

USER GUIDE – VERSION 3.3.2
LINUX/WINDOWS EDITION

September 5, 2014

c© 2008-2014 Red Lizard Software

Copyright c© 2008-2014 Red Lizard Software
All rights reserved.

This document, as well as the software described in it, is
provided under license and may only be used or copied
in accordance with the terms of such license. The infor-
mation contained herein is the property of NICTA and is
made available under license to Red Lizard Software. It
is confidential information as between the Recipient and
Red Lizard Software and remains the exclusive property
of NICTA. No part of this documentation may be copied,
translated, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise without the prior written
permission of NICTA.
NICTA does not warrant that this document is error-free.

Red Lizard Software
Australian Technology Park
Level 5, 13 Garden Street

Eveleigh NSW 2015
Australia

Web: http://www.redlizards.com
Support: support@redlizards.com

Contents

1 System Requirements 6
1.1 Operating Systems . 6

1.1.1 Microsoft Windows . 6

1.1.2 Linux . 6

1.1.3 Other Requirements . 6

1.2 Hardware Requirements . 8

1.3 Supported Compilers . 8

1.3.1 A Word On C99 and C++11 Support . 8

1.3.2 A Word On Compiler-Specific Syntax Extensions . 9

1.3.3 Analog Devices CrossCore C/C++ Compiler (cc21x Dialect) 9

1.3.4 ARM C/C++ Compiler (armcc Dialect) . 9

1.3.5 Cosmic Software C Cross Compiler (cosmic Dialect) . 9

1.3.6 Cygwin GCC (cygwin Dialect) . 9

1.3.7 Freescale (metrowerks Dialect) . 10

1.3.8 GNU C/C++ Compiler (GCC) (gnu Dialect) . 10

1.3.9 IAR Toolchain for 8051, ARM and MSP430 (iar-8051, iar-arm and iar-msp430 Di-
alects) . 10

1.3.10 Keil Cx51 and C166 Optimizing C Compiler (c51 and c166 Dialects) 10

1.3.11 Microsoft Visual C++ (microsoft Dialect) . 10

1.3.12 QNX QCC (qnx Dialect) . 11

1.3.13 Renesas H8S, H8/300 Series C/C++ Compiler (renesas-h8 Dialect) 11

1.3.14 Renesas RXC Toolchain (renesas-rx Dialect) . 11

1.3.15 Tasking VX-toolset for C166/ST10 (tasking-c166 Dialect) 11

1.3.16 TI Build Tools (ti-cl16x, ti-cl2000, ti-cl430, ti-cl470, ti-cl500 and ti-cl55
Dialects) . 12

1.3.17 Wind River Diab Compiler (diab Dialect) . 12

1.4 Supported Build Systems . 12

1.4.1 GNU Make, QNX Make and Microsoft NMake . 13

1.4.2 SCons . 13

1.4.3 CMake . 13

1.4.4 IAR Embedded Workbench R© (IarBuild.exe) . 13

1.4.5 Keil
TM

µVision R© (UV4.exe) . 13

2 Getting Started 14
2.1 License Agreement . 14

2.2 Installation (Linux) . 14

2.3 Installation (Windows) . 15

2.4 License Activation . 15

2.4.1 Activating Node-locked License . 15

2.4.2 Using Network (Floating) License . 16

2.5 Next Steps . 16

2

3 Setting Up Projects for Goanna Analysis 18
3.1 Introduction . 18

3.2 Setting Up GNU Make, QNX Make and Microsoft NMake Projects with goannamake 19

3.2.1 Preparing Makefile for Goanna Integration . 19

3.2.2 Using goannamake To Capture The Build Settings . 20

3.3 Setting Up SCons Projects with goannascons . 21

3.3.1 Preparing SConstruct file for Goanna Integration . 21

3.3.2 Using goannascons To Capture The Build Settings . 22

3.4 Setting Up CMake Projects with goannacmake-conv . 23

3.4.1 Using goannacmake-conv To Generate The Build Settings 23

3.5 Setting Up IAR Embedded Workbench R© Projects with goannaiarbuild 24

3.6 Setting Up Keil
TM

µVision R© Projects with gotrace . 25

4 Running Goanna Analysis 26
4.1 Introduction . 26

4.2 Running Goanna Analysis On Non-Keil Projects With goanna . 27

4.3 Running Goanna Analysis On Keil
TM

µVision R© Projects With gokeil 27

4.4 Reading Analysis Results . 28

4.4.1 Goanna Output On The Console . 28

4.4.2 HTML Report of Analysis Results . 29

4.4.3 Analysis Results In XML File . 30

4.4.4 Using Goanna Dashboard Web Interface To Interact With Analysis Results 30

4.4.5 Using SonarQube To Interact With Analysis Results . 30

5 Configuring Goanna Analysis 31
5.1 Setting Checks . 31

5.1.1 Introduction . 31

5.1.2 Selecting Checks With Command Line Options . 31

5.1.3 Using Checks File To Select Multiple Checks . 32

5.1.4 Enabling All Available Checks . 32

5.2 Checks Packages . 33

5.2.1 Listing Checks Packages . 33

5.2.2 Enabling Available Checks Package . 33

5.2.3 Disabling Installed Checks Package . 34

5.2.4 Installing Custom Checks Package . 34

5.3 Including Headers Into Analysis . 34

5.4 Excluding Certain Files From Analysis . 34

5.5 Setting Analysis Timeouts . 34

5.6 Ignoring Certain Warnings ("Warning Suppression") . 35

5.7 Other Configuration Options . 35

6 Running Goanna Analysis From Within IDEs 36
6.1 Running Goanna Analysis From IAR Embedded Workbench R© . 36

6.2 Running Goanna Analysis From Keil
TM

µVision R© . 37

3

7 Getting the Best Results from Goanna 40
7.1 Interprocedural Analysis . 40

7.2 A Word on False Positives . 40

7.3 Using the _GOANNA Preprocessor Symbol . 41

7.4 Using the assert macro . 41

7.5 Sample Code . 41

8 Using the Goanna Dashboard 42
8.1 Getting to the Goanna Dashboard . 42

8.2 Bug Statuses . 42

8.3 Severity . 42

8.4 Dashboard Views . 42

8.4.1 Project Page . 42

8.4.2 Report Page . 43

8.4.3 Directory Browser . 44

8.4.4 Warnings Browser . 45

8.4.5 Code Browser . 46

8.5 Database Upgrades . 46

8.6 Project Settings (Advanced) . 48

8.6.1 External Code Browser Support . 48

8.6.2 Code Browser Character Encodings . 48

9 Using Goanna With SonarQube Code Quality Platform 49
9.1 Introduction . 49

9.2 Setting Up Goanna To Integrate With SonarQube Installation . 49

9.3 Running Goanna Analysis With SonarQube Publish . 49

10 Advanced Features, Concepts and Configurations 51
10.1 Proceed With Caution . 51

10.2 Manually Running Analysis On Source Files . 51

10.3 Manually Running Link Time Analysis On Object Files . 52

10.4 Build And Run Analysis On A Project At The Same Time . 52

10.5 Using Embedded Build Information To Perform Analysis . 53

10.6 Append New Build Information Into Existing Build Specification 53

10.7 The Project Database . 55

10.8 How Goanna’s Compiler Support Work . 56

10.9 Suppressing Warnings Manually Using goannacc . 57

10.9.1 Suppressing Warnings . 57

10.9.2 Un-suppressing Warnings . 57

10.9.3 Displaying Warnings Status . 57

10.10Using Goanna Central Bundled SonarQube Installation . 58

10.10.1 Running Goanna Central Bundled SonarQube On Linux 58

10.10.2 Running Goanna Central Bundled SonarQube On Windows 58

10.10.3 Browsing Goanna Central Bundled SonarQube Dashboard 58

10.10.4 Running Goanna Analysis With Goanna Central Bundled SonarQube 59

10.11Using CppCheck And CppNcss With Goanna . 60

4

11 Goanna Central Utility Reference 61
11.1 goanna – Analyze C/C++ Projects . 61

11.2 goannamake – Analyze Makefile Projects . 63

11.3 goannascons – Analyze SCons Projects . 65

11.4 goannacmake-conv – Convert CMake Compilation Database To Goanna Build Specification . . . 67

11.5 goannaiarbuild – Analyze IAR Embedded Workbench Projects 69

11.6 gotrace and gokeil – Analyze Keil
TM

µVision R© Projects . 71

11.7 goannacc and goannac++ – Analyze C/C++ Source Files . 73

11.8 goannald – C/C++ Link Time Analysis . 78

11.9 goreporter – Goanna Dashboard Server and Administration Tool, and Publish Analysis Results . 81

Index5

1 System Requirements

Before using Goanna, please check that your system and project meets the system requirements.

1.1 Operating Systems

1.1.1 Microsoft Windows

Goanna supports the following versions of Windows:

• Windows XP (Service Pack 2 or higher)
• Windows Vista
• Windows 7
• Windows 8
• Windows 8.1
• Windows Server 2003 (Service Pack 1 or higher)
• Windows Server 2008
• Windows Server 2008 R2
• Windows Server 2012
• Windows Server 2012 R2

Both 32-bit (x86) and 64-bit (x86-64/AMD64) versions of Windows are supported (except Windows XP, which we
only support 32-bit version).

Required Software

Before installing Goanna, you will need to install the following:

• Microsoft Visual C++ 2008 Redistributable (Download from http://www.microsoft.com/en-us/download/details.
aspx?id=5582)

• .NET Framework 2.0 or higher (Goanna Central installer automatically installs .NET Framework 4.0 if not
installed already)

1.1.2 Linux

Goanna supports all major distributions of Linux with glibc (GNU C Library) 2.4 or higher installed.

Both 32-bit (x86) and 64-bit (x86-64/AMD64) versions of Linux are supported.

Using Goanna with SELinux enabled is not recommended.

1.1.3 Other Requirements

Some features of Goanna may require additional software or packages.

Requirements for Goanna Dashboard and HTML Report

Goanna Dashboard (see 8) and HTML Report (see 4.4.2) requires a web browser. The following web browsers are
supported:

• Internet Explorer 9 or higher
• Mozilla Firefox - currently supported versions by Mozilla
• Google Chrome - currently supported versions by Google

We also support Internet Explorer 7 and 8, however you may experience slow performance on these browsers; using
Goanna Central with these browsers is not recommended.

6

http://www.microsoft.com/en-us/download/details.aspx?id=5582
http://www.microsoft.com/en-us/download/details.aspx?id=5582

Requirements for LM-X License Manager

Goanna uses LM-X License Manager 4.4.2 from X-Formation for licensing.

If you wish to use web-based UI of the License Manager (Important: Red Lizard Software does not provide full
support for the web-based UI), the following software must be installed:

• A modern web browser

• Oracle Java Runtime Environment 1.6 or higher

• Adobe Flash Player

Please refer to X-Formation website (http://docs.x-formation.com/display/GEN/System+requirements+for+web-based+
UIs) for more information.

Requirements for CppCheck

Important: CppCheck is a third party component bundled with Goanna Central. Red Lizard Software does not
provide full support for CppCheck.

Goanna Central bundles CppCheck 1.56 (for more information, see http://cppcheck.sourceforge.net/).

If you wish to use CppCheck on Linux, then libstdc++ 3.4.14 or higher is required. This means that on some
Linux distributions (such as Ubuntu 10.04 LTS), CppCheck may not run even when the rest of Goanna analysis was
performed successfully.

No additional software or packages are required to use CppCheck on Windows.

Because CppCheck uses different C/C++ parser from the rest of Goanna, some C/C++ source files may not be
correctly understood by CppCheck even when the rest of Goanna analysis understands these files.

Requirements for CppNcss

Important: CppNcss is a third party component bundled with Goanna Central. Red Lizard Software does not
provide full support for CppNcss.

Goanna Central bundles CppNcss 1.0.3 (for more information, see http://cppncss.sourceforge.net/).

No additional software or packages are required to use CppNcss.

Because CppNcss uses different C/C++ parser from the rest of Goanna, some C/C++ source files may not be
correctly understood by CppNcss even when the rest of Goanna analysis understands these files.

Requirements for SonarQube Integration

Important: SonarQube is a third party component bundled with Goanna Central. Red Lizard Software does not
provide full support for SonarQube.

Goanna Central comes with an ability to publish the analysis result to SonarQube (previously called "Sonar"). For
more details, see http://www.sonarqube.org/.

Goanna Central supports SonarQube integration with any existing installations of SonarQube 3.2.1 and higher,
except for versions 3.5 and 3.5.1.

SonarQube integration requires no additional software or packages to be installed, however SonarQube itself may
have additional requirements. Please refer to SonarQube website for requirements if you wish to install your own
instance of SonarQube (http://docs.codehaus.org/display/SONAR/Requirements).

Goanna Central also ships with the Goanna customized version of SonarQube 3.2.1.

7

http://docs.x-formation.com/display/GEN/System+requirements+for+web-based+UIs
http://docs.x-formation.com/display/GEN/System+requirements+for+web-based+UIs
http://cppcheck.sourceforge.net/
http://cppncss.sourceforge.net/
http://www.sonarqube.org/
http://docs.codehaus.org/display/SONAR/Requirements

1.2 Hardware Requirements

Goanna requires, at the minimum, the following hardware:

• Processor: Intel Pentium 4 or higher
• Memory: 1 GB or more
• Storage: Minimum 1 GB of free disk space

For optimal analysis performance, we recommend at least the following:

• Processor: Intel Core 2 Duo or later CPU with minimum speed 2 GHz. Multi core CPUs are recommended.
• Memory: 4 GB or more
• Storage: 5 GB or more of free disk space

For large projects, Goanna may require more RAM and disk space than the ones shown here.

1.3 Supported Compilers

Goanna currently supports the following compilers:

Compiler Name Goanna Dialect Name Common Compiler Executables
Analog Devices CrossCore C/C++ Compiler cc21x cc21k
ARM C/C++ Compiler armcc armcc, armlink
Cosmic Software C Cross Compiler cosmic cx6808, cx6812, cx6816, cxs12x, cxstm8
Cygwin GCC cygwin gcc, g++, ld
Freescale (formerly Metrowerks) metrowerks mwccarm, mwccmcf
GNU gnu gcc, g++, ld
IAR Toolchain for 8051 - 6.x iar-8051 icc8051
IAR Toolchain for ARM - 6.x iar-arm iccarm
IAR Toolchain for MSP430 - 6.x iar-msp430 icc430
Keil Cx51 Optimizing C Compiler c51 c51, cx51, bl51, lx51
Keil C166 Optimizing C Compiler c166 c166, l166
Microsoft Visual C++ microsoft cl, link
QNX QCC qnx qcc
Renesas H8S, H8/300 Series C/C++ Compiler renesas-h8 ch38
Renesas RXC Toolchain renesas-rx ccrx
Tasking VX-toolset for C166 tasking-c166 cc166
TI Build Tools - CL16X ti-cl16x cl6x
TI Build Tools - CL2000 ti-cl2000 cl2000
TI Build Tools - MSP430 ti-cl430 cl430
TI Build Tools - CL470 ti-cl470 cl470
TI Build Tools - CL500 ti-cl500 cl500
TI Build Tools - CL55 ti-cl55 cl55
Wind River Diab Compiler diab dcc

Notes

• Green Hills compiler is no longer supported since Goanna 3.1.0.
• Goanna also ships with gnu-4.4.4 and ti dialects. However, these dialects exist only for backward compat-

ibility. We strongly recommend that you do not use these dialects.

1.3.1 A Word On C99 and C++11 Support

Goanna strives to support most C99 and C++11 features as long as the compilers used in your projects also accept
them. However, please note that, for C++11 extensions, the analysis engine generally does not make use of these
extensions or any information derived from usage of these extensions. For example, Goanna does not perform any
pointer or memory use related analysis on C++11 std::shared_ptr.

Also note that CppCheck or CppNcss use different C/C++ parsers, and may not support some C99 and C++11
features (even including those supported by Goanna analysis engine). Notably, CppNcss does not support most
C++11 extensions (such as range-based for loops).

8

1.3.2 A Word On Compiler-Specific Syntax Extensions

Goanna strives to support most compiler-specific C/C++ syntax extensions for supported compilers. However,
please note that even in cases where Goanna supports compiler-specific C/C++ syntax extensions, the analysis
engine will generally not make use of these extensions or any information derived from usage of these extensions.
For example, Goanna does not take Keil Cx51 Memory Models or Memory Types into account during analysis,
even though Goanna supports relevant syntax extensions.

Also note that CppCheck or CppNcss use different C/C++ parsers, and do not support any compiler-specific C/C++
syntax extensions.

1.3.3 Analog Devices CrossCore C/C++ Compiler (cc21x Dialect)

Goanna supports Analog Devices CrossCore C/C++ Compiler 1.0 or higher.

1.3.4 ARM C/C++ Compiler (armcc Dialect)

Goanna supports the following versions of ARM C/C++ Compiler:

• RealView Development Suite (RVDS) versions 2.0 to 4.1 (inclusive)

• DS-5 Development Studio

• ARM Compiler versions 4.1 and 5.0 (including those shipped with Keil MDK-ARM versions 4 and 5)

RVDS 1.2 and older, ARM Developer Suite (ADS) versions 1.2 and older, and ARM Compiler 6 (armclang) are
not supported.

Known Limitations

• Some compiler arguments, such as --cpp (for --cpp use --c++ instead), --kandr_include, --strict, -
-wchar, --no_wchar, --wchar16 and --wchar32 are not supported. Goanna will ignore these arguments.

• Goanna will always include RVCT<version>INC, ARMCC<version>INC and ARMINC environment vari-
ables, and <installation-path-of-compiler>\..\include into the system include directories, even
when -J option is used.

1.3.5 Cosmic Software C Cross Compiler (cosmic Dialect)

Goanna supports all recent versions of:

• CX6808 Compiler (part of Cosmic S08 and HC08 Cross Development Tools)

• CX6812 Compiler (part of Cosmic 68HC12 and HCS12 Cross Development Tools)

• CX6816 Compiler (part of Cosmic 68HC16 Cross Development Tools)

• CXS12X Compiler (part of Cosmic S12X and XGATE Cross Development Tools)

• CXSTM8 Compiler (part of Cosmic STM8 Cross Development Tools)

Note: CXXGATE Compiler (part of Cosmic S12X and XGATE Cross Development Tools) is not supported.

1.3.6 Cygwin GCC (cygwin Dialect)

Goanna supports most versions of Cygwin GCC (GNU C/C++ Compiler).

Goanna does not automatically detect usage of Cygwin GCC. You need to manually specify cygwin dialect to
ensure all source files are properly understood by Goanna.

Any limitations that apply to GNU C/C++ Compiler generally (with gnu dialect) also apply to Cygwin GCC.

9

Known Limitations

• Before using Goanna, you need to make sure that either:

– The path to the Cygwin installation directory is in the PATH environment variable, or
– Cygwin is installed to the 32-bit default location of C:\Cygwin.

Goanna assumes that the compiler is located in bin subdirectory of the above path. Parse errors may occur if
the compiler is installed to any other location.

1.3.7 Freescale (metrowerks Dialect)

Goanna supports mwccarm compiler shipped with Freescale CodeWarrior Development Studio for Microcontrollers
(CW MCU) version 10.2 only.

Note: Goanna supports only this particular version of CW MCU. In particular, CW MCU versions 10.3 and higher
are not supported.

• Goanna assumes the compiler is located at:

– C:\Freescale\CW MCU v10.2\MCU\ARM_Tools\Command_Line_Tools.

