
System Energy Efficiency Lab

seelab.ucsd.edu

Yeseong Kim

1

Things, Data, Action and Software

 Data is collected by sensor devices.

 Motion, Pressure, Temperature, Light sensors

 Cameras, Microphones, GPS enabled devices

 Why we need data? To take an action

 What would the problem be
if a sensor processes information locally?

 Constrained battery, processor and storage

 Noisy and the varying quality -> inaccurate

 Need more useful data from other things

2

Need to fill the gap

with software

Where’s IoT Software?

3

Sink
node

Gateway

Core network
e.g. InternetGateway

End-user

Computer services

Operating

Systems?

Services?

Protocols?
Protocols?

In-node Data

Processing

Data

Aggregation/

Fusion

Inference/

Processing of

IoT data

Interoperable/

Machine-

interpretable

representations

Interoperable/

Machine-

interpretable

Representations?

Cloud

Interoperable/

Machine-

interpretable

representations

IoT Architecture and Software

We will discuss IoT software platforms for three building blocks + actuation

1. Software platform for things

2. Semantic data delivery across gateway

3. Data processing for network infrastructures & clouds

4. Actuation to things

4

Software Platform for Things

 What are the requirements for OS running on things?
 Energy efficient

 Handle large sleep time automatically

 Hardware constraints

 Complexity of operations must be kept very low

 Limited Features (wo/ MMU, FPU)

 Minimal memory footprints

 Real time functionality

 Connectivity

 Adaptive network stack

 Programmability

 Standard API

 Standard programming language

5

Example of OS for Things:

RIOT

 Resource friendly
 Energy efficient
 Real-time capability due to small interrupt latency

(~50 clock cycles)
 Multi-threading (<25 bytes per thread)

 IoT friendly
 Diverse network protocol

 6LoWPAN, IPv6, RPL, and UDP

 Static and dynamic memory allocation
 High resolution and long-term timers

 Developer friendly
 Standard programming in C or C+
 Standard tools such as gcc, gdb, valgrind
 Code once, run on 8 to 32-bit platforms

(e.g. Arduino Mega 2560 to ARM)
 Partial POSIX compliance

6

http://www.riot-os.org/

Example of OS for Things:
Contiki

 Selection of hardware

 Low-power wireless devices

 Runs for years on a pair of AA batteries

 Internet standards

 Fully standard IPv6 and IPv4

 Low-power wireless standards (6lowpan, CoAP)

 Rapid development

 Written in standard C

 Cooja network simulator

 Memory allocation

 A few kilobytes of memory

 Mechanisms for memory allocation

7

http://www.contiki-os.org/

How to Interpret the Raw Data?

 Is the generated raw data meaningful to all users?
15, C, 08:15, 51.243057, -0.589444

 Generated data is meaningful to few users only

 Only sensor itself and its deployer knows

 Is the generated raw data machine-understandable?
 Celsius vs. kelvin

8

“Raw data is both an oxymoron and bad data”, Geoff Bowker, 2005

Data to Information

What is required to get information from raw data?

 Interpretable/structured formats

 Data with semantic annotations

 Background knowledge,
domain information

Interoperable and semantically described data is the starting point :

 To make information understandable by software

 To create an efficient set of actions.

9

Data in Reality

 What happens if we have “08:15, 15, C, 51.243057, -0.589444” ?

 How about this?

10

15, C, 08:15, 51.243057, -0.589444

value

Unit of

measurement

Time

Longitude

Latitude

<value>15</value>

<unit>C</unit>

<time>08:15</time>

<longitude>51.243057</longitude>

<latitude>-0.58944</latitude>

Extensible Markup Language (XML)

 One of the most widely-used formats for sharing
structured information.

 Simple

 Flexible for data representation and annotation.

 Can exchange a wide variety of data

11

<?xml version="1.0"?>

<measurement>

<value>15</value>

<unit>C</unit>

<time>08:15</time>

<longitude>51.243057</longitude>

<latitude>-0.58944</latitude>

</measurement>

XML Prolog- the XML

declaration

XML elements
XML documents
MUST be “well

formed”

Root element

Combining Different Data Sources

- Now we have well-structured data with semantic annotations.

- What do we need to combine this data?

- e.g., “Two pieces of data include temperature values”

- e.g., “Taxi is a subclass of vehicle”

12

XML1

XML2

XML3

XML4

XML5

has temperature values

Semantic Web and IoT

 Semantic Web: an extension of the current web

 Well-defined meaning

 Better cooperation for objects, devices and people

 RDF (Resource Description Framework)
 W3C standard
 Relationships between documents
 Flexible: data relationships can be explored
 Efficient: large scale, data can be read more quickly

 Consisting of Triples:
 <subject> <property> <object> .

e.g.,
<“Sensor01”> <hasType> <“Temperature”> .

