
User Operating-System Interface
Types of System Calls

5. Communication – (two common models)
a) Message-passing model – communicating processes exchange

messages with one another to transfer information.

a) Shared-memory model - processes used shared memory create and
shared memory attach system calls to create and gain access to
regions of memory owned by other processes

User Operating-System Interface
Types of System Calls (Communication)

a) Message-passing model - Messages can be exchanged between processes

either directly or indirectly through a common mailbox

1. A connection must be opened

2. The name of other communicator must be known. Can be;
1. Another process on the same system

2. A process on another computer connected by a communications network
(i.e. host name, ip address, process name), which is translated into an
identifier in which the operating system refers to.

Both of the models are common in operating systems, and most
systems implement both. Message passing is useful for
exchanging smaller amounts of data, because no conflicts need
be avoided. It is also easier to implement than is shared
memory for intercomputer communication. Shared memory
allows maximum speed and convenience of communication,
since it can be done at memory transfer speed.

User Operating-System Interface
Types of System Calls (Communication)

a) Shared-memory model – requires that two or more processes agree to remove

the restriction of preventing one process from accessing another process’s memory.

1. Information is exchanged by reading and writing data in shared areas.

2. The form of data is determined by the process (is not under the OS
control)

3. Process are responsible for ensuring that they are not writing to the
same memory location simultaneously

The get hostid and get processid system calls do this translation.
The identifiers are then passed to the general-purpose open and
close calls provided by the file system or to specific open
connection and close connection system calls. The recipient
process must usually give its permission for communication to
take place with an accept connection call.

User Operating-System Interface
Types of System Calls (Communication)

Summary of System calls

• Create, delete communication connection

• Send, receive messages

• Transfer status information

• Attach or detach remote devices.

Example of Windows and Unix System Calls

Windows Unix

Information
Maintenance

CreatePipe() pipe()

CreateFileMapping() shmget()

MapViewOfFile() mmap()

User Operating-System Interface
Types of System Calls

4. Protection – provides the mechanism for controlling access
to the resources provided by a computer system

All computer systems, from servers to PDA’s, must be concerned
with protection. Typically, system calls providing protection
include set permission and get permission, which manipulate
the permission settings of the resources such as files and disk.
The allow user and deny user system calls specify whether
particular users can – or cannot – be allowed access to certain
resources.

User Operating-System Interface
System Programs – also known as system utilities, provides a
convenient environment for program development and
execution. Some of them are simply interfaces to system calls;
others are considerably more complex. These are the categories:

• File management – which are programs that create, delete,
copy, rename, print, dump, list, and generally manipulates
files and directories.

• Status information – the collecting of data pertaining to the
system or process (i.e. system date, available memory, disk
space, number of users, other status information,
performance details, and logging, and debugging information.

• File modification (text editors) – the ability to create and
modify the content of files stored on disk or other storage
devices; may even include searches or transformation of text.

User Operating-System Interface
• Programming-language support – Compilers, assemblers,

debuggers, and interpreters for common programming
languages (such as C, C++, Java, Visual Basic, and PERL) are
often provided to the user with the operating system.

• Program loading and execution – Once a program is
assembled or compiled, it must be loaded into memory to be
executed. The system may provide absolute loaders,
relocatable loaders, linkage editors, and overlay loaders.
Debugging systems for either high-level languages or machine
languages are needed as well.

• Communications – These programs provide the mechanism
for creating virtual connections among processes users, and
computer systems. They allow users to send messages to one
another’s screens, to browse Web pages, to send electronic-
mail, to log in remotely, or to transfer file from one machine
to another.

Operating-System Structure

• Simple Structure

Many commercial operating systems do not have well-defined
structures. Frequently, such systems started as small, simple, and
limited systems and then grew beyond their original scope. MS-
DOS is an example of such a system. It was originally designed
for a few people who had no idea that it would become so
popular. It was written to provide the most functionality in the
least space, so it was not divided into modules carefully.