Parse errors may occur if the compiler is installed to any other location.

1.3.8 GNU C/C++ Compiler (GCC) (gnu Dialect)

Goanna supports most versions of GNU C/C++ Compiler (GCC).

You need to use cygwin dialect if your project uses Cygwin version of GCC.

Known Limitations

• CPATH, C_INCLUDE_PATH and CPLUS_INCLUDE_PATH environment variables are not recognized by Goanna.

• --sysroot option is not supported.

1.3.9 IAR Toolchain for 8051, ARM and MSP430 (iar-8051, iar-arm and iar-msp430 Dialects)

Goanna supports IAR Toolchain for 8051, ARM and MSP430 shipped with IAR Embedded Workbench 5.40 or
higher.

1.3.10 Keil Cx51 and C166 Optimizing C Compiler (c51 and c166 Dialects)

Goanna supports all recent versions of Keil Cx51 and C166 Optimizing C Compiler.

1.3.11 Microsoft Visual C++ (microsoft Dialect)

Goanna supports Microsoft Visual C++ compiler shipped with Microsoft Visual Studio 6.0 or higher.

Known Limitations

• Goanna assumes the system include path to be <installation-path-of-compiler>\include. If your
project uses additional system include directories (such as when using MFC or ATL headers), you will need
to manually specify these directories.

• Goanna does not recognize INCLUDE environment variable.

• Managed C++, C++/CLI syntax extensions, and CLR (Common Language Runtime) related compiler options
are not supported.

10

1.3.12 QNX QCC (qnx Dialect)

Goanna supports QNX QCC shipped with QNX Momentics 4.7.0 or higher.

1.3.13 Renesas H8S, H8/300 Series C/C++ Compiler (renesas-h8 Dialect)

Goanna supports ch38 compiler shipped with Renesas C/C++ Compiler Package for H8SX, H8S, H8 Family (also
called "H8S, H8/300 Series C/C++ Compiler") version 7.00 Release 00 only.

Note: Goanna supports only this particular version of ch38 compiler. In particular, ch38 compiler version 6 and
older are not supported.

Known Limitations

• Goanna assumes the compiler is located at:

– C:\Program Files (x86)\Renesas\Hew\Tools\Renesas\H8\7_0_0\bin.

Parse errors may occur if the compiler is installed to any other location.

1.3.14 Renesas RXC Toolchain (renesas-rx Dialect)

Goanna supports CC-RX compiler shipped with Renesas C/C++ Compiler Package for RX Family version 1.02.01
only.

Note: Goanna supports only this particular version of CC-RX compiler. In particular, CC-RX compiler version 2
is not supported.

Known Limitations

• Goanna assumes the compiler is located at:

– C:\Renesas\e2studio\Tools\Renesas\RX\1_2_1\bin.

Parse errors may occur if the compiler is installed to any other location.

1.3.15 Tasking VX-toolset for C166/ST10 (tasking-c166 Dialect)

Goanna supports Tasking VX-toolset for C166/ST10 version 3.1r1 only.

Note: Goanna supports only this particular version of VX-toolset. In particular, VX-toolset for C166/ST10 version
3.1r2 is not supported.

Known Limitations

• Goanna assumes the compiler is located at:

– C:\Program Files (x86)\TASKING\C166-VX v3.1r1\bin.

Parse errors may occur if the compiler is installed to any other location.

11

1.3.16 TI Build Tools (ti-cl16x, ti-cl2000, ti-cl430, ti-cl470, ti-cl500 and ti-cl55 Dialects)

Goanna supports the following Texas Instruments compilers:

• CL16X compiler shipped with Texas Instruments Code Composer Studio versions 2.2, 3 and 5,
Note: CL16X compiler shipped with Texas Instruments Code Composer Studio version 4 is not supported.

• CL2000 compiler shipped with Texas Instruments Code Composer Studio versions 4 and 5,
• CL430 compiler shipped with Texas Instruments Code Composer Studio versions 4 and 5,
• CL470 compiler shipped with Texas Instruments Code Composer Studio version 5,
• CL500 compiler shipped with Texas Instruments Code Composer Studio version 5, and
• CL55 compiler shipped with Texas Instruments Code Composer Studio version 5.

Note: Compilers shipped with Texas Instruments Code Composer Studio version 6 are not supported.

Known Limitations

• Goanna assumes the compiler is located at:
– C:\ti\ccsv5\tools\compiler\c6000_7.3.4\bin,
– C:\ti\ccsv5\tools\compiler\c2000_6.1.0\bin,
– C:\ti\ccsv5\tools\compiler\c5400_4.2.0\bin,
– C:\ti\ccsv5\tools\compiler\c5500_4.4.1\bin,
– C:\ti\ccsv5\tools\compiler\msp430_4.1.0\bin,
– C:\ti\ccsv5\tools\compiler\tms470_4.9.1\bin,
– C:\ti\ccsv4\tools\compiler\c2000\bin,
– C:\ti\ccsv4\tools\compiler\msp430\bin,
– C:\CCStudio_v3.3\C6000\cgtools\bin, or
– C:\ti\c6000\cgtools\bin.

Parse errors may occur if the compiler is installed to any other location.
• Goanna recognizes compiler intrinsics for CL2000 compiler only (ti-cl2000 dialect).

Note: For CL2000 compiler, Goanna ignores all compiler intrinsics; they are not used for analysis.

1.3.17 Wind River Diab Compiler (diab Dialect)

Goanna supports Wind River Diab Compiler shipped with Wind River Workbench 3.3 or higher.

Known Limitations

• Goanna assumes the compiler is located at:
– C:\WindRiver\diab\5.9.0.0\WIN32\bin, or
– C:\WindRiver\diab\5.8.0.0\WIN32\bin.

Parse errors may occur if the compiler is installed to any other location.

1.4 Supported Build Systems

Goanna currently supports the following build systems:

Build System Name Goanna Utility Name
GNU Make goannamake
QNX Make goannamake
Microsoft NMake goannamake
SCons goannascons
CMake goannacmake-conv
IAR Embedded Workbench (IarBuild.exe) goannaiarbuild
Keil µVision (UV4.exe) gotrace

12

1.4.1 GNU Make, QNX Make and Microsoft NMake

Goanna supports most versions of GNU Make, QNX Make and Microsoft NMake.

Goanna requires your Makefile to be written in specific style, and manual modification may be necessary to
integrate Goanna into your build. For instructions of how to do so, see 3.2.

1.4.2 SCons

Goanna supports most versions of SCons.

Goanna requires your SConstruct to be written in specific style, and manual modification may be necessary to
integrate Goanna into your build. For instructions of how to do so, see 3.3.

Known Limitations

• Link time analysis will not be performed if the build calls linker directly, rather than performing linking
through the compiler.

1.4.3 CMake

Goanna supports the following versions of CMake:

• CMake 2.8.5 or higher for Unix Makefile generator projects

• CMake 2.8.9 or higher for Ninja generator projects

Note: CMake projects with any other generators (such as Visual Studio) are not supported.

Goanna does not support direct integration with CMake build. However, Goanna provides a utility to read the build
information from the compilation database generated by CMake.

Known Limitations

• CMake projects with MinGW GCC compiler are not supported.

1.4.4 IAR Embedded Workbench R© (IarBuild.exe)

Goanna supports command line build of IAR Embedded Workbench projects using IarBuild.exe shipped with
IAR Embedded Workbench version 5.40 or higher.

Goanna also provides a mechanism to run analysis from within the IDE. For more details, see 6.1.

1.4.5 Keil
TM

µVision R© (UV4.exe)

Goanna supports command line build of Keil µVision projects with Keil µVision 4 or higher.

Goanna also provides a mechanism to run analysis from within the IDE. For more details, see 6.2.

Important Notes

• Support for Keil µVision is provided in a separate Keil µVision Support Package. Contact your distributor to
obtain the package.

• Old versions of Keil µVision (version 3 and older) are not supported.

13

2 Getting Started

2.1 License Agreement

Before installing Goanna Central, ensure you read the Goanna license agreement.

For evaluation (trial) licenses, please refer to:

http://redlizards.com/license-term/evaluation-license-agreement/

For registered (paid) licenses, please refer to:

http://redlizards.com/license-term/

2.2 Installation (Linux)

To install Goanna Central for Linux:

1. Download the Goanna Central for Linux tarball.

2. Unpack the downloaded tarball:

tar -zxvf goanna-central-linux-release-3.3.2.tgz

This should extract all files needed for installation in a separate directory.

3. Navigate to the directory just created:

cd goanna-central-linux-release-3.3.2

4. Run the install script (install-goanna) to start the installation process.
The installation process can be run either with sudo (i.e. under root):

sudo ./install-goanna

or without sudo (i.e. under your user account):

./install-goanna

We recommend that you install Goanna with sudo. The following features will not be installed if you do not
install Goanna with sudo:

• The Goanna Dashboard daemon; if the daemon is not installed, then to access the Goanna Dashboard,
you will need to start the server manually. See 8 for details.

5. Follow the instructions of the install script to complete installation.
By default, Goanna Central will be installed to:

• /usr/local/goanna if installed with sudo, or
• $HOME/goanna if installed without sudo.

If you wish to install Goanna Central to other location, provide a desired location when the install script asks
for the installation path.

6. To use Goanna Central from the command line, you should set your PATH environment variable to include
Goanna’s bin directory. The install script will show you how to do this at the end of installation.
For example, if you installed Goanna in /usr/local/goanna, you can add:

export PATH=$PATH:/usr/local/goanna/bin

to your ~/.profile file.

14

http://redlizards.com/license-term/evaluation-license-agreement/
http://redlizards.com/license-term/

2.3 Installation (Windows)

To install Goanna Central for Windows:

1. Download the Goanna Central for Windows installer.
2. Double click the installer .exe file.
3. Important: If you wish to use one of the following features:

• SonarQube integration support (see 9)
• Goanna Central bundled SonarQube 3.2.1 (see 10.10)
• CppCheck (see 10.11)
• CppNcss (see 10.11)

Then you need to click Options at this screen, and check “Codehaus Sonar” option to ensure all necessary
components are installed.
Additionally, you should also click Options here if you wish to change the installation directory.

4. Click Install.
5. Follow the instructions of the installer to complete installation.

Important: If you wish to use Goanna Central with Keil µVision, you will also need to install Keil µVision Support
Package. Contact your distributor to obtain the installer.

2.4 License Activation

Whether you are just evaluating Goanna or have purchased the full version, you must activate your license before
you can use Goanna.

2.4.1 Activating Node-locked License

If you have obtained node-locked licenses, you should have received an email containing your license information
from Red Lizard Software. This email will contain an Order Number which is required to complete the activation
process.

Before activating your node-locked license, you will need a challenge key for your computer. To obtain the challenge
key, run:

goanna-key

Now, to activate your node-locked license, follow these steps:

1. Go to the activation page at: http://www.redlizards.com/purchase/activate-license/
Enter the following details:
Email Address: The email address you provided when purchasing Goanna.
Order Number: The order number provided in the Goanna purchase confirmation email.
Challenge: The challenge key of the computer you wish to activate the license for.

2. Read the license agreement.
3. Check “I accept the License Conditions”, and click “Activate” to accept the license agreement and activate

your license.
4. The resulting license file (called goanna_license.lic) will be sent to the email address you provided. You

will also be taken to a page where you can download the license file by clicking on Download your license.
5. Save the goanna_license.lic file to the following location:

Linux $HOME (Home directory of the user running Goanna), or /etc/goanna
Windows (XP and Server 2003) C:\Documents and Settings\<username>\Local Settings\Application

Data\RedLizards\Goanna Central
Windows (Vista, Server 2008 and later) C:\Users\<username>\AppData\Local\RedLizards\Goanna

Central
(where <username> is the name of the user account who have installed Goanna Central; usually it is
your Windows user name).

15

http://www.redlizards.com/purchase/activate-license/

2.4.2 Using Network (Floating) License

If you have obtained network (floating) licenses, then you will need to perform the following steps to set up Goanna
to use your license:

1. Set up a license server somewhere on your network with the license file supplied.
The license server for Goanna is shipped in a separate installation package. Contact your distributor to obtain
the installer.
For instructions on how to set up the license server, please refer to the separate “License Server User Guide”.

2. Always use --license-server option when running Goanna analysis.

Once the license server is up and running, to use the license server, pass the --license-server=<server>
option to goanna or gokeil utility when running analysis (read on the rest of this user guide for instructions on
how to run analysis).

Borrowing a Network (Floating) license

When you run the Goanna analysis with a network (floating) license, you can optionally specify a borrow duration
(in the range of 1 to 24 hours). This is enabled by using the --license-borrow-hours=<hours> option in
combination with the --license-server option, and will force Goanna to reserve a single license seat for you
for this amount of time. In addition this technique can be used to improve license validation time, and will allow
you to perform Goanna analysis while disconnected from the license server.

2.5 Next Steps

Performing analysis on your C/C++ project with Goanna Central is a three-step process:

1. Setting up your C/C++ project, and running a full build on the project using Goanna build integration utility
to capture settings of your build.

2. Using this information from full build to run analysis.

3. Reading and interacting with the analysis results.

The rest of this documentation explains this process in detail:

16

1. The next section, section 3, explains how to set up your C/C++ projects to be used with Goanna, and to capture
settings of your build.

2. The section 4 explains how to use this captured settings to run analysis, and to read the analysis results.

3. The section 5 explains what options are available to control the analysis, and how to do so.

4. The section 6 explains ways to set up IAR Embedded Workbench or Keil µVision IDEs to run analysis directly
from within IDE.

5. The section 8 explains how to use the Goanna Dashboard, a web-based interface to navigate and interact with
analysis results and issues found within your projects.

6. The section 9 explains how to use Goanna Central with SonarQube quality platform.

17

3 Setting Up Projects for Goanna Analysis

3.1 Introduction

The most basic way to perform Goanna analysis on the source code is project-wide analysis 1. Project-wide analysis
scans and identifies potential issues within the whole project, based on information about how the project is built.

To perform project-wide analysis, the following steps should be taken:

1. First, you need to ensure that the project compiles successfully with no syntax errors. Goanna analysis engine
relies on the source code being syntactically correct.

2. Depending on the build system, you may need to modify your build settings to ensure Goanna detects all of
source files. For details, see:

• 3.2 for GNU Make, QNX Make and Microsoft NMake projects, or
• 3.3 for SCons projects.

3. In addition, the path to the compiler should be added into PATH environment variable. This is to ensure that
Goanna can detect the compiler and its configuration. If the build program or the compiler requires other
environment variables to be set appropriately for the build to succeed, these variables should also be set in the
same way you would do when you are building the project normally.

4. Clean your build to force a full build. This is to ensure Goanna detects all of source files during build.

5. Run a Goanna build integration utility (different depending on the build system). This utility runs and monitors
a full build of the project, and captures all necessary information for Goanna to understand the source files.
This process is called build recording, and the result of this process is stored in a file called build specification.

6. Run the project analysis utility with the generated build specification to perform the analysis.

The generated build specification file can be re-used for future Goanna analysis, so that you do not have to re-run
full build before every analysis. However, if the structure or settings of the project changes, such as:

• When a new source file has been added to the project,

• When an existing source file has been removed from the project, or

• When the project build settings themselves change, such as adding new include paths or predefined macros,
or upgrading to a newer version of compiler,

then the full build, and build recording process should be performed again to ensure the build specification reflects
the changes made to the project.

The working directory where you run Goanna build integration utility from is treated as the project root directory
by all Goanna utilities.

Use The Same Machine For Build And Analysis

To ensure that Goanna has an accurate understanding of the source files, Goanna needs access to not only the source
files, but other extra build-specific information such as:

• All used header files

• Configuration of the compiler used

This means that Goanna requires that the machine used to analyze the project also has:

• The same version of the compiler used,

• The same versions of all used libraries, and

• The same version of the build program used.

It is therefore recommended to run analysis on the same machine used to build the project.

1Goanna also provides other methods to perform analysis. See 10 for details.

18

3.2 Setting Up GNU Make, QNX Make and Microsoft NMake Projects with goannamake

3.2.1 Preparing Makefile for Goanna Integration

In order for Goanna to detect source files and the compiler settings, Goanna injects into Make variables to replace
all calls to compiler and linker. Because of this mechanism, your Makefile must call compilers and linkers via
Make variables, rather than calling them directly.

For example, Goanna will not be able to inject the following Makefile target:

example.o: example.c
gcc -o $@ $<

However, by replacing direct call to gcc with CC Make variable, Goanna will be able to inject this Makefile target:

CC=gcc

example.o: example.c
$(CC) -o $@ $<

By default, Goanna will replace compiler and linker calls in the following Make variables:

• For C compiler: CC, HOST_CC and TARGET_CC
• For C++ compiler: CXX, HOST_CXX, TARGET_CXX and CCC
• For linker: LD

If your Makefile uses Make variables to call compilers and linkers, but the variables names are different, then
either of the following needs to be done:

• Rename the variables to one of the default variable names listed above, or

• Set GOANNAMAKE_CC, GOANNAMAKE_CXX and/or GOANNAMAKE_LD variables to tell Goanna that the different
naming convention is used; see below.

GOANNAMAKE_CC, GOANNAMAKE_CXX and GOANNAMAKE_LD Environment Variables

Goanna accepts GOANNAMAKE_CC, GOANNAMAKE_CXX and GOANNAMAKE_LD environment variables to specify which
Make variables Goanna should monitor for compiler and linker calls.

These environment variables should contain a list of Make variable names used for compiler or linker calls, sepa-
rated by a colon. If one or more of these environment variables are not set, Goanna assumes the following default
values:

Environment Variable Default Value
GOANNAMAKE_CC CC:HOST_CC:TARGET_CC
GOANNAMAKE_CXX CXX:HOST_CXX:TARGET_CXX:CCC
GOANNAMAKE_LD LD

Notes On Microsoft NMake Projects (Windows Only)

With Microsoft NMake, the build program is generally called nmake. In order for Goanna to detect NMake, you
need to either:

• Pass --microsoft option to goannamake. Using this option causes Goanna to look for nmake program,
instead of make; or,

• Set MAKE environment variable to ensure Goanna looks for nmake program; see below.

19

Using MAKE Environment Variable To Specify Make Program Name

By default, Goanna assumes that the "Make" program is called make (unless --microsoft option is given). If this
is not the case, then you need to set MAKE environment variable to specify which program Goanna should refer to.

MAKE environment variable should contain a name of the program, or an absolute path, to GNU Make, QNX Make
or Microsoft NMake program.

3.2.2 Using goannamake To Capture The Build Settings

Once your Makefile is ready, you can run the build and capture the build settings; goannamake utility is used to
perform this process.

The steps to run the build and capture the build settings are as follows:

1. Run make clean, or other suitable command to "clean" the project.

2. For GNU Make and QNX Make projects, run:

goannamake --record=<build-specification-file> <arguments-to-make>

For Microsoft NMake projects, run:

goannamake --record=<build-specification-file> --microsoft <arguments-to-
make>

This command performs and monitors the full build; once the build is complete, goannamake will output the
build settings into <build-specification-file>. This file is called build specification file.
For example, if your project is GNU Make project, and the build command is make all, then you can run
the following to save a build specification to myproject.goannabuild:

goannamake --record=myproject.goannabuild all

3. You can now use goanna utility to run analysis on the project; see 4.2 for more details.

20

3.3 Setting Up SCons Projects with goannascons

3.3.1 Preparing SConstruct file for Goanna Integration

In order for Goanna to detect source files and the compiler settings, Goanna injects into SCons build variables to
replace all calls to compiler and linker. In addition, Goanna also relies on the system environment variables (such
as USERPROFILE on Windows) being set during build recording.