<“Taxi01”> <subClassOf> <“Vehicle” > .

13

Triples and Statements

 Each data is combined to make simple statements in the
form of triples.

 So, triples are sometimes called “statements”:
 <“Sensor01”> <hasType> <“Temperature”> .

 Sensor 01 has the type of Temperature.

 <“Taxi01”> <subClassOf> <“Vehicle” > .

 Taxi01 is the sub class of Vehicle.

 Based on the triples, a software can know how to interpret
the given data set.

14

RDF with Graph

 RDF triples form a graph

 Possible to know which properties
belong to the subject (instance)

 RDF also represents the
relationship between different
objects.

 typeOf

 subClassOf

 …

15

<rdf:RDF>

<rdf:Description rdf:about=“Measurment#0001">

<hasValue>15</hasValue>

<hasUnit>C</hasUnit>

<hasTime>08:15</hasTime>

<hasLongitude>51.243057</hasLongitude>

<hasLatitude>-0.589444</hasLatitude>

</rdf:Description>

</rdf:RDF>

RDF Vocabulary

 Vocabulary

 Sets of terms used to describe things

 A data model including classes, properties and relationships

 A term is either a class or a property

 Why do we use existing RDF vocabularies?

 Easier and cheaper

 Interoperability of your data

 Adds credibility to your schema

 Many vocabularies are available:

 IOT sensors: https://github.com/dpjanes/iotdb-vocabulary

 FOAF(People description): http://www.foaf-project.org/

 Core Location: https://joinup.ec.europa.eu/asset/core_location/description

16

https://github.com/dpjanes/iotdb-vocabulary
http://www.foaf-project.org/

Database for RDF

 SPARQL: SPARQL Protocol and RDF Query Language
 Standard language to query graph data represented as RDF triples.

 One of the three core standards of the Semantic Web, along with RDF and OWL.

 Became a W3C standard January 2008.

17

Ontology

 Ontology: A formal data model that represents knowledge as

 A set of concepts within a domain

 The relationship between these concepts

 Originated from philosophy, the study of the nature of existence

 Triple is widely used here too.

 It is be used to support reasoning about concepts.

18

Ontology and IoT

 Inferring context from multiple data sources

 Enable reuse of domain knowledge

 Allow us to infer extra knowledge from basic facts encoded

 e.g., how to get the location of a temperature sensor

19

Classes

Places

Subclasses

Relationship

Many models and approaches exist ….

Semantic Sensor Web

 “The semantic sensor Web enables interoperability and advanced
analytics for situation awareness and other advanced applications from
heterogeneous sensors.”
(Amit Sheth et al, 2008)

20

 Describes domains
 Sensor, Weather,

Temporal, Geospatial

 Describes the relationships
between different
ontologies as a list of terms

 Observed by

 Measured

 Occurred when

Web Ontology Language (OWL)

 Purpose: to develop ontologies that are compatible with the WWW.

 RDF is useful to describe the concepts and their relationships, but does
not solve all possible requirements.

 similarity and/or differences of terms (properties or classes)

 can a program reason about some terms
 each «Sensor» resource «A» has at least one «hasLocation»

 each «Sensor» resource «A» has maximum one ID

 Based on the basic elements of RDF,
OWL adds more vocabulary for describing properties and classes.

 Relationships between classes (to specify domains)

 Equality

 Richer properties

 Class property restrictions

21

Other Approaches for Ontology

 SKOS: Simple Knowledge Organization System
 Based on RDF

 Designed specifically to express information that’s more hierarchical

 Limited expressivity compared to OWL to avoid expressiveness not
desired in some application

 SensorML: Sensor Model Language Encoding

 Specialized for sensors (supports standard dictionary)

 Represents geometric, dynamic,
and observational characteristics
of sensors and sensing systems

 Based on XML

22

Ontology Models:
IoT-A Information Model

 IoT-A: Internet of Things Architecture

 European Lighthouse Integrated Project

 Partner: HITACHI, NXPO, SIEMENS, SAP, IBM, …

 Propose architecture reference models for protocol, interface, and algorithm

 Information Model: Ontology-based model

23

Use of Ontology:
FIWARE IoT Discovery

 Provide Open API to register sensors and discover information

 Work with RDF/OWL descriptions for the "Things”

