification of Ductility and Calculation of $\phi \mathbf{b}$						
$\beta 1=\quad 0.80$						
Block of Whitney $=\mathbf{a}=$	1.40 in					
Neutral Axis, c=	1.76 in					
Ultimate Strain at Concrete $=\varepsilon_{\text {cu }}=$	0.003		Art. 10.3.3			
Strain at steel $=\varepsilon_{t}=\varepsilon_{\text {cu }} / \mathrm{c}^{*}(\mathrm{~d}-\mathrm{c})=$	0.0425		OK!!! art. 10.3.5			
$\phi_{b}=0.65+\left(7250^{*} \varepsilon t-0.25^{*} \mathrm{fy}\right) /(145-\mathrm{fy})<=0.9$	0.90		fy in ksi			
$\mathrm{M}_{\mathrm{n}}=$	987.1	k-ft		$\phi_{b} \mathrm{M}_{\mathrm{n}}=$	888	k-ft
From Data: $\mathbf{M}_{\mathbf{u}}=$	550.0	k-ft	OK!!! Flexure			61.5\%

SHEAR STRENGTH

Ultimate Acting Shear $=\mathrm{V} u=$
Concrete Capacity, Vc:

| | $\mathrm{Vu}<=\phi_{\mathrm{v}}{ }^{*} \mathrm{Vn}=\phi_{\mathrm{v}}{ }^{\star}(\mathrm{Vcn}+\mathrm{Vsn})$ | ACl 318- Note: For seismic areas see Chapter 21
 Type of element: Beam |
| :---: | :---: | :---: | :---: |
| $\phi_{\mathrm{v}}=$ | 0.75 kip | art. 9.3.2.3 |

Stirrup Contribution, Vs:
Is necessary stirrups? Provide Stirrups, $V u>f v^{*} V c$
Note: For Slabs, footings, Joist as art 8.11 and shallow beam is not necessary minimum stirrups. (art 11.5.5.1)

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part II / III)

Figure 9. Spreadsheet to Verify Reinforced Concrete Beams (Part III / III)

Conclusions

These spreadsheets with the help of scaled graphic commands are very useful educational tools; they permit the student trials with different materials, geometry and other variables. The graphical spreadsheets avoid impractical solutions, mainly because the designer can visualize the possible design. As the spreadsheet is easy to change, the students can create their own spreadsheet based on the one given by the instructor.

Finally, the students may perform their own research about the relative importance of the parameters involved in the design. These tools are practically virtual laboratories.

Bibliography

1. Microsoft Office Excel 2003, part of Microsoft Office Professional Edition 2003. Microsoft Corporation.
2. Bowles, Joseph E., "Foundation Analysis and Design", $4^{\text {th }}$ Ed., McGraw-Hill, 1998.
3. American Concrete Institute, ACI 318-05, Building Code Requirements for Structural Concrete and Commentaries.

Acknowledgement

The authors want recognize the support of Scholars Academy of the University of Houston Downtown for their support.