This means that, in most cases, your SConstruct file needs to be modified, since by default:

• SCons projects do not read build variables to override compiler and linker calls, and
• SCons projects do not read system environment during the build.

The following is an example of Python code that can be added to SConstruct file to:

• allow Goanna to override compiler and linker calls, and
• allow Goanna to read system environment variables during build.

Note that this is only an example; depending on how your SConstruct file is written, modifications may need to
be applied in a different way.

Start of SConstruct file
import os
Also import any extra modules here if required

Read system environment block
my_env = os.environ

If your build needs to override PATH or any other environment variables ,
we recommend to do so here

#
my_env [’< variable -name >’] = ’... ’

Set up build environment with system environment included .
env = Environment(ENV = my_env)

If your build needs to specify additional environment settings , then the
above line can be written as:

#
env = Environment (ENV = my_env ,
... ,
...)

Read CC argument from command line , and if it ’s set , override C compiler .
cc = ARGUMENTS.get(’CC’, "")
if cc != "":

env[’CC’] = cc

Read CXX argument from command line , and if it ’s set , override C++
compiler .

cxx = ARGUMENTS.get(’CXX’, "")
if cxx != "":

env[’CXX’] = cxx

... - rest of your SConstruct file

Goanna requires that your SConstruct file accepts a build variable called CC to override C compiler, and CXX to
override C++ compiler. No other variable names are accepted.

Important Note: Goanna currently does not support link time analysis if your SConstruct file calls linker directly.
This is because Goanna does not inject linker calls for SCons projects.

21

3.3.2 Using goannascons To Capture The Build Settings

Once your SConstruct file is ready, you can run the build and capture the build settings; goannascons utility is
used to perform this process.

The steps to run the build and capture the build settings are as follows:

1. Run scons -c to "clean" the project.

2. Run:

goannascons --record=<build-specification-file> <arguments-to-scons>

This command performs and monitors the full build; once the build is complete, goannascons will output
the build settings into <build-specification-file>. This file is called build specification file.
For example, you can run the following to save a build specification to myproject.goannabuild:

goannascons --record=myproject.goannabuild

3. You can now use goanna utility to run analysis on the project; see 4.2 for more details.

22

3.4 Setting Up CMake Projects with goannacmake-conv

3.4.1 Using goannacmake-conv To Generate The Build Settings

For CMake projects, Goanna does not provide a utility to directly monitor the build process. Instead, Goanna relies
on CMake’s ability to generate a compilation database for the build, which then can be used by Goanna to generate
a build specification (see http://clang.llvm.org/docs/JSONCompilationDatabase.html for more details).

The steps to run the build and capture the build settings are as follows:

1. Run make clean, ninja -t clean, or other suitable command to "clean" the project.

2. Perform a CMake build, with a special option CMAKE_EXPORT_COMPILE_COMMANDS set to ON to generate a
compilation database. For example, for Unix Makefile projects, you can run the commands like:

cmake -G "Unix Makefiles" -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
make

or for Ninja projects:

cmake -G "Ninja" -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
ninja

Once the build is finished, you should see a file called compile_commands.json in the current working
directory. This is the compilation database file.

3. Run:

goannacmake-conv --record=<build-specification-file>

This command reads the compilation database file, and converts it to Goanna build specification file.

4. You can now use goanna utility to run analysis on the project; see 4.2 for more details.

Important: Goanna does not support CMake projects with generators other than Unix Makefiles and Ninja. Using
goannacmake-conv on such projects (for example, MinGW Makefiles projects, Visual Studio projects and Eclipse
CDT projects) may result in inaccurate analysis results or parse errors.

23

http://clang.llvm.org/docs/JSONCompilationDatabase.html

3.5 Setting Up IAR Embedded Workbench R© Projects with goannaiarbuild

There are two ways to run Goanna analysis with IAR Embedded Workbench projects:

• If you use IAR’s IarBuild.exe utility to perform build from command line, you can use goannaiarbuild
utility to record your build and run Goanna analysis. See the following sections for more details.
Note: Please refer to IAR website (http://supp.iar.com/Support/?Note=47884) and IAR Embedded Workbench
manual for instructions to configure command line build.

• Alternatively, Goanna Central can be configured to run analysis directly from within IAR Embedded Work-
bench IDE. See 6.1 for more details.

Using goannaiarbuild To Capture The Build Settings

For IAR Embedded Workbench command line projects (with file extension .ewp), goannaiarbuild can be used
to run the build and capture the build settings.

The steps to run the build and capture the build settings are as follows:

1. Run iarbuild <project-file> -clean <target-name> to "clean" the project.

2. Run:

goannaiarbuild --record=<build-specification-file> <project-file> -make <target-
name>

This command performs and monitors the full build; once the build is complete, goannaiarbuildwill output
the build settings into <build-specification-file>. This file is called build specification file.
For example, if the project file is myproject.ewp and the target name is Debug, you can run the following
to save a build specification to myproject.goannabuild:

goannaiarbuild --record=myproject.goannabuild myproject.ewp -make Debug

Note: If your build requires a different set of options to IarBuild.exe, then you need to pass these options
to goannaiarbuild as well. The format of options to goannaiarbuild is:

goannaiarbuild <arguments-to-goannaiarbuild> <arguments-to-IarBuild.exe>

3. You can now use goanna utility to run analysis on the project; see 4.2 for more details.

24

http://supp.iar.com/Support/?Note=47884

3.6 Setting Up KeilTM
µVision R© Projects with gotrace

There are two ways to run Goanna analysis with Keil µVision projects:

• If you use Keil µVision (UV4.exe) directly to perform build from command line, you can use gotrace utility
to record your build and run Goanna analysis. See the following sections for more details.
Note: Please refer to Keil website (http://www.keil.com/support/man/docs/uv4/uv4_commandline.htm) and
Keil µVision manual for instructions to configure command line build.

• Alternatively, Goanna Central can be configured to run analysis directly from within Keil µVision IDE. See
6.2 for more details.

Using gotrace To Capture The Build Settings

For Keil µVision command line projects (with file extension .uvproj), gotrace can be used to run the build and
capture the build settings.

The steps to run the build and capture the build settings are as follows:

1. Run:

gotrace <directory-of-µvision-installtion>\UV4.exe -j0 -r <project-file>.uvproj

This command cleans the build, and then performs and monitors the full build for the last target used. Once
the build is complete, gotrace will output the build settings into <build-specification-file>. This file is called
build specification file.
For example, if the project file is myproject.uvproj, and if Keil µVision is installed to C:\Keil_v5\UV4,
then you can run the following to save a build specification to myproject.goannaspec:

gotrace --output-file=myproject.goannaspec "C:\Keil_v5\UV4\UV4.exe" -j0 -
r myproject.uvproj

Note: If your build requires a different set of options to Keil µVision (UV4.exe), then you need to pass these
options to gotrace as well. The format of options to gotrace is:

gotrace <arguments-to-gotrace> <arguments-to-Keil-µVision>

2. You can now use gokeil utility to run analysis on the project; see 4.3 for more details.

Using gotrace With Multi-Project Workspace

If your project uses a multi-project workspace (with file extension .uvmpw), then you will need to specify the
target (or use Keil µVision’s -z option for all targets). For example, to perform full rebuild and generate a build
specification file for all targets of all projects with a workspace called myworkspace.uvmpw, run:

gotrace --output-file=myproject.goannaspec <directory-of-uvision-installtion>\UV4.exe
-z -j0 -r myworkspace.uvmpw

Important: The format of build specification files generated by gotrace is different from those generated by
goannamake, goannascons and goannaiarbuild. gotrace format build specification files can only be used
with gokeil; goanna cannot read these files.

25

http://www.keil.com/support/man/docs/uv4/uv4_commandline.htm

4 Running Goanna Analysis

4.1 Introduction

Goanna Central provides two utilities to perform project-wide analysis. Deciding which one to use is based on
which build system your project uses:

• If your project is a Keil µVision project; in other words, if the build specification file was generated by
gotrace, then use gokeil.

• Otherwise (i.e. if the build specification file was generated by goannamake, goannascons, goannacmake-
conv or goannaiarbuild utility), then use goanna.

The following table summarises this difference:

Record Build With... Utility To Run Analysis
goannamake goanna
goannascons goanna
goannacmake-conv goanna
goannaiarbuild goanna
gotrace gokeil

Note: It is not possible to use a build specification generated by goannamake, goannascons, goannacmake-
conv or goannaiarbuild with gokeil. Similarly, it is not possible to use a build specification generated by
gotrace with goanna.

Both goanna and gokeil operate in a similar manner under the hood. goanna and gokeil generally perform the
following steps to run project-wide analysis:

1. goanna or gokeil reads the build specification file; this file contains essential information about your build,
such as the list of source files, compiler options and environment variables used during the build, and the list
of produced object files and binaries.

2. goanna or gokeil calls goannacc (for C files) and goannac++ (for C++ files) to perform analysis on
individual source files. During analysis, Goanna uses a database file (called Project Database or Project DB;
see 10.7) to store information about the analysis and any intermediate data required to perform interprocedural
analysis (see 7.1).
Once goannacc or goannac++ find any issues in the source file(s), it will report these to the console.

3. Once this is finished, then goannald is called to perform link time analysis. With link time analysis, Goanna
can find more issues that may span across the whole project.
Like goannacc and goannac++, all issues found by goannald during link time analysis goes to the console.

4. If enabled, goanna or gokeil then invokes CppCheck and/or CppNcss at this point (see 10.11).

5. Finally, goanna or gokeil publishes the analysis results to the Goanna Dashboard (see Section 8), and
optionally to HTML report files (see 4.4.2), a XML file (see 4.4.3), and/or SonarQube (see Section 9).

Goanna provides various configuration options to fine tune Goanna analysis run, such as:

• Selecting what check(s) to be enabled.
A check is a Goanna term for a rule that describes a single type of potential issues that may be found within a
project. For example, ARR-inv-index is a Goanna check that detects attempts to read a value from an array
with an invalid (out-of-range) index.
By default Goanna uses built-in "default" set of checks which contains rules for many common issues. Using
the checks selection options allows you to choose exactly which checks, or rules, that Goanna should look for.
See 5.1 for more details.

• Whether to include system and/or user header files into the analysis.

For details of configuration options, see 5.

26

4.2 Running Goanna Analysis On Non-Keil Projects With goanna

To run project-wide analysis with goanna, you will need:

• A build specification file generated by goannamake, goannascons, goannacmake-conv or goannaiar-
build.

• Source files and header files used. They must be located in the same location as when the build specification
was generated.

• All used compilers (of the same version) and libraries (again the same version) should also be installed to the
same location as well.

To run the analysis, follow these steps:

1. Add the path to the compiler should be added into PATH environment variable, and set all other build-related
environment variables appropriately (i.e. exactly the same value as during the build recording).
This is needed because Goanna needs to be able to find the compiler, and detect its configuration, during the
analysis time to configure Goanna’s C/C++ parser to ensure it understands all the source files and header files.

2. Run:

goanna --analyze=<build-specification-file>

to start the analysis.

It’s important to note that the analysis may take a long time; if the project contains a large number of files (generally
100 or more), and/or large files, then the analysis may possibly take hours to complete.

To pass additional Goanna analysis options, add at the end of the command. For example:

goanna --analyze=<build-specification-file> <additional-analysis-options>

4.3 Running Goanna Analysis On KeilTM
µVision R© Projects With gokeil

To run project-wide analysis with gokeil, you will need:

• A build specification file generated by gotrace,

• Source files and header files used. They must be located in the same location as when the build specification
was generated.

• All used compilers (of the same version) and libraries (again the same version) should also be installed to the
same location as well.

To run the analysis, follow these steps:

1. Run:

gokeil --buildspec=<build-specification-file>

to start the analysis.

Note: Unlike goanna, there is no need to (re)set environment variables before analysis when using gokeil.

It’s important to note that the analysis may take a long time; if the project contains a large number of files (generally
100 or more), and/or large files, then the analysis may possibly take hours to complete.

To pass additional Goanna analysis options, add at the end of the command. For example:

gokeil --buildspec=<build-specification-file> <additional-analysis-options>

27

4.4 Reading Analysis Results

The results of Goanna analysis will be made available in several places:

• During analysis, Goanna will show the name of the file(s) being analyzed, and any issues found within that
file to the console; see 4.4.1 for details.

• Once the analysis is complete, Goanna automatically publishes the result of the analysis to the Goanna Dash-
board.
Goanna Dashboard is a web-based interactive interface that allows you to see the history of all analysis runs
on particular project(s). See 8 for details.

• Goanna can optionally output the analysis result to HTML report files (see 4.4.2), or a XML file (see 4.4.3).

• Goanna can also be configured to publish the analysis result to SonarQube (see 9).

4.4.1 Goanna Output On The Console

The simplest way to see the result of the analysis is the output message on the console (stderr by default). The
following is an example of the output message from Goanna:

Goanna - analyzing file foo.c
Number of functions: 20
foo.c:200 warning: Goanna[MEM-free-no-alloc] Severity-Medium, Pointer ‘tmp’

is freed without being allocated memory.
foo.c:211 warning: Goanna[ATH-cmp-float] Severity-Low, Comparison with a

float using == or !=.
CERT-FLP06-C,CERT-FLP35-CPP,MISRAC2004-13.3,MISRAC++2008-6-2-2

foo.c:222 warning: Goanna[ATH-cmp-float] Severity-Low, Comparison with a
float using == or !=.
CERT-FLP06-C,CERT-FLP35-CPP,MISRAC2004-13.3,MISRAC++2008-6-2-2

Any issues in the project found by Goanna are called warnings (or Goanna warnings). In this example, Goanna
shows three warnings, one from MEM-free-no-alloc check and two from ATH-cmp-float check.

By default, Goanna shows the following information for each warning:

• File name, and line number of the warning.

• Name of the check which generated this warning.

• Severity of the warning, which is one of: Low, Medium and High. Severity is determined on per-check basis
and is not affected by the actual code analyzed.

• Warning message, explaining why this warning is shown.

• A list of Goanna recognized C/C++ standard rules that may be violated with this warning.

For example, in the above example, the following output message of the first warning from ATH-cmp-float:

foo.c:211 warning: Goanna[ATH-cmp-float] Severity-Low, Comparison with a
float using == or !=.
CERT-FLP06-C,CERT-FLP35-CPP,MISRAC2004-13.3,MISRAC++2008-6-2-2

Indicates that:

• On foo.c line 211, there is a comparison on a variable or a constant value of a type float or double using
equality operators,

• This warning is determined by Goanna to have Low severity,

• This warning comes from a Goanna check called ATH-cmp-float, and

• The presence of this warning may mean that the project does not satisfy requirements imposed by one or more
of the following rules:

28

– CERT C Secure Coding Standard, Rule FLP06-C
– CERT C++ Secure Coding Standard, Rule FLP35-CPP
– MISRA-C:2004 Guideline, Rule 13.3
– MISRA C++:2012 Guideline, Rule 6-2-2

It is possible to customize the format of the output message with --output-format option. See the goannacc
reference (11.7) for details about this option.

Warning Traces

Goanna also has an ability to show a trace through the execution path leading to a warning; this is called a warning
trace. This is useful to identify important events during the execution and understand why the warning was issued.

The following is an example of warning output with a trace:

foo.c:254: warning: Goanna[PTR-null-fun-pos] Severity-High, Function call
‘get_obj(o)’ is immediately dereferenced, without checking for NULL.
CERT-EXP34-C,CWE-476
252: ^ - if (flags & SOME_CONDITION) is false
254: ! - possible_null
254: > - Entering into get_obj
315: ^ - if (!o) is false
316: ^ - switch (o->o_ty)
320: ! - Return NULL

To display traces for warnings, pass --trace option to goanna or gokeil when running analysis.

4.4.2 HTML Report of Analysis Results

Goanna can optionally generate an HTML report of the analysis results. There are two types of HTML reports:

• Summary Report, which shows a summary of the analysis result, including:

– Basic statistics, such as the number of files analyzed,
– Per-category and per-severity warnings pie chart,
– Bar charts of the top 10 warnings per check and top 10 files with warnings, and
– List of warning numbers per check.

This report shows the high-level statistics of the analysis results in an easy-to-see format; and

• Warnings Report, which shows a table of all warnings found; this table is interactive and supports filtering.

Example of Summary Report Example of Warnings Report

To generate HTML report files at the end of analysis, pass --html-report option to goanna or gokeil when
running analysis. This option accepts an optional argument to specify the type(s) of report to be generated:

29

• --html-report=summary: Generates summary report file.

• --html-report=warnings: Generates warnings report file.

• --html-report=all or --html-report with no extra argument: Generates both summary and warnings
report files.

• No --html-report option: HTML report files will not be generated.

4.4.3 Analysis Results In XML File

Goanna can optionally output the analysis result to a XML file. This is useful if you need Goanna to be used in
conjunction with some other platform or framework and need programmatic access to the analysis result.

To generate a XML output file at the end of analysis, pass --output-xml=<xml-file-name> option to goanna
or gokeil when running analysis.

4.4.4 Using Goanna Dashboard Web Interface To Interact With Analysis Results

Goanna comes with the Goanna Dashboard, a web-based interface that allows you to read and interact with the
analysis result. By default, Goanna automatically publishes the analysis results to the Goanna Dashboard at the end
of analysis.

For more details about this feature, see Section 8.

4.4.5 Using SonarQube To Interact With Analysis Results

Goanna also has an ability to publish the analysis results to SonarQube.

For more details about this feature, see Section 9.

30

5 Configuring Goanna Analysis

5.1 Setting Checks

5.1.1 Introduction

Goanna provides a set of options to configure what checks, or rules, to be used in the analysis to control types of
issues that Goanna should look for.

By default, Goanna runs analysis with the default set of checks which is designed to find many common issues for
most domains of application in the short time.

Goanna checks are identified by names such as ATH-div-0 and MEM-leak. Refer to the Goanna Reference Guide
for the list of available and default checks, and their full description and code examples.

5.1.2 Selecting Checks With Command Line Options

To specify a set of checks to be used during analysis, pass --check=<check-name> to goanna or gokeil when
running analysis. For example:

goanna --analyze=myproject.goannabuild --check=ATH-div-0 --check=MEM-leak

You can pass this option multiple times to specify a set of multiple checks.

Selecting All Checks Within The Coding Standard

Goanna also provides --checks=<name-of-standard> option (note the extra s) to specify whole group(s) of
checks from popular coding standards. For example, running the following command:

goanna --analyze=myproject.goannabuild --checks=misrac2004

causes Goanna to run analysis with all available checks for MISRA C:2004 coding standard.

It is also possible to specify a particular rule within the coding standard. For example, to run only the check(s)
corresponding to MISRA C:2004 Rule 12.8, run:

goanna --analyze=myproject.goannabuild --checks=misrac2004-12.8

The available coding standards in this version of Goanna Central are as follows:

Standard code Standard name
cert Computer Emergency Response Team (CERT) C/C++ Coding Standard
cwe Common Weakness Enumeration (CWE)
misrac2004 Motor Industry Software Reliability Association (MISRA) C:2004
misrac++2008 Motor Industry Software Reliability Association (MISRA) C++:2008
misrac2012 Motor Industry Software Reliability Association (MISRA) C:2012

In addition to the above list, there is a special “standard” called default-on which, if specified, will enable the
Goanna default set of checks.