 Support querying via SPASQL

 Possible to be deployed with Raspberry Pi

24

Use of Ontology:
City Pulse

 Smart city applications for IoT
 Developing a framework for the semantic discovery and processing of

large-scale IoT data defined by ontology

 Providing collected data

 Road Traffic Data, Pollution Data, Weather data, Parking Data, …

25

Software in Clouds

Main requirements of Cloud OS
 Quality of service assurance

 Isolation of applications

 Efficient resource management

 Cloud infrastructure scalability

 Scalable network, computing
and storage capacity

 Reliability

 Fault tolerance Infrastructures

 Security and privacy

 Secure multi-tenant environments

 Data integrity mechanism for storage

 Energy efficient cloud management

 Energy efficiency models, metrics and tools at datacenter levels

 Interoperability and portability

 Common and standard interfaces for cloud computing

26

Microsoft Azure

 Different programming languages, tools and frameworks,
including both Microsoft-specific and third-party software and systems

 Developing IoT-specific cloud applications (IoT Hub)

27

Amazon AWS

 AWS(Amazon Web Service)

 Launch IoT platform in beta

 Interesting data delivery model

 Publishing messages to the message broker through topics

 The broker deliveries messages to all client subscribed on the specific topics

28

Issues with Clouds

 Cloud assumes enough bandwidth

 Strong assumptions for Industrial IoT applications

 Cloud centralizes the analytics thus resulting in slower reaction times

 Latency-sensitive IoT applications

 Connectivity to the cloud is a prerequisite

 Need to work even when connection is temporarily unavailable

29

Fog Computing

 Fog computing: computing on the edge

 Close to the ground, right where things are getting done.

 Communicate peer-to-peer to efficiently share data and take local decisions

 Faster processing and interaction time

 Fewer resources consumed

 IoT systems require both of fog devices and clouds

30

Example of Fog Computing
: Cisco IoT Solution

 Developing software architecture for fog computing
 Target to large harsh environments such as roadways, railways, and utility

field substations

 Data management

 Redundancy and failover

 DMo (Data in Motion)
 Get updated rules

for data from cloud

 Cache and standardize
raw data of sensor

 Compress and
Reduce data

31

CISCO

Revisit Action: Actuator Control

 How to take an action?

 IoT devices are characterized by the software they run so:

 When IoT devices talk to IoT devices it is software talking to software

32

“Coffee is done”

“Coffee is done”“Laundry is ready!”

“Laundry is ready!”

“Someone’s at the door”

“Someone’s at the door”

NOW PLAYING:

Artist: Flowers
Song: Daisy

“Someone’s at the door”

Software for Actuator Controls

 We have logs of different “things” that have different functionalities.
Any problem in designing software platforms?

 What we don’t want:
 There’s an App for that thing

 And an App for that thing

 And yet another App for that thing

 …

 APIs are how software talks to software

 Clear boundaries between the internals of actuator “things” and
the external interfaces exposed to other software.

 Generally call external interfaces Application Programming Interfaces (APIs)

 Makes it possible to incorporate existing functionality into new code

33

Software API Design

 Devices that have similar functionality should expose the same APIs

 Every device with a clock should expose a set-clock API

 Every device that has a battery should expose a battery level API

 Manufacturers need to expose necessary functionality in a same way

 IoT devices should have APIs

 IoT devices are all so different

 Standard APIs + device-specific APIs

 Also need to support by software:

 Security against unintended actuations

 Timeliness, robustness

 Energy saving and autonomic capabilities

34

Google Brillo & Weave

 Brillo: IoT OS
 Derived from Android

 Minimal system requirement

 Secure

 Unified interface

 Weave: Network Protocol

 XML-like semantic
for exposure of each “thing”

 Support communication
across architectures

 OnHub: First product
 WiFi AP with monitoring

 Streaming

35

Apple HomeKit

 Home automation solution from Apple

 User can set settings of “things”
over different contexts

 “Leaving home”:
turns off the lights, locks your doors
lowers the thermostat

 SDK published

 Can implement as usual iOS app

 Provide simulators and
sample layout for a home

 APIs abstract home elements to objects:
HMHome, HMRoom, HMAccessory, …

 Work with secured data base per home

36

Summary

 System software is required to fill the gap between sensor and action

 We review diverse software platform and methodology in hierarchy.

 OS for small “things”

 Raw data standardization

 Semantic data assimilation across layers

 Cloud solution + fog computing

 Programming model for actuation of things

37

