## GeometryCoach.com

## Use Parallel Lines and Transversals

Unit 3 Lesson 2

## USE PARALLEL LINES AND TRANSVERSALS

## Students will be able to:

identify pairs of angles formed when parallel lines are cut by a transversal.

## Key Vocabulary

- Parallel lines
- Transversal
- Interior and exterior
- Vertical, Alternate (exterior and interior) and Corresponding angles


## USE PARALLEL LINES AND TRANSVERSALS

## Parallel lines:

Two lines are parallel to each other if they are the same distant apart on each point and never intersect each other.


$$
\overleftrightarrow{l_{1}} \| \overleftrightarrow{l_{2}}
$$

## USE PARALLEL LINES AND TRANSVERSALS

## Transversal:

A transversal is a line (or a line segment or a ray) that cuts two or more lines (or a line segment or a ray). The lines can be parallel or non-parallel.

$l_{1} \| l_{2}$ and $l_{3}$ is a transversal

$l_{4}$ is not parallel to $l_{5}$ and $l_{6}$ is a transversal

## USE PARALLEL LINES AND TRANSVERSALS

## Interior and Exterior:

When a transversal intersects two parallel (or non-parallel) lines, exterior and interior regions are formed. Interior refers to the inner area and exterior refers to the outer area in the parallel lines.


GeometryCoach.com

When two parallel (or non-parallel) lines are cut by a transversal, then there are special pair of exterior and interior angles formed.

- Angle $a, b, g$ and $h$ are exterior angles.
- Angle c, d, e and f are interior angles.
- The sum of interior angles on the same side of the transversal is $180^{\circ}$.
- The sum of exterior angles on the same side of the transversal is $180^{\circ}$.


When two coplanar lines are crossed by a $3^{\text {rd }}$ line (called the transversal), then the angles formed on the opposite sides of the transversal are called alternate angles.

- The pair of angles on the opposite side of the transversal but inside the two coplanar lines are alternate interior angles (angles A and B in the figure).
- The pair of angles on the opposite side of the transversal but outside the two coplanar lines are alternate exterior angles (angles $\mathbf{C}$ and $\mathbf{D}$ in the figure).
- If a transversal intersects two parallel lines, then the
 alternate angles are congruent.

$$
\angle \mathrm{A} \cong \angle \mathrm{~B} \text { and } \angle \mathrm{C} \cong \angle \mathrm{D}
$$

When two coplanar lines are crossed by a $3^{\text {rd }}$ line (called the transversal), then the angles formed on the same sides of the transversal are called corresponding angles.

- The angles $\mathbf{A}$ and $\mathbf{B}$, and angles $\mathbf{C}$ and $\mathbf{D}$ are the pair of corresponding angles.
- If a transversal intersects two parallel lines, then the corresponding angles are congruent.

$$
\angle \mathrm{A} \cong \angle \mathrm{~B} \text { and } \angle \mathrm{C} \cong \angle \mathrm{D}
$$



Vertical angles are the angles opposite to each to each when two lines are crossed. The two vertical angles are congruent.

The angles $\mathbf{A}$ and $\mathbf{B}$ shown in the figure are vertical angles and are congruent.

$$
\angle A \cong \angle B
$$



## Problem 1:

Identify all the pair of alternate, vertical and corresponding angles in the figure shown below.
Alternate angles:
angles $\mathbf{a}$ and $\mathrm{h}, \mathrm{b}$ and $\mathrm{g}, \mathrm{c}$ and $\mathrm{f}, \mathrm{d}$ and e
Vertical angles:
angles $\mathbf{a}$ and $\mathrm{d}, \mathrm{b}$ and $\mathrm{c}, \mathrm{e}$ and $\mathrm{h}, \mathrm{g}$ and f
Corresponding angles:
angles $\mathbf{a}$ and $\mathbf{e}, \mathbf{c}$ and $\mathbf{g}, \mathbf{b}$ and $\mathrm{f}, \mathrm{d}$ and h