Like --check option, you can pass --checks option multiple times to specify a set of multiple coding standards
or coding standard rules. It is also possible to pass a mix of --check and --checks options to select all of chosen
checks, coding standards and coding standard rules.

31

5.1.3 Using Checks File To Select Multiple Checks

In addition to the above options, Goanna also provides a mechanism called checks file to specify a set of manually
chosen checks.

A checks file is a text file with a list of Goanna check names (separated by a breakline), and looks like the following:

This is a comment.
MEM-double-free
MEM-double-free-alias
MEM-leak
MEM-leak-alias

symbol indicates a one-line comment; # symbol and anything after that (until the end of the line) will be ignored
by Goanna.

You can use any text editor to create a checks file.

Once a checks file is created, pass --checks-file=<path-to-file> to use the checks file; for example:

goanna --analyze=myproject.goannabuild --checks-file=mystandard.checks

Note: --checks-file option is mutually exclusive to --check and --checks options. It is not possible to use
--checks-file option in conjunction to --check or --checks options.

5.1.4 Enabling All Available Checks

Generally, you should only enable Goanna checks that are relevant to your environment.

Goanna analysis engine is designed to perform some computationally expensive checking algorithm only when
required by the enabled checks; if you have unnecessary checks turned on, this may cause the analysis to take
substantially longer.

In addition, some Goanna checks are either syntactic or specialized to particular rules within coding standards. If
you have these checks turned on, this may result in a large number of spurious warnings.

Nevertheless, Goanna provides an option to enable all available Goanna checks if this is required.

To enable all available Goanna checks, pass --all-checks to goanna or gokeil when running analysis. For
example:

goanna --analyze=myproject.goannabuild --all-checks

Note: Using --all-checks option will cause any --check, --checks and --checks-file options to be
ignored.

32

5.2 Checks Packages

Goanna Central provides over 180 individual checks, out of the box, that can be used to analyse your C/C++ source
code. It is also possible to enable an additional 450+ checks that are dedicated to providing coverage for popular
C/C++ standards. Controlling which checks are available can be done through the checks package commands
of goannacc. When additional packages are installed and enabled, the checks they provide can be selected for
analysis by using the check selection options described in Section 5.1.

Goanna Central ships with the following checks packages:

• stdchecks (enabled by default): "Goanna Core" checks. This checks package contains a set of checks for
common C/C++ issues.

• misrac2004: Dedicated checks for MISRA-C:2004 coding standard.

• misrac++2008: Dedicated checks for MISRA C++:2008 coding standard.

• misrac2012: Dedicated checks for MISRA C:2012 coding standard.

Important Note

• All checks package commands are available only with goannacc; goanna or gokeil do not support these
commands.

• Checks package operations are global and may affect analysis on all existing and new projects. Additionally,
enabling a checks package will also change the default set of checks to be enabled for all existing and new
projects.

• Goanna does not provide an option to use checks package for a single analysis run only; if you wish to do this,
you must first enable a checks package, run analysis, and then disable the checks package.

• Checks package commands require write access to the installation directory of Goanna. Generally, this means:

– On Windows, you need to issue checks package commands from within Command Prompt opened as
Administrator.

– On Linux, if you have installed Goanna Central with sudo or from within root terminal (i.e. under root
privilege), then you need to issue checks package commands with sudo, or from within root terminal.

5.2.1 Listing Checks Packages

To see which checks packages are installed or available, run:

goannacc --package-list

This will give you the list of installed and enabled checks packages, for example:

Package Available: misrac2004
Package Available: misrac++2008
Package Available: misrac2012
Package Installed: stdchecks

The checks packages that are installed but not enabled yet are shown as “Available”, and the checks packages that
are installed and enabled are shown as “Installed”.

5.2.2 Enabling Available Checks Package

To enable an already installed checks package, run:

goannacc --package-enable=<package-name>

Note: Use this command only for checks packages that are already installed. If you wish to enable a checks package
that is not installed yet, use --package-install option; see 5.2.4 for details.

33

5.2.3 Disabling Installed Checks Package

To disable an enabled checks package, run:

goannacc --package-disable=<package-name>

5.2.4 Installing Custom Checks Package

In addition to the pre-installed checks packages, it is possible to install a custom checks package that is provided in
a .goannapackage file.

To install and enable a custom checks package, run:

goannacc --package-install=<package-file>

Contact Red Lizard Software for more information about custom checks packages.

5.3 Including Headers Into Analysis

By default, Goanna analyzes source files only; any header files included are read by Goanna, but are not analyzed.

To include user headers (generally, those included using #include "..." syntax) into analysis, pass --user-
headers option to goanna or gokeil when running analysis. For example:

goanna --analyze=myproject.goannabuild --user-headers

To include system headers (generally, those included using #include <...> syntax, such as C and C++ standard
header files) into analysis, pass --system-headers option to goanna or gokeil when running analysis. For
example:

goanna --analyze=myproject.goannabuild --system-headers

Please note that using these options may increase time needed to run analysis.

5.4 Excluding Certain Files From Analysis

By default, Goanna analyzes all source files within the build. If you wish to only analyze some source files, it is
possible to use --exclude=<pattern> option to exclude some files from analysis. For example:

goanna --analyze=myproject.goannabuild --exclude=tests/*.c

--exclude option takes a regular expression pattern of file paths, relative from the project root directory.

You can specify --exclude option multiple times to specify a set of multiple file path patterns.

5.5 Setting Analysis Timeouts

By default, Goanna has a timeout of 240 seconds to spend in each analysis phase within one source file. To
change the timeout, pass --timeout=<timeout-in-seconds> to goanna or gokeil when running analysis.
For example:

goanna --analyze=myproject.goannabuild --timeout=60

Generally speaking, increasing timeout may result in more accurate results, but will take longer to complete the
analysis. Decreasing timeout will improve the running time, but may result in less accurate results. Due to the
underlying technology of the Goanna analysis engine, this timeout is essential.

34

5.6 Ignoring Certain Warnings ("Warning Suppression")

If you run Goanna frequently on the same project, in some cases, you may wish to ignore some warnings that do
not require immediate attention.

Goanna provides a mechanism to allow you to manually specify such warnings to be ignored; these warnings will
then not be reported in subsequent analysis. This is called warning suppression.

The recommended way to specify warnings to be suppressed is the Goanna Dashboard. See 8.2 for more details.

5.7 Other Configuration Options

In addition to those listed above, Goanna provides a range of analysis options to fine tune the analysis. For the list
of all analysis options, see goanna reference (see 11.1), gokeil reference (see 11.6) and goannacc reference (see
11.7).

Some analysis options may refer to advanced concepts not explained here; see 10 for details.

35

6 Running Goanna Analysis From Within IDEs

Goanna Central supports a limited form of IDE integration with the following IDEs:

• IAR Embedded Workbench version 5.40 and higher

• Keil µVision version 4 and higher

If you use one of the above IDEs, you can configure the IDE to allow Goanna to run analysis from within the IDE.
This provides a convenient method to perform analysis while working on the project, without falling back to the
command line.

Note: Goanna Central does not provide full IDE integration, in the sense that it does not provide a full GUI
to configure analysis. Such configurations generally need to be done through command line options, similar to
command line analysis.

6.1 Running Goanna Analysis From IAR Embedded Workbench R©

With goannaiarbuild utility, it is possible to set up IAR Embedded Workbench IDE to allow Goanna analysis to
be run directly from within IAR Embedded Workbench.

To set up IAR Embedded Workbench IDE, follow these steps:

1. Start IAR Embedded Workbench.

2. From the Tools menu, select Configure Tools....

3. In the Configure Tools dialog that follows, click the New button.

4. For the Menu Text of the new menu item, type &Goanna.

5. Next to Command:, type goannaiarbuild.exe.

6. Next to Arguments:, copy and paste the following text:

--output-format="%SOH%%RELFILE%:%LINENO%%SOH%: warning: Goanna[%CHECKNAME%]
Severity-%SEVERITY%, %MESSAGE%. %RULES%%EOL%" "$PROJ_FNAME$.ewp" -build <target-
name>

where <target-name> is a name of target configuration you wish to build (and therefore analyze). To see the
list of available configurations, navigate to Project »Edit Configurations....

7. Check Redirect to Output Window.

8. Click OK.

36

You should now see a new menu item Goanna on your Tools menu. Clicking this menu entry runs full build, and
performs analysis on the active project, with the results appearing in the Output window.

Notes On Using Goanna With IAR Embedded Workbench

The above method of running Goanna analysis from within the IDE does not generate a build specification. Instead,
goannaiarbuild operates in a special mode where it performs full build and the analysis at the same time (see
10.4 for details of this mode).

You will need to perform the set up process again:

• When you wish to add, modify or remove any Goanna analysis options; these need to be added at the start of
goannaiarbuild.exe arguments (in Arguments: text box), or

• When you wish to change the target configuration used for the analysis.

6.2 Running Goanna Analysis From KeilTM
µVision R©

Important: You need to install Keil µVision Support Package to use Goanna with Keil µVision. Contact your
distributor to obtain the installer.

With gotrace and gokeil utilities, it is possible to set up Keil µVision IDE to allow Goanna analysis to be run
directly on your project from with Keil µVision IDE.

Note: This procedure works only for a single project. If you use this method on a multi-project workspace, then
the analysis will be performed only on the active project.

To set up Keil µVision IDE, follow these steps:

1. Start Keil µVision.

2. From the Tools menu, select Customize Tools Menu....

3. In the Customize Tools Menu dialog that follows, click the New (Insert) button. This will create a new menu
entry to run gotrace to capture the build.

4. Type Goanna: &Build and Capture and press Enter. This will become the name of the new menu entry.
You can assign different name here if you wish.

5. Click "Browse" button next to Command entry. A file selection dialog will open. Navigate to the directory
where Goanna Central is installed, and choose gotrace.exe.

37

6. Next to Arguments:, copy and paste the following text:

--force-tracing #X -j0 -r %P

Note: If your project requires additional Keil µVision options to build, then you will need to append these
here. See Description section above.

7. Click the New (Insert) button again to create a new menu entry to run gokeil to run the analysis.

8. Type Goanna: &Run analysis and press Enter. Again you can assign different name here if you wish.

9. Click "Browse" button next to Command entry. Navigate to the directory where Goanna Central is installed,
and choose gokeil.exe.

10. Next to Arguments:, copy and paste the following text:

--output-format="%%RELFILE%%(%%LINENO%%,%%COLUMN%%): %%TYPE%%: Goanna[%%CHECKNAME%%]
Severity-%%SEVERITY%%, %%MESSAGE%%. %%RULES%%"

Note: You will need to append Goanna options here to change analysis configurations. See Running analysis
from Keil µVision section below.

11. Click OK.

You should now see a new menu item Goanna: Build and Capture and Goanna: Run analysis on your Tools menu (unless
if named differently).

Running analysis from Keil µVision

After setting up your Keil µVision, you can follow these steps to run the analysis:

1. Before running analysis, make sure to save any changes to the project or any source files within.

2. You can proceed to the next step (skipping the build specification generation) if your project meets all of the
following conditions:

• You have run the analysis on the project before (i.e. there is an existing build specification file)
• Since the last analysis, there are no newly added or removed files
• Since the last analysis, there are no changes to the project settings

38

Otherwise, you will need to build the project and generate the build specification first. To do so, follow these
steps:

(a) Make sure that your desired target is selected. To select a different target, you can use the drop-down
selection in the Keil µVision’s toolbar.

(b) Go to Tools menu and click Goanna: Build and Capture. This will rebuild your project and generate the build
specification.

(c) A console window appears, and the build starts. Wait until this windows is automatically closed; when
the window is closed, the build is complete. Once the build is complete, you will also see a message like:

gotrace: Build information recorded to the build spec file ’goanna.goannaspec’
(54 compiler calls, 2 linker calls).

Note: gotrace will not show any progress information during build. This is due to technical limitation
of Keil µVision.

3. To run the analysis with default settings (or custom settings saved from the last analysis - see below), go to
Tools menu and click Goanna: Run analysis.

4. Alternatively, you can change the analysis option before running the analysis. To do so, follow these steps:

(a) Go to Tools menu and click Customize Tools Menu....
(b) Select Goanna: Run analysis from the menu list.
(c) Add any extra Goanna options you would like to add at the end of Arguments: text box. You can also

remove options that are no longer needed. Changes made here will be saved for any subsequent analysis.

Tips: If you frequently change the analysis options, you can enable Prompt for Arguments option to make
Keil µVision ask for Goanna analysis options every time.

(d) Press OK.
(e) Now open Tools menu again and click Goanna: Run analysis to run the analysis.

5. Once the analysis starts, a console window appears. Wait until this window is automatically closed; when the
window is closed, the analysis is complete. Analysis results should be shown in the "Build Output" window.

Note: gokeil will not show any progress information during analysis. This is due to technical limitation of
Keil µVision.

6. You can jump to the line with a Goanna warning by double clicking at the Goanna warning line in the "Build
Output" window.

39

7 Getting the Best Results from Goanna

7.1 Interprocedural Analysis

Goanna’s interprocedural analysis propagates information about function behaviour to other functions. This infor-
mation includes parameter values, return values, and function effects that may impact other parts of the code. This
enables Goanna to detect things in your program such as freeing of memory through function calls, functions that
never return, and input values to some functions.

Interprocedural analysis is not limited to a specific set of checks, but rather enhances the precision of many checks.

An example of what interprocedural analysis can find can be seen in the sample of function myAlloc.

void *myAlloc(int param){
void *p = malloc(param);
if (p)

return p;
else
return NULL;

}

int main(int argc, char ** argv) {
int * n;
n = (int*)myAlloc(sizeof(int) * 10);
n[0] = 5; // this may be a dereference of NULL
return *n;

}

Here, Goanna learns that myAlloc may return NULL. This means that when the return value of myAlloc is assigned
to n, Goanna knows this value may be NULL. Therefore, the expression n may be dereferencing a NULL pointer, and
Goanna will warn accordingly.

There is some additional computation overhead in running interprocedural analysis. If you need rapid results
without much depth, then turning off interprocedural analysis will provide faster results (at the cost of accuracy in
some checks). To turn off interprocedural analysis, use the --no-ipa option.

By default interprocedural analysis does two passes (in optimized order) over each file. This provides a good ap-
proximation for function behaviours, but may miss some complex behaviours that require many passes to accurately
detect. Additional precision can be gained by increasing the iteration limit (the maximum number of passes Goanna
will do). To change the interprocedural analysis iteration limit, use the --ipa-iterations option.

7.2 A Word on False Positives

Goanna considers all possible execution paths in your program, and will warn you if it finds potential defects (such
as use of an uninitialised variable) that occur only on particular execution paths and not others. But sometimes,
the execution path leading to a potential defect is actually not possible when the program is executed. If Goanna is
able to deduce this through static analysis, then it won’t warn you. But if it can’t, then you may receive a spurious
warning for a defect that isn’t really there. Such warnings are called false positives.

Some false positives occur because Goanna currently does not track dependencies between variables in loops. For
example, if you have a loop with two counters and only test one:

char buffer[11];
int i, count;

i = 0;
count = 10;
while (--count >= 0) {
buffer[i++] = ’x’;

}
buffer[i] = ’\0’;

Goanna may issue a false positive warning because it doesn’t deduce that i = 10 when the loop terminates.

Such false positives can often be suppressed with the assert macro (sec. 7.4). Otherwise you can suppress false
positives using the Goanna Dashboard (see 8.2).

40

7.3 Using the _GOANNA Preprocessor Symbol

Goanna has a built-in preprocessor definition, defined by the macro

#define _GOANNA 1

This allows code to be explicitly included in or excluded from analysis by Goanna. For example:

#ifdef _GOANNA
//Code only to be included while the program is being analysed
#endif
#ifndef _GOANNA
//Code not to be analyzed by Goanna
#endif

7.4 Using the assert macro

Goanna can sometimes use information provided by assert() to refine its analysis of numerical and pointer
values. It does this by using assert statements as assumptions for value ranges and pointer validity.

For example, in the code below:

void my_fun(void) {
int my_array[20];
int x = rand();

assert(x == 10);
f(my_array[x]);

}

the assert() means that the array reference must be in-bounds, even though the index variable x has a randomly-
assigned value. Therefore, Goanna does not issue an out-of-bounds warning.

7.5 Sample Code

A package containing a number of sample C and C++ files is available on our website. Go to http://redlizards.com/
resources/example-code/ and download the Goanna Central Sample Code package. The files contained in this
package may be useful for practicing using Goanna, or ensuring that it is working correctly.

A build specification is included in the package, which analyzes all the files included. To run analysis on this sample
code package, run:

goanna --analyze=central.goannabuild

You will need to install gcc (GNU C Compiler) and make sure that PATH environment variable contains a path to
where gcc is installed before running analysis on this sample code package.

41

http://redlizards.com/resources/example-code/
http://redlizards.com/resources/example-code/

8 Using the Goanna Dashboard

Goanna Dashboard allows you to store and visualise the history of your Goanna results. It includes a web server,
goreporter, used to display these results in a web browser. Each of your analysis runs is captured in a snapshot,
which comprises of the warnings for that run as well as the source code analysed in the run. These snapshots are
used to track the history of your project in the Goanna Dashboard.

8.1 Getting to the Goanna Dashboard

On Windows, and also on Linux when Goanna Central was installed under sudo or from within the root terminal,
the Goanna Dashboard is configured to start automatically at the computer startup. In this case, you can simply
navigate to http://localhost:1197/ to access the Goanna Dashboard. This will show the Project Page with all projects
Goanna has taken a snapshot of.

Otherwise, you need to start the Goanna Dashboard server first. See 11.9 for instructions on how to do this.

If you load the Goanna Dashboard without first taking a snapshot you will see an empty table with the text “No data
available in table”. To use the Goanna Dashboard you must first take a snapshot. (refer to 11.9)

8.2 Bug Statuses

The Goanna Dashboard allows you to classify bugs into one of five statuses:

Unclassified This is the default status for when a new warning is added to the Goanna Dashboard.
Ignore Ignore this warning; useful when the warning is valid, but does not require immediate attention.
Analyse This warning need to be investigated further before it can be classified properly.
Fix This warning is a problem that needs to be fixed.
Not a Problem This is warning is not a real bug (false positive).

If you select a warning to be either Ignore or Not a Problem, then these warnings are automatically suppressed;
Goanna will then ignore these warnings in future analysis runs.

8.3 Severity

Every check in Goanna has been assigned a static severity of either; High, Medium or Low. These severities are
represented throughout the Goanna Dashboard in three colours (or a blend of these three colours):

• High: Red
• Medium: Yellow
• Low: Green

8.4 Dashboard Views

8.4.1 Project Page

The project page is usually where you begin when using the Goanna Dashboard. It gives an overview of all projects
Goanna has analysed and taken a snapshot of. The table provides a high level overview of the current state of all
projects, including the number of warnings, number of new warnings, number of files analysed and the last time a
snapshot was taken.

If you do not want to have a project in your dashboard anymore, you can use the checkboxes on the left hand side
of the table to select the project(s) you wish to delete, then use the Delete Project button in the Dashboard’s toolbar.

42

http://localhost:1197/

8.4.2 Report Page

Once you select a project you are taken to the project’s report page. This page shows four graphs:

Snapshot History shows the overall progress of your project over time. Each point on the graph is one of your
previous snapshots, showing the total number of warnings by severity. Clicking on any point in the graph will
change the report page to show details about warnings in that snapshot. By default, the most recent snapshot
is selected.