Another example would be the original UNIX operating system.
Like MS-DOS, UNIX initially was limit by hardware functionality.

It consist of two parts the kernel and the system programs.

Operating-System Structure

MS-DOS Layer Structure

application program

resident system
program

MS-DOS
device driver

ROM BIOS device driver

In MS-DOS, application programs are able to
access the basic I/O routines to write
directly to the display and disk drives. Such
freedom leaves MS-DOS vulnerable to errant
(or malicious) programs, causing entire
system crashes when user programs fails.

Operating-System Structure
• Layered Approach

With proper hardware support, operating systems can be broken
into pieces that are smaller and more appropriate than those
allowed by the original MS-DOS and UNIX systems.

A system can be made modular in many ways.

1. Layered Approach (levels) – where the bottom layer (layer 0)
is hardware and the highest layer (layer N) is the user
interface.

An operating-system layer is an implementation of an abstract
object made up of data and the operations that can manipulate
that data. A typical operating system layer – say, layer M –
consists of data structures and a set of routines that can be
invoked by higher-level layers. Layer M, in turn can invoke
operations on lower-level layers.

Operating-System Structure

• Layered Approach

layer 0
hardware

layer 1

.

.

.

layer N
user interface

Operating-System Structure

• Layered Approach

The main advantage of the layered approach is simplicity of
construction and debugging. The first level can be debugged
without concern for the rest of the system, because, by
definition, it uses only the basic hardware (which we assume is
correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the
second layer is debugged, and so on.

The layered approach is simplified because each layer is
implemented with only those operations provided by lower-level
layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do.

Operating-System Structure
• Microkernels

Mach OS developed in mid-1980s at Carnegie Mellon University
modularized the UNIX kernel using the microkernel approach.

This method structures the operating by removing all
nonessential components from the kernel and implementing
them as system and user-level programs, which results to a
smaller kernel. It provides minimal process and memory
management, in addition to a communication facility.

The main function of the microkernel is to provide a
communication facility between the client program and the
various services that are also running in user space, which
provided by message passing.

Microkernels can suffer from performance decreases due to
increased system functions (i.e. Window NT).

Operating-System Structure
• Modules

Considered the best current methodology for operating-system
design because it involves using object-oriented programming
techniques to create a modular kernel.

The kernel has a set of core components and links in additional
services either during boot time or during run time. This
strategy uses dynamically loadable modules and is common in
modern implementations of UNIX, such as Solaris, Linux, and
Mac OS X.

This design allows the kernel to provide core services yet also
allows certain features to be implemented dynamically. For
example, device and bus drivers for specific hardware can be
added to the kernel, and support for different file systems can be
added as loadable modules.

Operating-System Structure
• Solaris Loadable Modules

scheduling
classes

device and
bus drivers

miscellaneous
modules

file
systems

loadable
system calls

STREAMS
modules

executable
formats

Core Solaris
kernel

Operating-System Structure
• Modules

The overall result resembles a layered system in that each kernel
section has defined, protected interfaces; but it is more flexible
than a layered system in that any module can call any other
module. The approach is like the microkernel approach in that
the primary module has only core functions and knowledge of
how to load and communicate with other modules; but it is
more efficient, because modules do not need to invoke message
passing in order to communicate.

Chapter 3 - Processes
• The Process

A process (job) is a program in execution. The process is more
than the program code, which is sometimes know as the text
section.

It also includes the current activity:
1. Program counter – the contents of the processor’s registers

2. Stack – contains temporary data (such as function parameters, return
address, and local variables) and

3. Data section – contains global variables

4. Heap (may also be included) – memory that is dynamically allocated
during process run time

Again, a program by itself is not a process; a program is a passive
entity, such as a file containing a list of instructions stored on
disk (often called an executable file) , where a process is an
active entity, with a program counter specifying the next
instruction to execute and a set of associated resources.

Chapter 3 - Processes
• The Process

stack

data

text

heap

0

max

Process in memory.