Warnings By Category shows all warnings for your snapshot broken down into each warning type. Clicking on a
wedge will show the break down of warnings of that category. Clicking on a subsequent wedge will take you
to the warnings browser filtered for that particular warning type.

Top 10 Warnings shows the top ten warning types in this snapshot. Clicking on one of the bars in the chart will
take you to the warnings browser filtered by that warning type.

43

Warnings By Directory shows the concentration of warnings in your directory structure. A red node means that
there are more than 10 warnings per file (average) in the directory, a green one means there are zero warnings
per file (average). Clicking on a node will load the directory browser in that folder.

Global filters can be applied from the toolbar to filter by warning severity and/or bug status. These filters apply to
all charts.

8.4.3 Directory Browser

The directory browser is a way to browse through your project’s directory structure to see what files and folders
have what warnings. Total number of warnings per file or folder are broken down into warning categories and
displayed in a bar chart.

44

The directory browser allows you to browse through your source tree in a few ways. The location bar above the
chart allows you to see the path to your current location. Clicking on an item in the location bar will take you there
in the directory browser. Similarly, clicking on a directory name in the chart will reload the directory browser with
the contents of that folder. To view the contents of a source file, click on its name to load the code browser. To see
the details about a particular warning category for a file, click on the segment for that category in the bar of the file
or folder to load the warnings browser filtered for your selection.

The chart can be filtered in two ways. The sidebar allows for particular warning types, or warning categories to be
turned on and off. In addition, the global filters in the toolbar (severity and bug status) also apply to this chart.

8.4.4 Warnings Browser

The warnings browser shows details of all the warnings in your project. Filtering is possible through the filter boxes
in the header of the warnings table. The arrows in the table header allow for sorting.

Clicking on a directory name will take you to the directory browser for that directory. A file name or line number
will take you to the source code browser for that file and warning. Clicking on a Rule or Warning name will give
you a description of that rule.

Selecting warnings then clicking "Edit Warnings" button opens a dialog where you can change their status and also
add a note to the warnings. Clicking Update saves these changes.

The ‘Export’ button allows you to export all warnings or visible warnings to a CSV file.

45

8.4.5 Code Browser

The code browser displays a file and all its Goanna warnings. The right hand side shows the source code of the file
currently opened with warnings highlighted in three colours based on severity. The left hand side has the details of
warnings for this file. The box at the top of the left hand pane allows you to select a warning to see in more detail.

Like in the warnings browser, you are able to change the status and add a note to each warning in the code browser.
This can be done by changing the status and/or adding a note and pressing Apply.

If there is trace information for a warning it will also appear in this pane. You can step through the trace just like a
debugger. To go to a step in the trace, click on it and the source code browser will jump to the corresponding line.
You can then navigate through the trace using either the up/down arrows on top of the trace dialog, or by using the
up/down arrow keys on your keyboard.

8.5 Database Upgrades

Goanna 3.3.0 introduces two optional “database upgrades” you can perform to improve the performance of the
Goanna Dashboard.

46

When you open Goanna Dashboard with the existing database, you will see the following notification:

Clicking the link will show a list of available optional upgrades:

Goanna 3.3.0 ships with the following optional upgrades (called features):

• auto_vacuum: In previous versions of Goanna, deleting a snapshot or a project did not immediately delete
corresponding data from the database. This may result in the database size to never shrink.
Performing this upgrade causes Goanna to delete all residual data from removed snapshots and projects, and
set up the database so that when a snapshot or a project is removed, Goanna removes corresponding data
immediately. This ensures that the database size is always minimal.

• warning_index: Performing this upgrade causes Goanna to apply optimizations to database indexes, result-
ing in improved performance, especially when loading Warnings Browser view.

To apply an upgrade, click “Upgrade” button next to a desired feature. Alternatively, clicking “Upgrade All” button
will apply all available upgrades.

Important Notes

We recommend that you take a backup of the database before applying any of the upgrade. The database is located
in the following location:

• On Windows XP and Windows Server 2003:
C:\Documents and Settings\<name-of-user-who-installed-goanna>\Local Settings\Application
Data\RedLizards\Goanna Central\summary.goannadb

• On Windows Vista, Windows Server 2008, and all later versions of Windows:
C:\Users\<name-of-user-who-installed-goanna>\AppData\Local\RedLizards\Goanna Cen-
tral\summary.goannadb

• On Linux:
<installation-directory>/reporter/summary.goannadb

You should not run Goanna analysis, interact with the Goanna Dashboard, or otherwise run any Goanna commands,
until the upgrade is complete.

Performing upgrade will take a long time depending on the size of the database. If your database is significantly
large, this may take hours to complete.

47

8.6 Project Settings (Advanced)

The Goanna Dashboard should work for your project out of the box. However, there are a few advanced settings
available if you want to customise the behaviour.

Settings are applied on a per-project basis. To access your project’s settings click the gear menu in the top right
hand corner after loading your project (through the project page), and select Project Settings.

8.6.1 External Code Browser Support

Goanna Dashboard provides an ability to link a snapshot to a particular commit in your version control system, so
that it can provide a link to a web-based source code browser, instead of using the Goanna Dashboard’s source code
browser.

To do this, you will first need to pass --revision=<vcs-revision> option to goanna or gokeil when running
analysis. This will link the analysis run (i.e. the Goanna Dashboard snapshot) to the specified revision of the version
control system.

Once this is complete, you can provide a template of URL to the source code browser in Project Settings dialog.

Important: Enabling external code browser support will disable Goanna Dashboard’s source code browser.

8.6.2 Code Browser Character Encodings

By default the Dashboard will recognize source files in ASCII and UTF-8 (and additionally on Windows, the default
character encoding used by your system). If your source files are not in any of these encodings, you will need to
specify the encoding here in order for it to display correctly in the source code browser. A link is available in the
Project Settings window listing all the encodings supported.

48

9 Using Goanna With SonarQube Code Quality Platform

9.1 Introduction

SonarQube (previously known as “Sonar”) is an open platform to manage quality of a software project (see http:
//www.sonarqube.org/).

Goanna Central provides a mechanism to publish the analysis results to existing SonarQube installation. See the
next section for instructions on how to set up Goanna Central to integrate with SonarQube.

Goanna Central also bundles Goanna customized version of SonarQube 3.2.1; see 10.10 for details.

Important: On Windows, SonarQube integration support, and the bundled SonarQube are not installed by default.
If you have already installed Goanna Central without SonarQube support, then you will first need to uninstall
Goanna Central, and then re-install Goanna Central with “Codehaus Sonar” option; see 2.3 for details.

9.2 Setting Up Goanna To Integrate With SonarQube Installation

Installing Goanna SonarQube Plugin

First, you will need to download Goanna enabled version of SonarQube C++ Community plugin from: http://
archive.redlizards.com/sonar-cxx-plugin-0.1.jar.

Once downloaded, copy the downloaded .jar file to SONARQUBE_HOME/extensions/plugins.

Finally, restart the SonarQube server.

Configuring Goanna To Use Your SonarQube Installation And Database Server

Goanna Central bundles and uses SonarQube Runner (sonar-runner) version 2.0 to publish the analysis result
to SonarQube. Because of this, you will need to modify sonar-runner.properties file that is bundled with
Goanna Central to ensure that Goanna knows where the SonarQube installation is, and which database server to
use.

To do so, follow these steps:

1. Navigate to <goanna-installation-directory>/sonar/sonar-runner-2.0/conf.

2. Open sonar-runner.properties file with any text editor.

3. Edit this file according to your SonarQube installation to specify the SonarQube server location, database serer
location, database username and password. Generally, you will need to edit the following settings:

• sonar.host.url: URL to the SonarQube installation
• sonar.jdbc.url: JDBC address to the database server; corresponds to sonar.jdbc.url property in
<sonarqube-installation-directory>/conf/sonar.properties file.

• sonar.jdbc.driver: JDBC driver to use. Generally, you will only need to uncomment the line that
corresponds to your database server.

• sonar.jdbc.username: User name of the database server.
• sonar.jdbc.password: Password of the database server.

For more details, see SonarQube installation guide (http://docs.codehaus.org/display/SONAR/Installing) and
SonarQube Runner installation guide (http://docs.codehaus.org/display/SONAR/Installing+and+Configuring+
SonarQube+Runner).

9.3 Running Goanna Analysis With SonarQube Publish

Once the set up is complete, you can now perform Goanna analysis and publish the results to SonarQube by passing
--sonar option to goanna or gokeil when running analysis.

Once the analysis is complete, the analysis result should be available in the SonarQube dashboard.

49

http://www.sonarqube.org/
http://www.sonarqube.org/
http://archive.redlizards.com/sonar-cxx-plugin-0.1.jar
http://archive.redlizards.com/sonar-cxx-plugin-0.1.jar
http://docs.codehaus.org/display/SONAR/Installing
http://docs.codehaus.org/display/SONAR/Installing+and+Configuring+SonarQube+Runner
http://docs.codehaus.org/display/SONAR/Installing+and+Configuring+SonarQube+Runner

Goanna warnings can be found in the Violations Drilldown for the project.

50

10 Advanced Features, Concepts and Configurations

10.1 Proceed With Caution

This section describes a number of advanced Goanna concepts and configuration options. In most cases, there is no
need to know these concepts or use these options. We recommend that you use these advanced options only when
required.

Many of these advanced features contain limitations and/or caveats; if you wish to use any of these features, then
make sure to read the description carefully to understand these limitations and caveats.

Important: Red Lizard Software may deprecate, and later remove, any feature within this section in the future
releases of Goanna.

10.2 Manually Running Analysis On Source Files

goannacc and goannac++ utilities can be used to run Goanna analysis on C or C++ source file(s), without first
performing build recording.

To run Goanna analysis directly on C source files, run:

goannacc --nc --with-cc=<path-to-C-compiler> --db=<path-to-database> <extra-arguments-
to-goannacc> <arguments-to-compiler>

To run Goanna analysis directly on C++ source files, run:

goannac++ --nc --with-cxx=<path-to-C++-compiler> --db=<path-to-database> <extra-
arguments-to-goannac++> <arguments-to-compiler>

For example, to run analysis on src/main.c (when the source file is written for gcc compiler):

goannacc --nc --with-cc=gcc --db=myfiles.goannadb src/main.c

This will run analysis on src/main.c, and outputs the result to the console.

Additionally, this command stores information about the analysis into a specified project database file via --
db=<path-to-database> option (see 10.7 for details). Passing --db option is essential to ensure the maximum
accuracy of the analysis, and allows Goanna to cache some information to speed up subsequent analysis.

You can pass most analysis configuration options (such as --check option) to goannacc or goannac++ to control
the analysis. See 11.7 for the complete list of available options.

Compile and Run Analysis At The Same Time

goannacc and goannac++ can also act as compiler wrappers; that is, they can be used to compile source files and
perform analysis on these files at the same time.

To compile and run analysis at the same time, run the same command as above, but without --nc option. For
example:

goannacc --with-cc=gcc --db=myfiles.goannadb src/main.c

This will compile src/main.c using gcc, and then performs analysis on that file.

Note: Goanna will not perform analysis in this mode if the specified files fail to compile. If this behaviour is not
desirable, pass --ignore-errors option.

51

10.3 Manually Running Link Time Analysis On Object Files

Similar to source files, it is possible to perform link time analysis directly using goannald.

Because link time analysis relies on information in the project database about source files, you must first run source
file analysis on all relevant source files before running link time analysis.

Once source file analysis is complete, run the following command to run link time analysis:

goannald --nc --with-ld=<path-to-linker> --db=<path-to-database> <extra-arguments-
to-goannald> <arguments-to-linker>

For example, to run analysis on src/main.o object file (when using GNU Linker (ld)):

goannald --nc --with-ld=ld --db=myfiles.goannadb src/main.o

This will run link time analysis on src/main.o, and outputs the result to the console.

Link and Run Link Time Analysis At The Same Time

Like goannacc, goannald can also act as a linker wrapper to link object files and perform link time analysis at
the same time.

To link and run link time analysis at the same time, run the same command as above, but without --nc option. For
example:

goannald --with-ld=ld --db=myfiles.goannadb src/main.o

This will perform linking with an object file src/main.o using ld, and then performs link time analysis on that
object file..

Note: Goanna will not perform link time analysis in this mode if the specified object files fail to link. If this
behaviour is not desirable, pass --ignore-errors option.

10.4 Build And Run Analysis On A Project At The Same Time

It is possible to use goannamake, goannascons and goannaiarbuild utilities to perform build and run analysis
at the same time. This is called Compile & Analyze mode. Build specification files are not generated in this mode.

goannacmake-conv also supports similar mode where it reads a CMake compilation database and performs anal-
ysis based on information in the compilation database. This is called Convert & Analyze mode (in some cases, the
term Compile & Analyze mode also includes Convert & Analyze mode).

To perform build and analysis at the same time with goannamake, goannascons or goannaiarbuild, follow
these steps:

1. Make sure that your project is ready for build integration (see 3). This is required even in Compile & Analyze
mode since Goanna utilities use the same mechanism to perform analysis.

2. Similarly, make sure that PATH and any other environment variables are set appropriately for build.

3. Clean your build.

4. Now run goannamake, goannascons or goannaiarbuild, in the same way as for build recording, but
without --record option. For example, for GNU Make project:

goannamake all

This will build your project and perform analysis at the same time.

To read a CMake compilation database and analysis at the same time with goannacmake-conv, follow these steps:

1. Clean your build.

2. Perform a CMake build, with a special option CMAKE_EXPORT_COMPILE_COMMANDS set to ON to generate a
compilation database.

52

3. Now run goannacmake-conv, in the same way as for normal build specification generation, but without
--record option. For example:

goannacmake-conv

Important Notes

• gotrace (for Keil µVision projects) does not support this mode of analysis.

• If you use Compile & Analyze mode on recursive Makefile projects, then some Goanna operations may execute
multiple times. This means that:

– Multiple HTML reports may be generated for a single run if you use HTML report option,
– Multiple XML output files may be generated for a single run if you use XML output option,
– Goanna may publish the same analysis run multiple times to SonarQube if you use SonarQube publish

option, and
– CppCheck or CppNcss may execute multiple times, if CppCheck or CppNcss is enabled.

10.5 Using Embedded Build Information To Perform Analysis

During build recording (or, in the case of goannacmake-conv, conversion to Goanna build specification), in
addition to build specification files, goannamake, goannascons, goannaiarbuild and goannacmake-conv
utilities also store build information to project database (this is called database buildspec).

It is possible to use the database buildspec to perform analysis, rather than using build specification files. To do this,
remove a path to build specification file from the --record option during build recording. For example, for GNU
Make project:

goannamake --record all

This command then performs full build and record the build, without generating a build specification file. Instead,
you should see a file with an extension .goannadb in the working directory of goannamake, goannascons,
goannaiarbuild or goannacmake-conv. This is a project database file and contains build information (database
buildspec).

To run analysis with the database buildspec, remove a path to build specification file from the --analyze option
of goanna. For example:

goanna --analyze

This command runs analysis with the database buildspec.

Important: gotrace and gokeil (for Keil µVision projects) do not use the database buildspec and do not support
this mode of analysis.

10.6 Append New Build Information Into Existing Build Specification

By default, when recording your build, goannamake, goannascons and goannaiarbuild utilities overwrite the
existing build specification file. This ensures that the build specification file contains the most accurate information
about your build.

It is possible to instruct these utilities to instead append build information into the end of the existing build speci-
fication file. Using this feature allows you to perform incremental build (rather than full build) when recording the
build to add new files.

However, if you use this feature, note that this is only useful when you only added new files into your build. If
you have removed files from the build, or modified build settings, then you need to perform full build recording by
re-running full build.

To perform an incremental build and add new build information into the existing build specification with goanna-
make, goannascons or goannaiarbuild, follow these steps:

53

1. Add new files into your build.

2. Make sure that PATH and any other environment variables are set appropriately for build.

3. Do not clean your build; this feature works only if you perform incremental build.

4. Now run goannamake, goannascons or goannaiarbuild, in the same way as for build recording, but
with --record-incremental option. For example, if your project uses GNU Make and the existing build
specification file is called myproject.goannabuild:

goannamake --record=myproject.goannabuild --record-incremental all

This will perform an incremental build of your project, and add information about new files into the existing build
specification.

Important: goannacmake-conv and gotrace do not support this feature.

54

10.7 The Project Database

When analyzing a whole project, Goanna stores information about the project in a database file (called project
database or project DB) that is used by all the goanna analysis commands. The project database is also used by
goreporter to summarize information for the Goanna Dashboard.

The project database file by convention has the extension .goannadb, and usually resides at the top directory of
your project.

Goanna stores the following information in the project database:

• Interprocedural (or whole-program) analysis information, that is, information about bugs that occur as a result
of calls between functions.

• Information about your project’s build when you use the --record and --analyze options with no file name
argument (database buildspec).

• Cached information about your source files, which enables incremental analysis (that is, re-analysis of a
project after small changes) to be performed much faster.

• Suppression information, if you have suppressed warnings.

By default, build integration utilities (goannamake, goannascons, goannaiarbuild and goannacmake-conv)
and project-wide analysis utilities (goanna and gokeil) use a database file taken from the name of the project
root directory with .goannadb added. If you wish to use a different database file, you can override this default by
specifying --db=<file>.

You should not delete this database file unless when required. If you delete this database file, the next analysis
run take much longer (due to cached information being removed), and you will also lose warnings suppression
information.

Unlike other Goanna utilities, if you use goannacc, goannac++, or goannald directly to perform analysis (see
10.2), then you must explicitly specify the location of the project database with --db=<file> option. Not specifying
this option causes:

• Goanna analysis to produce inaccurate results because information needed for interprocedural analysis be-
comes unavailable,

• link-time analysis to become unavailable (link-time analysis relies on the project database), and

• Warnings suppression functionality to not work.

55

10.8 How Goanna’s Compiler Support Work

Most C/C++ code uses non-standard language extensions to some extent. Even if your own code is 100 percent
standard compliant, you must almost certainly include libraries and header files that use non-standard extensions
provided by the compiler.

Goanna analyzes C/C++ code at a very deep semantic level. In order to do this, it must analyze your source code
exactly as understood by your compiler, including all the same system headers, built-in predefined macros, and
language extensions.

In some dialects, the macros and include paths predefined in the compiler are not fixed, but vary depending on your
operating system, how the compiler has been configured and built, and even on what command line options are
given to it at run time.

Goanna utilities are designed to handle all these complexity automatically, so that Goanna can fully understand all
of your C/C++ source files, even if they contain compiler-specific syntax extensions or include library headers in
other directories.

When you perform a project-wide analysis, Goanna automatically does the following things to ensure Goanna can
understand your C/C++ source files:

1. Goanna switches its C/C++ parsing mode, based on information in the build specification. Each parsing mode
is called dialect in use,

2. Goanna detects all predefined macros, include paths, and any other built-in configuration options from various
sources (usually by invoking a compiler in question, or fetching information from environment variables), and

3. Goanna reads all compiler-specific command line options and configures the parser accordingly to ensure any
syntax related options are applied correctly.

If you run source file or link time analysis manually by directly calling goannacc, goannac++ or goannald,
then you need to ensure that you pass --with-cc=<path-to-C-compiler>, --with-cxx=<path-to-C++-
compiler>, and --with-ld=<path-to-linker> options. These options specify which compilers and linkers
your project uses, and ensures that Goanna is configured appropriately for your environment.

56

10.9 Suppressing Warnings Manually Using goannacc

In addition to the Goanna Dashboard (see 8.2), goannacc also provides a way to specify warnings to be suppressed
directly. However, if you wish to use this method, note that the bug statuses for any warnings that are suppressed
this way will not be synced back to the Goanna Dashboard.

Warning suppression commands of goannacc are based on the concept of warning ID. In Goanna, every warning
issued has an unique ID assigned to it; this can be seen by passing --warning-ids option to goanna, gokeil,
goannacc, goannac++ or goannald. Passing this option causes Goanna to show warning ID in the output, for
example:

foo.c:254: warning:7: Goanna[PTR-null-fun-pos] Severity-High, Function call
‘get_obj(o)’ is immediately dereferenced, without checking for NULL.
CERT-EXP34-C,CWE-476

Notice that there is now a number (7) after the text warning; this is the warning ID of this warning. In this
particular case, this warning was assigned an ID of 7.

10.9.1 Suppressing Warnings

To suppress a warning, run:

goannacc --suppress=<warning-id> --db=<path-to-project-database>.

This will "suppress" the specified warning and cause it to not be displayed in future analysis runs.

Note that suppressed warnings are only ignored; they are still recorded into the project database by Goanna during
the analysis. You can use --suppression-status option during the analysis to show all warnings (including
suppressed ones); see 10.9.3.

Important: Since warning suppression information is stored in the project database, you need a project database
file to suppress a warning. In addition, if you call goannacc, goannac++ or goannald manually to perform
analysis, then you must make sure to always pass --db option every time to ensure suppression information is
loaded.

10.9.2 Un-suppressing Warnings

To un-suppress a warning, run:

goannacc --unsuppress=<warning-id> --db=<path-to-project-database>.

This will "un-suppress" the specified warning and cause it to be displayed again in future analysis runs.

10.9.3 Displaying Warnings Status

To display all warnings, including suppressed ones, pass --suppression-status option to goanna, gokeil,
goannacc, goannac++ or goannald; for example:

goanna --suppression-status --analyze=<build-specification-file>

This will cause Goanna to show all warnings in the output, including suppressed ones:

test.c:4: warning:*: Goanna[CST-local] ...
test.c:8: warning:: Goanna[PTR-unchk-param] ...
test.c:15: warning:: Goanna[ARR-inv-index-ptr-pos] ...
test.c:15: warning:*: Goanna[PTR-null-pos-assign] ...

An asterisk (*) symbol next to warning text indicates that the warning is suppressed.

57

10.10 Using Goanna Central Bundled SonarQube Installation

Goanna Central bundles Goanna customized version of SonarQube 3.2.1. It is possible to use the bundled version
of SonarQube with Goanna instead of integrating into the existing installation of SonarQube.

10.10.1 Running Goanna Central Bundled SonarQube On Linux

On Linux, the bundled SonarQube is installed by default but not started automatically.

To start SonarQube, follow these steps:

1. Navigate to <goanna-installation-directory>/goanna/sonar/sonar-3.2.1/bin/linux-x86-
64 on 64-bit Linux, or to <goanna-installation-directory>/goanna/sonar/sonar-3.2.1/bin/linux-
x86-32 for 32-bit Linux.

2. Run:

./sonar.sh start

to start SonarQube server.

To stop the SonarQube server, run:

./sonar.sh stop

10.10.2 Running Goanna Central Bundled SonarQube On Windows

On Windows, SonarQube is an optional component, so be sure to check the ‘Codehaus Sonar’ option when installing
Goanna Central if you would like SonarQube installed.

Note: If you have already installed Goanna Central without the bundled SonarQube, then you will need to first
uninstall Goanna Central, and then re-install Goanna Central with “Codehaus Sonar” option to install the bundled
SonarQube.

When Goanna Central is installed with “Codehaus Sonar” option, it will also install a Windows service (called
“Sonar”) to start the SonarQube server at the computer startup. You can also start and stop the service manually
from Services window.

10.10.3 Browsing Goanna Central Bundled SonarQube Dashboard

Once started, you can browse projects in the SonarQube dashboard by going to http://localhost:9000/.

58

http://localhost:9000/

10.10.4 Running Goanna Analysis With Goanna Central Bundled SonarQube

To run analysis and publish the analysis results to the bundled SonarQube, pass --sonar option to goanna or
gokeil when running analysis.

59

10.11 Using CppCheck And CppNcss With Goanna

Important Notes

• CppCheck and CppNcss are third party components bundled with Goanna Central. Red Lizard Software does
not offer full support for any usage of CppCheck and CppNcss.

• On Windows, CppCheck and CppNcss are not installed by default. If you have already installed Goanna
Central without CppCheck or CppNcss support, then you will first need to uninstall Goanna Central, and then
re-install Goanna Central with “Codehaus Sonar” option; see 2.3 for details.

Goanna Central bundles CppCheck 1.56 (see http://cppcheck.sourceforge.net/) and CppNcss 1.0.3 (C++ Non-commenting
Source Statements; see http://cppncss.sourceforge.net/) tools to run additional analysis, and metrics calculation
(specifically, Non Commenting Source Statements and Cyclomatic Complexity Number) on the project.

To run CppCheck in addition to Goanna analysis, pass --cppcheck option to goanna or gokeil when run-
ning analysis. In addition to Goanna analysis results, results from CppCheck will be saved to a XML file called
cppcheck-result-1.xml.

To run CppNcss in addition to Goanna analysis, pass --cppncss option to goanna or gokeil when running
analysis. In addition to Goanna analysis results, results from CppNcss will be saved to a XML file called cppncss-
result-1.xml.

Results from CppCheck and CppNcss will not be published to the Goanna Dashboard. Additionally, CppCheck and
CppNcss results will not appear in HTML report (with --html-report) or XML report (with --output-xml)
either.

However, if --sonar option is also passed, CppCheck and CppNcss results will be published to SonarQube, in
addition to Goanna analysis results. In SonarQube, CppCheck warnings will be visible in the Violations Drilldown for
the project, alongside Goanna warnings. The CppNcss metrics are visible by adding a Complexity widget for your
project.

Important: CppCheck and CppNcss are third party components and use different C/C++ parser from the rest of
Goanna. Because of this, CppCheck and CppNcss do not support most compiler-specific syntax extensions, and
some C++11 features.

In addition, any compiler arguments passed to Goanna (such as gcc’s -I and -D to specify include paths and
predefined macros) are not passed to CppCheck or CppNcss. This may lead to parse errors when running CppCheck
or CppNcss.

60

http://cppcheck.sourceforge.net/
http://cppncss.sourceforge.net/

11 Goanna Central Utility Reference

11.1 goanna – Analyze C/C++ Projects

Synopsis

goanna --analyze=<build-specification-file> [options] ...

Description

goanna is the main command used to analyze whole projects. There are many more analysis commands in the
Goanna suite of utilities (goannacc, goannac++, goannamake, goannald, goreporter, and so on). But most
of the time you will just run goanna, and it will run all the other analysis commands for you, depending on what
needs to be done in your project.

Whenever you run goanna to analyze a project, you must give it a build specification to tell it how your project is
organized. This build specification file is automatically generated by goannamake, goannascons, goannaiar-
build and goannacmake-conv build integration utilities.

Command Line Options

--analyze=<file>, --analyse=<file>, --replay=<file>, --build=<file> Analyze a project from the build steps previ-
ously recorded with goannamake --record. If <file> is not specified, the DB is used.

--color, --colour Only available on Linux. Output in color.

--db=<file> Specify the database file to use for persistent information.

--exclude=<file> Exclude the specified <file> from analysis.

--help Print help message for common options.

--jobs=<number> The number of parallel jobs (1-20) to run simultaneously. Default is the number of CPU cores
detected on your system, note that running goanna --help will display the number of detected cores as the
default.

--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-
ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.

--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,
typically http://localhost:9000.

--summary-db=<file> The database in which to save snapshots.

--version Print version information.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.

--no-goanna-path When running goannacc etc. subprocesses, use just the executable name, not the full path. This
is useful to work around programs that can’t handle long path names, but does require you to place the Goanna
bin directory in your PATH environment.

61

http://localhost:9000

--no-snapshot Don’t take a snapshot of the project.

--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it

--revision=<number> The revision number in your version control system.

--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current
working directory.

--ungroup With --jobs=2 or more, print all output immediately instead of grouped by job. This reduces latency and
memory usage but may cause output from different jobs to be mixed.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--record=<file>
--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Any unrecognized options will be passed through to the executables called by goanna; specifically goannacc,
goannac++, or goannald.

Return Codes

This section describes goanna return codes when running in Build Mode only. For information about return
codes in Record Mode, refer to the corresponding build integration interface (for example, the documentation for
goannamake).

0 (Zero) A return code of 0 generally means that no errors were encountered, and goanna completed execution
successfully.

• goanna completes execution without errors
• goanna prints help or version information

1 (One) A return code of 1 generally means that a user-provided parameter is invalid.

• An argument to goanna needs to be a positive integer, but the user-provided value is not a positive integer.
For example, timeout values

• goanna encounters an error while parsing command-line arguments

Inherited Return Values goanna returns the following return codes if one of the sub-programs goanna uses
encounters an error, in the following order:

• If goanna is interrupted by a UNIX signal, its return code is the UNIX signal number
• If goanna encountered an error when running the build specification replay engline or analysing source files,

its return code is the goannacc or goannald return code, depending on what the last used sub-program is
• If goanna encountered an error when publishing to Sonar, or when creating the One Page Summary Report,

or when writing to the Dashboard, its return code is the goreporter return code

62

11.2 goannamake – Analyze Makefile Projects

Synopsis

goannamake --record=<build-specification-file> [options] ... [make-options] ...
goannamake --record [options] ... [make-options] ...
goannamake [options] ... [make-options] ...

Description

goannamake is a wrapper for GNU Make, QNX Make and Microsoft NMake utility that can inject Goanna analysis
into a Makefile-based project.

goannamake has two modes to perform integration with a project:

• Build Recording: Use goannamake to monitor the build process, and generate a build specification file to be
used for project-wide analysis.
See 3.2 for details of this mode.

• Compile & Analyze (Advanced): Use goannamake to perform build and analyze at the same time.
See 10.4 for details of this mode.

Command Line Options

--color, --colour Only available on Linux. Output in color.

--db=<file> Specify the database file to use for persistent information.

--exclude=<file> Exclude the specified <file> from analysis.

--help Print help message for common options.

--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-
ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--jobs=<number> The number of parallel jobs (1-20) to run simultaneously. Default is the number of CPU cores
detected on your system, note that running goanna --help will display the number of detected cores as the
default.

--microsoft Only available on Windows. Use Microsoft NMake as the Make utility.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.

--record=<file> Don’t analyze, just record the build steps for later analysis with goanna --analyze. If <file> is
specified, also save a build specification file.

--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,
typically http://localhost:9000.

--summary-db=<file> The database in which to save snapshots.

--version Print version information.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--cygwin Only available on Windows. Use Cygwin version of GNU Make as the Make utility.

--gnu Only available on Windows. Use GNU Make as the Make utility. This is the default.

63

http://localhost:9000

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.
--ignore-errors Ignore errors from the compiler. Note that this will also pass the -i flag to the underlying build

system.
--no-autodetect Disable auto detection of make compiler variables.
--no-goanna-path When running goannacc etc. subprocesses, use just the executable name, not the full path. This

is useful to work around programs that can’t handle long path names, but does require you to place the Goanna
bin directory in your PATH environment.

--no-recursive With --autodetect, disable auto detection in all subdirectories of a recursive Make project.
--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it
--no-snapshot Don’t take a snapshot of the project.
--record-incremental With --record, append to the existing build spec instead of replacing it.
--revision=<number> The revision number in your version control system.
--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current

working directory.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Other arguments will be handled in one of either two ways. If the other argument is for a Goanna Central executable
(such as goannacc, goannac++, or goannald) then this will be passed on to that executable. Otherwise the
argument will be passed to the underlying build system (usually make or nmake).

Return Codes

goannamake returns the return code from GNU Make, QNX Make or Microsoft NMake.

Environment

GOANNAMAKE_CC, GOANNAMAKE_CXX, GOANNAMAKE_LD Unless you specify --no-autodetect, goan-
namake auto-detects the values of the CC, CXX, etc. variables defined in your Makefile. These values are
passed to goannacc, goannac++, and goannald using the --with-cc, --with-cxx and --with-ld options, to
aid with auto-detection of your C/C++ dialect and compiler-specific settings.
By default, goannamake recognizes several conventional variable names as denoting the C compiler, C++
compiler, and C/C++ linker. If your Makefile does not use one of these conventions, goannamake may not
inject Goanna correctly or auto-detect your C/C++ dialect correctly. To force goannamake to recognize
different conventions for Makefile variables, you can set the GOANNAMAKE_CC, GOANNAMAKE_CXX, and
GOANNAMAKE_LD environment variables to a colon-separated list of variable names. For example:

export GOANNAMAKE_CC=MY_C_COMPILER:MY_C_CROSS_COMPILER
export GOANNAMAKE_CXX=MY_CXX_COMPILER:MY_CXX_CROSS_COMPILER
goannamake

The defaults if these variables are not set are:

variable default value
GOANNAMAKE_CC CC:HOST_CC:TARGET_CC
GOANNAMAKE_CXX CXX:HOST_CXX:TARGET_CXX:CCC
GOANNAMAKE_LD LD

GOANNAFLAGS The flags to be passed to goannacc (see Section 11.7)
MAKE Unless specified, goannamake assumes your make utility is make. If you use an alternative make utility

specify it with this variable. If --microsoft is specified, goannamake assumes the make utility is nmake.

64

11.3 goannascons – Analyze SCons Projects

Synopsis

goannascons --record=<build-specification-file> [options] ... [scons-options]
...
goannascons --record [options] ... [scons-options] ...
goannascons [options] ... [scons-options] ...

Description

goannascons is a wrapper for SCons that can inject Goanna analysis into a SCons project.

goannascons has two modes to perform integration with a project:

• Build Recording: Use goannascons to monitor the build process, and generate a build specification file to
be used for project-wide analysis.
See 3.3 for details of this mode.

• Compile & Analyze (Advanced): Use goannascons to perform build and analyze at the same time.
See 10.4 for details of this mode.

Command Line Options

--color, --colour Only available on Linux. Output in color.

--db=<file> Specify the database file to use for persistent information.

--exclude=<file> Exclude the specified <file> from analysis.

--help Print help message for common options.

--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-
ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.

--record=<file> Don’t analyze, just record the build steps for later analysis with goanna --analyze. If <file> is
specified, also save a build specification file.

--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,
typically http://localhost:9000.

--summary-db=<file> The database in which to save snapshots.

--version Print version information.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.

--ignore-errors Ignore errors from the compiler. Note that this will also pass the -i flag to the underlying build
system.

--no-goanna-path When running goannacc etc. subprocesses, use just the executable name, not the full path. This
is useful to work around programs that can’t handle long path names, but does require you to place the Goanna
bin directory in your PATH environment.

65

http://localhost:9000

--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it

--no-snapshot Don’t take a snapshot of the project.

--record-incremental With --record, append to the existing build spec instead of replacing it.

--revision=<number> The revision number in your version control system.

--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current
working directory.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Other arguments will be handled in one of either two ways. If the other argument is for a Goanna Central executable
(such as goannacc, goannac++, or goannald) then this will be passed on to that executable. Otherwise the
argument will be passed to SCons.

Return Codes

goannascons returns the return code from SCons.

66

11.4 goannacmake-conv – Convert CMake Compilation Database To Goanna Build Spec-
ification

Synopsis

goannacmake-conv --record=<build-specification-file> [options] ... <path-to-
compilation-database>
goannacmake-conv --record [options] ... <path-to-compilation-database>
goannacmake-conv [options] ... <path-to-compilation-database>

If you do not specify the path to the compilation database file, the default is to read compile_commands.json.

Description

goannacmake-conv is a utility which converts a compilation database file generated by CMake to Goanna build
specification. See http://clang.llvm.org/docs/JSONCompilationDatabase.html for more details about this compilation
database file.

goannacmake-conv has two modes to perform integration with a project:

• Conversion Only: Use goannacmake-conv to convert a compilation database file to a Goanna build speci-
fication file.
See 3.4 for details of this mode.

• Convert & Analyze (Advanced): Use goannacmake-conv to perform conversion (as above), and then run
analysis at the same time.
See 10.4 for details of this mode.

Command Line Options

--color, --colour Only available on Linux. Output in color.

--db=<file> Specify the database file to use for persistent information.

--exclude=<file> Exclude the specified <file> from analysis.

--help Print help message for common options.

--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-
ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.

--record=<file> Specify the name of Goanna build specification to generate. If not specified, save to the project
database.

--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,
typically http://localhost:9000.

--summary-db=<file> The database in which to save snapshots.

--version Print version information.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.

67

http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://localhost:9000

--no-goanna-path When running goannacc etc. subprocesses, use just the executable name, not the full path. This
is useful to work around programs that can’t handle long path names, but does require you to place the Goanna
bin directory in your PATH environment.

--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it

--no-snapshot Don’t take a snapshot of the project.

--revision=<number> The revision number in your version control system.

--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current
working directory.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--record-incremental

--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Any unrecognized options will be passed through to the executables called by goanna; specifically goannacc,
goannac++, or goannald.

Return Codes

goannacmake-conv returns 0 if the input CMake compilation database is converted to a Goanna build specification
successfully.

goannacmake-conv returns -1 if the input CMake compilation database is not in a valid format, or the Goanna
build specification cannot be written to the project database.

68

11.5 goannaiarbuild – Analyze IAR Embedded Workbench Projects

Synopsis

goannaiarbuild --record=<build-specification-file> [options] ... [iarbuild-options]
...
goannaiarbuild --record [options] ... [iarbuild-options] ...
goannaiarbuild [options] ... [iarbuild-options] ...

Description

goannaiarbuild is a wrapper for iarbuild.exe utility. Using goannaiarbuild you can integrate Goanna
into IAR Embedded Workbench projects.

goannaiarbuild has two modes to perform integration with a project:

• Build Recording: Use goannaiarbuild to monitor the build process, and generate a build specification file
to be used for project-wide analysis.
See 3.5 for details of this mode.

• Compile & Analyze (Advanced): Use goannaiarbuild to perform build and analyze at the same time.
See 10.4 for details of this mode.

In addition, Goanna provides a mechanism to perform analysis directly from within IAR Embedded Workbench
IDE. See 6.1 for more details.

Command Line Options

--color, --colour Only available on Linux. Output in color.

--db=<file> Specify the database file to use for persistent information.

--exclude=<file> Exclude the specified <file> from analysis.

--help Print help message for common options.

--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-
ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.

--record=<file> Don’t analyze, just record the build steps for later analysis with goanna --analyze. If <file> is
specified, also save a build specification file.

--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,
typically http://localhost:9000.

--summary-db=<file> The database in which to save snapshots.

--version Print version information.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.

69

http://localhost:9000

--no-goanna-path When running goannacc etc. subprocesses, use just the executable name, not the full path. This
is useful to work around programs that can’t handle long path names, but does require you to place the Goanna
bin directory in your PATH environment.

--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it

--no-snapshot Don’t take a snapshot of the project.

--record-incremental With --record, append to the existing build spec instead of replacing it.

--revision=<number> The revision number in your version control system.

--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current
working directory.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Other arguments will be handled in one of either two ways. If the other argument is for a Goanna Central executable
(such as goannacc, goannac++, or goannald) then this will be passed on to that executable. Otherwise the
argument will be passed in to the IarBuild.exe build system.