Chapter 3 - Processes
• Process State

As a process executes, it changes state. The state of a process is
defined in part by the current activity of that process. Each
process may be in one of the following states:

1. New – the process is being created.

2. Running – instructions are being executed.

3. Waiting – the process is waiting for some event to occur
• I/O completion

• Reception of a signal

4. Ready – the process is waiting to be assigned to a processor.

5. Terminated – the process has finished execution.

The names of these states vary from operating system to
operating system.

Chapter 3 - Processes
• Process State

Chapter 3 - Processes
• Process Control Block (PCB)

Each process is represented in the operating system by a process
control block (PCB) – also called task control block. A PCB
contains many pieces of information associated with a specific
process, which includes:

1. Process state – (new, ready, running, waiting, halted, etc)

2. Program counter – indicates the address of the next instruction to be
executed for this process.

3. CPU registers – includes accumulator, index registers, stack pointers,
and general-purpose registers, plus any condition code information.

4. CPU-scheduling information – this information includes a process
priority, pointers to scheduling queues, and any other scheduling
parameters.

5. Memory-management information – this information includes the
value of the base and limit registers, the page tables, or the segment
tables, depending on the memory system used by the operating
system.

Chapter 3 - Processes
6. Accounting Information – the amount of CPU and real time used,

time limits, account numbers, job or process numbers, etc.

7. I/O Status – the list of I/O devices allocated to the process, a list of
open files, etc.

The PCB simply serves as the repository for any information that may vary
from process to process.

Process Control Block (PCB)

Chapter 3 - Processes
• Threads

The process model discussed thus far has implied that a process
is a single thread of execution. For example, when a process is
running a word-processing program, a single thread of
instruction is being executed. This single thread of control allows
the process to perform only one task at one time. The user
cannot simultaneously type in characters and run the spell
checker within the same process. A user cannot type in
characters and run another word function (i.e. spell check)
within the same process.

Some operating system allow processing multiple threads by
extending the processing concept, enabling more than one task
to be performed at one time.

Chapter 3 - Processes

CPU Switch from Process to Process

Chapter 3 - Processes
Process Scheduling

The objective of multiprogramming is to have some process
running at all times, to maximize CPU utilization. The objective
of time sharing is to switch the CPU among processes so
frequently that users can interact with each program while it is
running. Single-systems have only one process running at a
time. The remaining process waits until the CPU is free and can
be rescheduled.

Scheduling Queues

• Job queue–set of all processes in the system

• Ready queue–set of all processes residing in main memory,
ready and waiting to execute

• Device queues–set of processes waiting for an I/O device

Processes migrate among the various queues

Chapter 3 - Processes
When a process enters the system , it is placed in a job queue,
which consist of all process in the system. Processes that resides
in main memory and are ready and waiting to execute are kept
on a list called the ready queue.

This queue is generally stored as a linked list. A ready-queue
header contains pointers to the first and final PCBs in the list.
Each PCB includes a pointer field that points to the next PCB in
the ready queue.

There are other queues in the system, such as device queues.
Suppose the process makes an I/O request to a shared device,
such as a disk. The list of processes in the system, the disk may
be busy with I/O request of some other process. The process
therefore may have to wait for the disk. The list of process
wainting for a particular I/O devices is called a device queue.

Chapter 3 - Processes

The Ready Queue and Various I/O Device Queues

Chapter 3 - Processes

Queueing-Diagram Representation of Process Scheduling

Chapter 3 - Processes
A new process is initially put in the ready queue. It waits there
until it is selected for execution. Or is dispatched. Once the
process is allocated and is executed, one of several events could
occur:

• The process could issue an I/O request and then be placed in
an I/O queue.

• The process could create a new subprocess and wait for the
subprocess’s termination

• The process could be removed forcibly from the CPU, as a
result of an interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from the
waiting state and is then put back in the ready queue. A process
continues this cycle until it terminates, at which time it is
removed from all queues and has its PCB and resources
deallocated.