Return Codes

goannaiarbuild returns 0 if the IAR build specification is converted to a Goanna build specification successfully.

goannaiarbuild returns -1 if the input IAR build specification is not in a valid format, or if an unexpected error
occurred during the conversion process.

70

11.6 gotrace and gokeil – Analyze KeilTM
µVision R© Projects

Synopsis

gotrace [gotrace-options] UV4.exe [uv4-options]
gokeil [goanna-options]

Important: You need to install Keil µVision Support Package before using these tools. Contact your distributor to
obtain the installer.

Description

gotrace and gokeil are the utilities that allow Keil
TM

µVision R© projects to be analyzed. The typical analysis
process is as follows:

1. gotrace wraps over UV4.exe (command line invocation of Keil µVision) to monitor the build process of
your Keil µVision project, and generates a build specification containing necessary information to understand
how your project is built.

2. gokeil reads the generated build specification file and runs analysis over the source files.

For more details about how these utilities work, see 3.6. For instruction to set up Keil µVision IDE to allow Goanna
analysis to be run from within IDE, see 6.2.

gotrace Command Line options

--help Print help message for common options.
--version Print version information.
--output-file=<file> Save the build specification into the specified file; default is goanna.goannaspec.
--force-tracing Force build recording even when the specified build spec file already exists.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--debug-help

These options must come before UV4.exe. Any arguments after UV4.exe will be passed directly to Keil µVision.

gokeil Command Line options

--buildspec=<file> Specify the location of the build specification file; default is goanna.goannaspec.
--color, --colour Only available on Linux. Output in color.
--db=<file> Specify the database file to use for persistent information.
--exclude=<file> Exclude the specified <file> from analysis.
--help Print help message for common options.
--html-report=<output type> After analysis, also generate analysis report files in HTML format. You can option-

ally specify type of HTML reports to be generated (’summary’, ’warnings’ or ’all’). --html-report with
no type will generate all available reports.

--output-xml=<file> After analysis, also output warnings in XML format to <file>.
--sonar=<url> Publish results to SonarQube server at <url>. --sonar without <url> uses SonarQube’s default,

typically http://localhost:9000.
--summary-db=<file> The database in which to save snapshots.
--version Print version information.

71

http://localhost:9000

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--advanced-help Print help message for advanced options.

--cppcheck Also run CppCheck on the project.

--cppncss Also run CppNcss on the project.

--html-report-location=<directory> The directory to output a HTML report to. Default is current directory.

--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it

--no-snapshot Don’t take a snapshot of the project.

--revision=<number> The revision number in your version control system.

--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default: current
working directory.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--sonar-db-name=<database name>
--sonar-db-pass=<password>
--sonar-db-user=<user name>

Valid goannacc, goannac++, or goannald arguments are also accepted and can be used to configure the analysis.
Any other arguments are treated as Keil armcc, C51 or C166 compiler arguments and can used to configure how
the source files are treated by Goanna.

72

11.7 goannacc and goannac++ – Analyze C/C++ Source Files

Synopsis

goannacc [options] ... [compiler options] ... [file] ...
goannac++ [options] ... [compiler options] ... [file] ...

Description

goannacc and goannac++ are the utilities that analyze individual C and C++ source files. In general, goannacc
should be used for C source files, and goannac++ for C++ files.

goannacc and goannac++ can operate in two modes:

• Analysis Only: Perform analysis on the specified source files only.

• Compile & Analyze: Compile the specified source files, and then perform analysis.

For more details about these modes, see 10.2.

In most cases, there is no need to call goannacc or goannac++ directly, as these are called automatically by
project-wide analysis utilities (goanna and gokeil).

In addition to the above, goannacc is also used to perform some general management tasks, such as:

• Enabling, disabling and installing checks packages. See 5.2 for details.

• Suppressing and un-suppressing warnings. See 10.9 for details.

Command Line Options

--absolute-path Print absolute paths in warnings.

--all-checks Run all available checks (overrides all other check related options).

--brief-trace Show immediately relevant decisions in trace output, not the majority of decisions.

--c++ Indicate that file(s) contain C++ code.

--check=<name> Run a specific check (overrides any checks file).

--checks-file=<file> Use the checks listed in <file> instead of the default checks in properties.init file.

--checks=<standard> Run all checks in the specified coding standard. For example, --checks=misrac2004 runs all
available checks in the MISRA C:2004 standard.

--checks=<standard>-<rule> Run the check(s) corresponding to one rule in the specified coding standard. For
example, --checks=misrac2004-12.8 runs the check(s) that implement MISRA C:2004 rule 12.8.

--color, --colour Only available on Linux. Output in color.

--columns Print column positions in warnings.

--db=<file> Specify the database file to use for persistent information.

--directory=<dir> Before doing anything, change to <dir>.

--force-analysis Re-analyze files that have not changed since last run.

--help Print help message for common options.

--ignore-errors Ignore errors from the compiler.

--license-server=<server[:port]> Attempt to contact a license server at address <server>. <Port> is optional
(defaults to 6200).

--no-compile, --nc Do not run the compiler.

--output-checks Output the checks that are currently loaded.

--output-format=<format> Specify a warning format used by Goanna to output warnings. The following special
strings in <format> are expanded:

%FILENAME% the filename

73

%RELFILE% the filepath and filename
%RELPATH% the filepath
%ABSFILE% the absolute filepath and filename
%ABSPATH% the absolute filepath
%DBRELFILE% the filepath relative to the database file and filename
%DBRELPATH% the filepath relative to the database file
%LINENO% the line number
%COLUMN% the column number
%CHECKNAME% the check identifier
%SEVERITY% the checks severity rating
%MESSAGE% the warning message
%RULES% corresponding rule(s) from coding standards, if any
%TRACE% counter example if any
%FUNCTION% the function name
%SUPPRESSED% a * if the warning is suppressed
%WARNINGID% the id of this warning in the database
%EOL% a line break
%% a literal %.

The default warning format is: “%FILE%:%LINENO%: warning: Goanna[%CHECKNAME%] - %MES-
SAGE%%EOL%”.

--project-dir=<dir> Only include header files in the given directory.

--quiet Only display warnings and no other output.

--suppress=<warning id> Suppress warning <warning id>.

--suppression-status Output suppression status markers, without suppressing warnings.

--system-headers Process system header files.

--timeout=<n> Set a timeout (in seconds) for analysis of each source file. Default: 240.
Important: Setting this value to 0 (meaning infinite) is discouraged; this may cause Goanna to not terminate!

--trace Prints out a trace through the function that leads to the warning. This is helpful for understanding why the
warning occurs.

--trace-format=<format> Specify the format to output traces. The following special strings are used in the trace
format:

%FILENAME% the filename
%RELFILE% the filepath and filename
%RELFILEX% the filepath and filename followed by “:”, or blank if in the current source file
%RELPATH% the filepath
%ABSFILE% the absolute filepath and filename
%ABSFILEX% the absolute filepath and filename followed by “:”, or blank if in the current source file
%ABSPATH% the absolute filepath
%DBRELFILE% the filepath relative to the database file and filename
%DBRELPATH% the filepath relative to the database file
%FUNCTION% the function name
%LINE% the line number
%TEXT% text describing the event on the trace
%TYPE% the type of the trace line
%EOL% a line break
%% a literal %.

The default trace format is: “%LINE%: %TYPE% - %TEXT%%EOL%”.

--unsuppress=<warning id> Unsuppress warning <warning id>.

--user-headers Force the processing of user header files.

74

--verbose Display additional output information.

--version Print version information.

--warning-ids Output warning ids.

--with-cc=<compiler> Specify the C compiler executable to run (if --nc is not specified). Also affects the default
dialect when no --dialect is specified.

--with-cxx=<compiler> Specify the C++ compiler executable to run (if --nc is not specified). Also affects the
default dialect when no --dialect is specified.

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--32 Analyze code for 32-bit targets (longs and pointers are 32 bits wide).

--64 Analyze code for 64-bit targets (longs and pointers are 64 bits wide).

--advanced-help Print help message for advanced options.

--dialect=<file> Specify the dialect of C/C++ compilers. Available dialects are:
armcc microsoft
c166 qnx
c51 renesas-h8
cc21k renesas-rx
cosmic tasking-c166
cygwin ti-cl16x
diab ti-cl2000
gnu ti-cl430
iar-8051 ti-cl470
iar-arm ti-cl500
iar-msp430 ti-cl55
metrowerks

If you use this option, you should also specify --with-cc, --with-cxx and/or --with-ld to specify the
paths to the compiler(s) and linker. If these are not specified, then Goanna will assume the default name for
the specified dialect, which may not be what is available on your system.
If none of --dialect, --with-cc, --with-cxx or --with-ld are specified, then Goanna will assume the
default of gnu dialect with gcc C compiler, g++ C++ compiler and ld linker.

--error Exit with error status code when warnings emitted.

--exclude=<file> Exclude the specified <file> from analysis.

--input-encoding=<type> Specify the character encoding of the source file:

us-ascii ASCII (default)
utf-8 UTF-8
ansi (Available on Windows only) default character encoding of the system

--internal-error=<value> Exit with <value> on internal error.

--ipa-iterations=<value> Specify the number of times interprocedural analysis iterates towards a fixed point. The
default is 2.
Important: Setting this value to 0 (meaning keep iterating until a fixed point is reached) is discouraged; this
may cause Goanna to not terminate!

--ipa-trace-depth=<value> How many levels of inlining are performed for interprocedural traces. Default: 5.
Important: Setting this value to −1 (meaning infinite) is discouraged; this may cause Goanna to not termi-
nate!

--issue-report=<type> Control generation of issue report files:

never Never
on-failure On failures only

75

on-error On failures and analysis errors
timeout On failures, errors, and timeouts
always Always (even if successful)

--license-borrow-hours=<number> When contacting license server, borrow license for <number> of hours. De-
faults to 1, maximum of 24.

--license-dir=<directory> Set directory in which to look for a license file. Defaults to “.”, or $LMX_LICENSE_PATH.
--no-globals Do not analyze global integer variables.
--no-ipa Disable interprocedural analysis.
--output-file=<file> Append warning messages to a specified file.
--output-spec=<file> Use the contents of <file> as the output-format.
--parse-error-log=<file> Log parse errors to the specified file instead of stderr.
--timeout-error=<value> Exit with status code <value> when too many timeouts occur.
--timeout-limit=<value> Maximum number of per-phase timeouts. Default: 3.

Important: Setting this value to 0 (meaning infinite) is discouraged; this may cause Goanna to not terminate!
--timeout-per-phase=<n> Set a timeout (in seconds) for each phase of analysis. This is useful if you have a few

functions that take very long to analyze and you would like to limit the time spent on these, while still getting
as many results as possible on everything else. Default: 60.
Important: Setting this value to 0 (meaning infinite) is discouraged; this may cause Goanna to not terminate!

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--alias

--configure=<dialect>
--dialect-mod=<dialect-mod>
--dataflow

--diagnostics-mode

--no-alias

--no-dataflow

--no-default-packages

--package=<package>
--package-dir=<directory>

Any unrecognized options will be passed through to the compiler as compiler arguments, unless --no-compile is
specified, in which case they will be ignored.

Return Codes

Here is a list of return codes goannacc returns, listed as headings. Under the headings are a list of modes that
provides that return code.

0 (Zero) A return code of 0 generally means that no errors were encountered, and goannacc completed execution
successfully.

• goannacc completes execution without errors
• goannacc configures the default dialect
• goannacc prints help or version information
• goannacc invokes the C/C++ compiler, but is configured to ignore the compiler return code. goannacc

returns 0 even if the compiler returns an error
• goannacc finds code warnings from source code analysis, and is not configured to return an error in the

presense of code warnings (this is the default setting, also see return code 1 (One)_)

76

1 (One) A return code of 1 generally means that a user-provided parameter is invalid.

• goannacc attempts to create or change into a directory that does not exist, or a permission error occurred
• goannacc performs an operation that requires the project database, but the database is not provided or not

found
• An invalid license server is provided to goannacc
• An argument to goannacc needs to be a positive integer, but the user-provided value is not a positive integer.

For example, the number of IPA2 iterations, or timeout values
• goannacc encountered an error while parsing command-line arguments or the dialect file
• goannacc finds code warnings from source code analysis, and is configured to return an error in the presense

of code warnings

127

• goannacc encounters an error when trying to invoke the compiler (for example, if the compiler cannot be
found)

-1

• goannacc attempts to call goannald, but goannald does not exist or cannot be found

Inherited Return Values

• If goannacc invokes the C/C++ compiler, it returns the compilers’s return code unless explicitly configured
otherwise

• If goannacc invokes goannald, it returns goannald’s return code unless explicitly configured otherwise

Configurable Return Values The following error modes have configurable return values.

• Internal Error: Goanna encounters an error internally and cannot complete analysis.
• Parser Error: The Goanna C/C++ parser cannot parse the input source code file. This is often attributed to

syntax errors in the source code, or uncommon C/C++ language constructs that the Goanna parser does not
recognise

• License Expired Error: The Goanna License has expired
• Timeout Error: Goanna is unable to complete before the timeout expired

2Inter-Procedural Analysis

77

11.8 goannald – C/C++ Link Time Analysis

Synopsis

goannald [options] ... [linker options] ... [file] ...

Description

goannald is the utility that performs link-time analysis on a whole program consisting of multiple source and/or
object files, that have already been individually analyzed with goannacc and goannac++.

goannald can operate in two modes:

• Analysis Only: Perform link time analysis only.

• Link & Analyze: Link the specified object files, and then perform link time analysis.

For more details about these modes, see 10.2.

In most cases, there is no need to call goannald directly, as this is called automatically by project-wide analysis
utilities (goanna and gokeil). goannald can also be called by goannacc and goannac++ if command line
arguments have been specified to indicate that a linking step should be done (in your particular compiler). For
example, with gcc (gnu dialect), the following commands do not invoke goannald:

goannacc -c a.c
goannacc -c f1.c f2.c

but the following commands do:

goannacc a.o b.o c.o # implicitly invokes goannald a.o b.o c.o
goannacc f1.o f2.o ver.c # analyzes ver.c, then implicitly invokes goannald f1.o f2.o ver.o

goannald has a set of link time checks that can be specified with check selection options (see 5.1). Further
information about the link time checks are available in the Goanna Central Reference Guide.

Command Line Options

--all-checks Run all available checks (overrides all other check related options).

--check=<name> Run a specific check (overrides any checks file).

--checks-file=<file> Use the checks listed in <file> instead of the default checks in properties.init file.

--checks=<standard> Run all checks in the specified coding standard. For example, --checks=misrac2004 runs all
available checks in the MISRA C:2004 standard.

--checks=<standard>-<rule> Run the check(s) corresponding to one rule in the specified coding standard. For
example, --checks=misrac2004-12.8 runs the check(s) that implement MISRA C:2004 rule 12.8.

--color, --colour Only available on Linux. Output in color.

--columns Print column positions in warnings.

--db=<file> Specify the database file to use for persistent information.

--help Print help message for common options.

--no-compile, --nc Do not run the compiler.

--verbose Display additional output information.

--version Print version information.

--warning-ids Output warning ids.

--with-ld=<linker> Specify the C/C++ linker executable to run (if --nc is not specified).

78

Advanced Command Line Options

The following options are intended to be used only in cases where your environment requires them. In general, you
do not need to use these options.

--dialect=<file> Specify the dialect of C/C++ compilers. Available dialects are:
armcc microsoft
c166 qnx
c51 renesas-h8
cc21k renesas-rx
cosmic tasking-c166
cygwin ti-cl16x
diab ti-cl2000
gnu ti-cl430
iar-8051 ti-cl470
iar-arm ti-cl500
iar-msp430 ti-cl55
metrowerks

If you use this option, you should also specify --with-cc, --with-cxx and/or --with-ld to specify the
paths to the compiler(s) and linker. If these are not specified, then Goanna will assume the default name for
the specified dialect, which may not be what is available on your system.
If none of --dialect, --with-cc, --with-cxx or --with-ld are specified, then Goanna will assume the
default of gnu dialect with gcc C compiler, g++ C++ compiler and ld linker.

--error Exit with error status code when warnings emitted.
--exclude=<file> Exclude the specified <file> from analysis.

Diagnostics Command Line Options

The following options are provided for diagnostics purposes only. Do not use these options unless directed by
Red Lizard Software support team.

--diagnostics-mode

Any unrecognized options will be passed through to the linker as linker arguments, unless --nc is specified, in which
case they will be ignored.

Return Codes

Here is a list of return codes goannald returns, listed as headings. Under the headings are a list of modes that
provides that return code.

0 (Zero) A return code of 0 generally means that no errors were encountered, and goannald completed execution
successfully.

• goannald completes execution without errors
• goannald prints help or version information
• goannald invokes the C/C++ linker, but is configured to ignore the linker return code. goannald returns 0

even if the linker returns an error
• goannald finds code warnings from source code analysis, and is not configured to return an error in the

presense of code warnings (this is the default setting, also see return code 1 (One)_)

1 (One) A return code of 1 generally means that a user-provided parameter is invalid.

• goannald encountered an error while parsing command-line arguments
• goannald performs an operation that requires the project database, but the database is not provided or not

found
• goannald finds code warnings from source code analysis, and is configured to return an error in the presense

of code warnings

79

Inherited Return Values

• If goannald invokes the C/C++ linker, it returns the linker’s return code unless explicitly configured otherwise

Configured Return Values The following error modes have configurable return values.

• Internal Error: Goanna encounters an error internally and cannot complete analysis.

80

11.9 goreporter – Goanna Dashboard Server and Administration Tool, and Publish
Analysis Results

Synopsis

goreporter add-project [options]
goreporter add-snapshot [options]
goreporter view-projects [options]
goreporter view-snapshots [options]
goreporter remove-snapshot [options]
goreporter export-snapshot [options]
goreporter export-warnings [options]
goreporter start-server [options]
goreporter stop-server [options]
goreporter db-upgrade [options]
goreporter html-report [options]
goreporter publish-sonar [options]
goreporter output-xml [options]

Description

goreporter is the command line utility used to drive the Goanna Dashboard. It has a number of commands:

add-project Add a project to the Goanna Dashboard. Does not take a snapshot of the project.

add-snapshot Add a snapshot to a project already in the Goanna Dashboard.

view-projects View all the projects in the Goanna Dashboard. This is useful to get a project’s id.

view-snapshots Lists all the snapshots for the supplied project id. This is useful to get a snapshots’ id.

remove-snapshot Removes a given snapshot id from the Goanna Dashboard.

export-snapshot Exports the files and total warnings by category for a snapshot.

export-warnings Exports the warnings for a project

start-server Starts the Goanna Dashboard server

stop-server Stops the Goanna Dashboard server (when started with the start-server) command.

db-upgrade Perform the database upgrade; see 8.5 for details about this feature.

In addition, goreporter is also used to publish the analysis results to HTML report, XML file and SonarQube.
The commands are:

html-report Generate HTML report files of the analysis result from the project database.

publish-sonar Publish the analysis result from the project database to SonarQube.

output-xml Generate a XML file of the analysis result from the project database.

Running The Goanna Dashboard

The Goanna Dashboard is accessible through the embedded web server goreporter. The server can be run in two
ways; either as a standalone binary being executed from the command line, or as a Linux or Windows Service.

81

Standalone Use

To start the server run the following command:

goreporter start-server

When goreporter starts the server, it will display the port the server is running on. The port can be specified by
using the --port flag. By default the server starts at 1197 and increments until it finds a free port. It is only possible
to run one server instance at a time using this command.

To access the server, open a web browser and browse to http://localhost:<port>, where <port> is the port number
goreporter starts the server on. To stop the server, run the command:

goreporter stop-server

Linux Service

Note: Using Linux service feature requires Goanna Central to be installed under root (often with sudo command).

A service script for the web server is installed as part of the Goanna installation process (if installed with sudo or
from within the root terminal). It uses the configuration file located at /etc/goreporter.conf. This file is used
to configure the server, and takes the same options that the goreporter executable does.

The service is installed in either /etc/init.d or /etc/rc.d, depending on your distribution. To start the service
on a distribution using init.d use:

/etc/init.d/goreporterd {start|stop|reset|restart|force-restart}

Windows Service

The Windows service is installed and started on installation of Goanna Central. A configuration file is stored in the
same location as your summary database. To change settings with the service, modify the configuration file and
then restart the service through the Windows Service Manager.

Configuration File

To point goreporter to a configuration file, use the following command:

goreporter start-server --config=goreporter.conf &

Where goreporter.conf is the name of your configuration file.

goreporter configuration files support all the options specified on the command line. The most commonly used
of these options are:

summary-db the location of the summary database
port the port to run the server on
log the location to put the goreporter log file

They are specified as <option>=<value> pairs, with # used for comments.

82

http://localhost:<port>

Running the Dashboard as a Standalone Web Server

The Goanna Dashboard server can be run as a web server for local intranet or remote access in two ways. If you
want to run the server on a machine with no other web server running on it, the simplest way to set up a GoReporter
server is to run the server either as a service or as a standalone instance with the port set to 80 (standard web port).

Provided no firewall or similar is blocking access, the Goanna Dashboard will now be visible by browsing to
http://<yourserveraddress>. If you run the server standalone and the computer you’re running the server on is
restarted, the Goanna Dashboard server will not automatically be reset.

Running the Dashboard through Apache

It is also possible to use the Goanna Dashboard server in conjunction with your existing web server. The following
example shows how to do this with Apache web server.

The way to run the Goanna Dashboard with existing Apache installation is to run goreporter on the different
port than Apache (Apache normally uses port 80), and then use Apache’s mod_proxy to forward all traffic on the
special Dashboard URL to goreporter.

Firstly, modify your httpd.conf to allow proxy access. For example, if your site is located at http://mysite.com
and you want to navigate to the Dashboard through the url http://mysite.com/reporter, then add these lines into
httpd.conf:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
...
ProxyRequests Off
ProxyPass /reporter http://localhost:1197
ProxyPassReverse /reporter http://localhost:1197

Then restart Apache.

You can then start the Goanna Dashboard server either as a service or as a standalone instance using the port 1197.

It is important to specify the port number when running goreporter in this instance, as Apache has been config-
ured to only connect to goreporter on this port.

The Goanna Dashboard is now available at http://mysite.com/reporter/.

Goanna Dashboard Database (Summary Database)

Goanna Dashboard uses its own database (called summary database, or summary DB) to store details about your
project. By default this database is stored in:

• <installed-directory>/reporter on Linux where the Goanna installation directory is <installed-
directory>, or

• C:\Documents and Settings\<username>\Local Settings\Application Data\RedLizards\Goanna
Central\ for Windows XP and Server 2003, or

• C:\Users\<username>\AppData\Local\RedLizards\Goanna Central\ for Windows Vista, Server
2008 and later, where <username> is the name of the user account who installed Goanna Central.

It is possible to change where the summary database is stored by using the --summary-db=<path> flag. However, if
you do change the default summary database location, be sure to specify new location of the database with either:

• through --summary-db flag when you run Goanna commands, or

• by specifying the new location in the goreporter configuration file.

Integrating Reporting into Your Build

Snapshots are automatically taken at the conclusion of project-wide analysis. Generally, there is no need for a
manual action to take a snapshot.

However, it is also possible to manually take a snapshot from the project database. To manually take a snapshot,
add-snapshot command. For example:

83

http://<your server address>
http://mysite.com
http://mysite.com/reporter
http://mysite.com/reporter/

goreporter add-snapshot --db=project.goannadb

Important: Once the snapshot is taken, make sure that the project database stays at the same location. This is
because some features of the Goanna Dashboard relies on the project database being always available at the same
location.

Command Line Arguments

add-project

--summary-db=<file> The database in which to save snapshots.
--db=<project-db> The database generated by Goanna for the project (path must be relative to the sum-

mary database)
--name=<project name> This will set the name of a new or existing project to its argument

add-snapshot

--summary-db=<file> The database in which to save snapshots.
--db=<project-db> The database generated by Goanna for the project (path must be relative to the sum-

mary database)
--config=<path to configuration file> When specified overwrites the given options with those specified

in the file
--revision=<number> The revision number in your version control system.
--name=<project name> This will set the name of a new or existing project to its argument

view-snapshots

--summary-db=<file> The database in which to save snapshots.
--config=<path to configuration file> When specified overwrites the given options with those specified

in the file
--project-id=<project-id> The id of the project to show the data for

export-snapshot

--summary-db=<file> The database in which to save snapshots.
--snapshot-id=<snapshot-id> The id of the snapshot to view or delete. Can be found in the view-

snapshots command
--config=<path to configuration file> When specified overwrites the given options with those specified

in the file
--delimiter=<delimiting character> Character to delimit the csv file. Defaults to comma

export-warnings

--summary-db=<file> The database in which to save snapshots.
--project-id=<project-id> The id of the project to show the data for
--config=<path to configuration file> When specified overwrites the given options with those specified

in the file
--delimiter=<delimiting character> Character to delimit the csv file. Defaults to comma

start-server

--summary-db=<file> The database in which to save snapshots.
--port=<port number> Port number (default 1197, if 1197 is not available then 1198, 1199...). If this

option is set and the specified port is unavailable then the server will quit.
--log=<true/false> Port number (default 1197, if 1197 is not available then 1198, 1199...). Toggles

logging to stdout. Default true
--log-file=<path to log file> Toggles logging to a file.
--config=<path to configuration file> When specified overwrites the given options with those specified

in the file

84

db-upgrade
Note: See 8.5 for details about this feature.

--summary-db=<file> The database in which to save snapshots.
--progress=<path to progress> Specify the file to write progress information into.
--feature=<feature> Specify the feature(s) to upgrade; valid values are auto_vacuum and warn-

ing_index.

html-report

--db=<project-db> The database generated by Goanna for the project (path must be relative to the sum-
mary database)

--html-type=<report-type> Specifies which report to generate, can be one of summary, warnings or
all. If you do not specify this option, all reports will be generated.

--html-report-location=<directory> The directory to output a HTML report to. Default is current di-
rectory.

publish-sonar

--db=<project-db> The database generated by Goanna for the project (path must be relative to the sum-
mary database)

--sonar-url=<url> Specify the location of the SonarQube URL. Default: The default URL of Sonar-
Qube, typically ‘http://localhost:9000’

--sonar-db-name=<database name> Specify the SonarQube database name. Default: ‘sonar’ .
--sonar-db-pass=<password> Specify the SonarQube database password. Default is to use SonarQube’s

default, typically ‘sonar’ .
--sonar-dir=<dir> Specify the root directory of source files. Can be specified multiple times. Default:

current working directory.
--no-sonar-runner Generate the necessary files for "sonar-runner", but do not run it
--sonar-exclude=<path-pattern> Exclude the files whose path is matching the specified pattern.
--cppcheck-report=<file> Specify the path to CppCheck analysis report to include. Default: do not

include CppCheck report.
--cppncss-report=<file> Specify the path to CppNcss analysis report to include. Default: do not include

CppNcss report.

output-xml

--db=<project-db> The database generated by Goanna for the project (path must be relative to the sum-
mary database)

--output-xml-file=<file> Specify the location of the output XML file. Default: warnings.xml

Return Codes

0 (Zero) A return code of 0 generally means that no errors were encountered, and goreporter completed exe-
cution successfully.

• goreporter completes execution without errors
• goreporter prints help or usage information

1 (One) A return code of 1 generally means that a user-provided parameter is invalid.

• goreporter encounters an error while parsing command-line arguments
• goreporter attempts to read or write to a file, but the file cannot be found or goreporter does not have the

correct permissons
• goreporter is given a database argument, but the database is not a valid Goanna project database
• goreporter attempts to start the web server process on a particular TCP/IP port, but the port is already in

use

85

2

• goreporter encounters an unexpected or internal error when processing a subcommand

86

Index

_GOANNA preprocessor symbol, 41
assert macro, 41
goannac++, 73
goannacc, 73
goannacmake-conv, 67
goannaiarbuild, 69
goannald, 78
goannamake, 63

GOANNAFLAGS environment variable, 64
GOANNAMAKE_CC environment variable, 64
GOANNAMAKE_CXX environment variable, 64
GOANNAMAKE_LD environment variable, 64
MAKE environment variable, 64

goannascons, 65
goanna, 61
gokeil, 71
goreporter, 81
gotrace, 71

Bundled SonarQube (Advanced)
Browsing, 58
Service, 58

Checks
Changing check set, 31
Custom Packages, 34
Disabling Packages, 34
Enabling Packages, 33
Listing Packages, 33
Packages, 33
Setting, 31

Command Line Options
--32, 75
--64, 75
--absolute-path, 73
--advanced-help, 61, 63, 65, 67, 69, 72, 75
--alias, 76
--all-checks, 73, 78
--analyse, 61
--analyze, 61
--autodetect, 64
--brief-trace, 73
--build, 61
--buildspec, 71
--c++, 73
--check, 73, 78
--checks, 73, 78
--checks-file, 73, 78
--color, --colour, 61, 63, 65, 67, 69, 71, 73, 78
--columns, 73, 78
--config, 84
--configure, 76
--cppcheck, 61, 63, 65, 67, 69, 72
--cppcheck-report, 85

--cppncss, 61, 63, 65, 67, 69, 72
--cppncss-report, 85
--cygwin, 63
--dataflow, 76
--db, 61, 63, 65, 67, 69, 71, 73, 78, 84, 85
--debug-help, 71
--delimiter, 84
--diagnostics-mode, 76, 79
--dialect, 75, 79
--dialect-mod, 76
--directory, 73
--error, 75, 79
--exclude, 61, 63, 65, 67, 69, 71, 75, 79
--feature, 85
--force-analysis, 73
--force-tracing, 71
--gnu, 63
--help, 61, 63, 65, 67, 69, 71, 73, 78
--html-report, 61, 63, 65, 67, 69, 71
--html-report-location, 61, 64, 65, 67, 69, 72, 85
--html-type, 85
--ignore-errors, 64, 65, 73
--input-encoding, 75
--internal-error, 75
--ipa-iterations, 40, 75
--ipa-trace-depth, 75
--issue-report, 75
--jobs, 61, 63
--license-borrow-hours, 76
--license-dir, 76
--license-server, 73
--log, 84
--log-file, 84
--microsoft, 63, 64
--name, 84
--nc, 75, 78, 79
--no-alias, 76
--no-autodetect, 64
--no-compile, 76
--no-compile, --nc, 73, 78
--no-dataflow, 76
--no-default-packages, 76
--no-globals, 76
--no-goanna-path, 61, 64, 65, 68, 70
--no-ipa, 40, 76
--no-recursive, 64
--no-snapshot, 62, 64, 66, 68, 70, 72
--no-sonar-runner, 62, 64, 66, 68, 70, 72, 85
--output-checks, 73
--output-file, 71, 76
--output-format, 73
--output-spec, 76
--output-xml, 61, 63, 65, 67, 69, 71
--output-xml-file, 85

87

--package, 76
--package-dir, 76
--parse-error-log, 76
--port, 84
--progress, 85
--project-dir, 74
--project-id, 84
--quiet, 74
--record, 62, 63, 65, 67, 69
--record-incremental, 64, 66, 68, 70
--replay, 61
--revision, 62, 64, 66, 68, 70, 72, 84
--snapshot-id, 84
--sonar, 61, 63, 65, 67, 69, 71
--sonar-db-name, 62, 64, 66, 68, 70, 72, 85
--sonar-db-pass, 62, 64, 66, 68, 70, 72, 85
--sonar-db-user, 62, 64, 66, 68, 70, 72
--sonar-dir, 62, 64, 66, 68, 70, 72, 85
--sonar-exclude, 85
--sonar-url, 85
--summary-db, 61, 63, 65, 67, 69, 71, 84, 85
--suppress, 74
--suppression-status, 74
--system-headers, 74
--timeout, 74
--timeout-error, 76
--timeout-limit, 76
--timeout-per-phase, 76
--trace, 74
--trace-format, 74
--ungroup, 62
--unsuppress, 74
--user-headers, 74
--verbose, 75, 78
--version, 61, 63, 65, 67, 69, 71, 75, 78
--warning-ids, 75, 78
--with-cc, 64, 75
--with-cxx, 64, 75
--with-ld, 64, 78

Common Weakness Enumeration (CWE), 31
Computer Emergency Response Team (CERT) C/C++ Coding Standard, 31
CppCheck (Advanced), 60
CppCheck and CppNcss With SonarQube (Advanced)

Complexity widget, 60
Violations Drilldown, 60

CppNcss (Advanced), 60

Database
Project, 55
Summary, 83

Dialect, 56

False positives, 40
Bug status, 42

Goanna Dashboard, 42
Bug status, 42
Server, 81

Snapshot generation, 83
Views, 42

Installation
Linux, 14
Windows, 15

Interprocedural analysis, 40

License, 14
Activation, 15

Motor Industry Software Reliability Association (MISRA) C++:2008, 31
Motor Industry Software Reliability Association (MISRA) C:2004, 31

Running analysis from Keil µVision, 38

Sample Code, 41
SonarQube, 49
Standards, 31

Traces
Dashboard, 46

Warning
Suppression, 42, 45

Warning Suppression With goannacc (Advanced)
Status, 57
Suppression, 57
Un-suppression, 57

88

	System Requirements
	Operating Systems
	Microsoft Windows
	Linux
	Other Requirements

	Hardware Requirements
	Supported Compilers
	A Word On C99 and C++11 Support
	A Word On Compiler-Specific Syntax Extensions
	Analog Devices CrossCore C/C++ Compiler (cc21x Dialect)
	ARM C/C++ Compiler (armcc Dialect)
	Cosmic Software C Cross Compiler (cosmic Dialect)
	Cygwin GCC (cygwin Dialect)
	Freescale (metrowerks Dialect)
	GNU C/C++ Compiler (GCC) (gnu Dialect)
	IAR Toolchain for 8051, ARM and MSP430 (iar-8051, iar-arm and iar-msp430 Dialects)
	Keil Cx51 and C166 Optimizing C Compiler (c51 and c166 Dialects)
	Microsoft Visual C++ (microsoft Dialect)
	QNX QCC (qnx Dialect)
	Renesas H8S, H8/300 Series C/C++ Compiler (renesas-h8 Dialect)
	Renesas RXC Toolchain (renesas-rx Dialect)
	Tasking VX-toolset for C166/ST10 (tasking-c166 Dialect)
	TI Build Tools (ti-cl16x, ti-cl2000, ti-cl430, ti-cl470, ti-cl500 and ti-cl55 Dialects)
	Wind River Diab Compiler (diab Dialect)

	Supported Build Systems
	GNU Make, QNX Make and Microsoft NMake
	SCons
	CMake
	IAR Embedded Workbench® (IarBuild.exe)
	Keil™ Vision® (UV4.exe)

	Getting Started
	License Agreement
	Installation (Linux)
	Installation (Windows)
	License Activation
	Activating Node-locked License
	Using Network (Floating) License

	Next Steps

	Setting Up Projects for Goanna Analysis
	Introduction
	Setting Up GNU Make, QNX Make and Microsoft NMake Projects with goannamake
	Preparing Makefile for Goanna Integration
	Using goannamake To Capture The Build Settings

	Setting Up SCons Projects with goannascons
	Preparing SConstruct file for Goanna Integration
	Using goannascons To Capture The Build Settings

	Setting Up CMake Projects with goannacmake-conv
	Using goannacmake-conv To Generate The Build Settings

	Setting Up IAR Embedded Workbench® Projects with goannaiarbuild
	Setting Up Keil™ Vision® Projects with gotrace

	Running Goanna Analysis
	Introduction
	Running Goanna Analysis On Non-Keil Projects With goanna
	Running Goanna Analysis On Keil™ Vision® Projects With gokeil
	Reading Analysis Results
	Goanna Output On The Console
	HTML Report of Analysis Results
	Analysis Results In XML File
	Using Goanna Dashboard Web Interface To Interact With Analysis Results
	Using SonarQube To Interact With Analysis Results

	Configuring Goanna Analysis
	Setting Checks
	Introduction
	Selecting Checks With Command Line Options
	Using Checks File To Select Multiple Checks
	Enabling All Available Checks

	Checks Packages
	Listing Checks Packages
	Enabling Available Checks Package
	Disabling Installed Checks Package
	Installing Custom Checks Package

	Including Headers Into Analysis
	Excluding Certain Files From Analysis
	Setting Analysis Timeouts
	Ignoring Certain Warnings ("Warning Suppression")
	Other Configuration Options

	Running Goanna Analysis From Within IDEs
	Running Goanna Analysis From IAR Embedded Workbench®
	Running Goanna Analysis From Keil™ Vision®

	Getting the Best Results from Goanna
	Interprocedural Analysis
	A Word on False Positives
	Using the _GOANNA Preprocessor Symbol
	Using the assert macro
	Sample Code

	Using the Goanna Dashboard
	Getting to the Goanna Dashboard
	Bug Statuses
	Severity
	Dashboard Views
	Project Page
	Report Page
	Directory Browser
	Warnings Browser
	Code Browser

	Database Upgrades
	Project Settings (Advanced)
	External Code Browser Support
	Code Browser Character Encodings

	Using Goanna With SonarQube Code Quality Platform
	Introduction
	Setting Up Goanna To Integrate With SonarQube Installation
	Running Goanna Analysis With SonarQube Publish

	Advanced Features, Concepts and Configurations
	Proceed With Caution
	Manually Running Analysis On Source Files
	Manually Running Link Time Analysis On Object Files
	Build And Run Analysis On A Project At The Same Time
	Using Embedded Build Information To Perform Analysis
	Append New Build Information Into Existing Build Specification
	The Project Database
	How Goanna's Compiler Support Work
	Suppressing Warnings Manually Using goannacc
	Suppressing Warnings
	Un-suppressing Warnings
	Displaying Warnings Status

	Using Goanna Central Bundled SonarQube Installation
	Running Goanna Central Bundled SonarQube On Linux
	Running Goanna Central Bundled SonarQube On Windows
	Browsing Goanna Central Bundled SonarQube Dashboard
	Running Goanna Analysis With Goanna Central Bundled SonarQube

	Using CppCheck And CppNcss With Goanna

	Goanna Central Utility Reference
	goanna – Analyze C/C++ Projects
	goannamake – Analyze Makefile Projects
	goannascons – Analyze SCons Projects
	goannacmake-conv – Convert CMake Compilation Database To Goanna Build Specification
	goannaiarbuild – Analyze IAR Embedded Workbench Projects
	gotrace and gokeil – Analyze Keil™ Vision® Projects
	goannacc and goannac++ – Analyze C/C++ Source Files
	goannald – C/C++ Link Time Analysis
	goreporter – Goanna Dashboard Server and Administration Tool, and Publish Analysis Results

	Index

