Diagonalization

Math 240 - Calculus III

Summer 2013, Session II
Thursday, July 25, 2013

1. Change of Basis

2. Diagonalization Uses for diagonalization

The change of basis matrix

Definition

Suppose V is a vector space with two bases

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \text { and } C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}
$$

The change of basis matrix from B to C is the matrix $S=\left[s_{i j}\right]$, where

$$
\mathbf{v}_{j}=s_{1 j} \mathbf{w}_{1}+s_{2 j} \mathbf{w}_{2}+\cdots+s_{n j} \mathbf{w}_{n}
$$

In other words, it is the matrix whose columns are the vectors of B expressed in coordinates via C.

Example

Consider the bases $B=\left\{1,1+x,(1+x)^{2}\right\}$ and $C=\left\{1, x, x^{2}\right\}$ for P_{2}. The change of basis matrix from B to C is

$$
S=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Using the change of basis matrix

Theorem

Suppose V is a vector space with bases B and C, and S is the change of basis matrix from B to C. If \mathbf{v} is a column vector of coordinates with respect to B, then $S \mathbf{v}$ is the column vector of coordinates for the same vector with respect to C.

The change of basis matrix turns B-coordinates into C-coordinates.

Example

Using the change of basis matrix from the previous slide, we can compute

$$
(1+x)^{2}-2(1+x)=S\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]=x^{2}-1
$$

Inverse change of basis

Suppose we have bases B and C for the vector space V. There is a change of basis matrix S from B to C and also a change of basis matrix P from C to B. Then

$$
P S \mathbf{e}_{1}=\mathbf{e}_{1}, \quad P S \mathbf{e}_{2}=\mathbf{e}_{2}, \quad \ldots, \quad P S \mathbf{e}_{n}=\mathbf{e}_{n}
$$

and

$$
S P \mathbf{e}_{1}=\mathbf{e}_{1}, \quad S P \mathbf{e}_{2}=\mathbf{e}_{2}, \quad \ldots, \quad S P \mathbf{e}_{n}=\mathbf{e}_{n}
$$

Theorem
In the notation above, S and P are inverse matrices.

Matrix representations for linear transformations

Theorem

Let $T: V \rightarrow W$ be a linear transformation and A a matrix representation for T relative to bases C for V and D for W. Suppose B is another basis for V and E is another basis for W, and let S be the change of basis matrix from B to C and P the change of basis matrix from D to E.

- The matrix representation of T relative to B and D is $A S$.
- The matrix representation of T relative to C and E is $P^{-1} A$.
- The matrix representation of T relative to B and E is $P^{-1} A S$.

Similar matrices

For eigenvectors and diagonalization, we are interested in linear transformations $T: V \rightarrow V$.

Corollary

Let A be a matrix representation of a linear transformation $T: V \rightarrow V$ relative to the basis B. If S is the change of basis matrix from a basis C to B, then the matrix representation of T relative to C is $S^{-1} A S$.

Definition

Let A and B be $n \times n$ matrices. We say that A is similar to B if there is an invertible matrix S such that $B=S^{-1} A S$.

Similar matrices represent the same linear transformation relative to different bases.

Theorem

Similar matrices have the same eigenvalues (including multiplicities).

But,
the eigenvectors of similar matrices are different.

Proof.

If A is similar to B, then $B=S^{-1} A S$ for some invertible matrix S. Thus,

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(S^{-1} A S-\lambda S^{-1} S\right) \\
& =\operatorname{det}\left(S^{-1}(A-\lambda I) S\right) \\
& =\operatorname{det}\left(S^{-1} S\right) \operatorname{det}(A-\lambda I)=\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Diagonalization

Definition

The diagonal matrix with main diagonal $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ is denoted

$$
\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right]
$$

If A is a square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, the simplest matrix with those eigenvalues is $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Definition

A square matrix that is similar to a diagonal matrix is called diagonalizable.
Our question is, which matrices are diagonalizable?

Diagonalization

Theorem

An $n \times n$ matrix A is diagonalizable if and only if it is nondefective. In this case, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ denote n linearly independent eigenvectors of A and

$$
S=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

then

$$
S^{-1} A S=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A (not necessarily distinct) corresponding to the eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.

Example

Verify that

$$
A=\left[\begin{array}{rrr}
3 & -2 & -2 \\
-3 & -2 & -6 \\
3 & 6 & 10
\end{array}\right]
$$

is diagonalizable and find an invertible matrix S such that $S^{-1} A S$ is diagonal.

1. The characteristic polynomial of A is $-(\lambda-4)^{2}(\lambda-3)$.
2. The eigenvalues of A are $\lambda=4,4,3$.
3. The corresponding eigenvectors are

$$
\begin{array}{lll}
\lambda=4: & \mathbf{v}_{1}=(-2,0,1), & \mathbf{v}_{2}=(-2,1,0) \\
\lambda=3: & \mathbf{v}_{3}=(1,3,-3)
\end{array}
$$

4. A is nondefective, hence diagonalizable. Let $S=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$.
5. Then, according to the theorem, we will have $S^{-1} A S=\operatorname{diag}(4,4,3)$.

Raising matrices to high powers

Change of

If A is a square matrix, you may want to compute A^{k} for some large number k. This might be a lot of work. Notice, however, that if $A=S D S^{-1}$, then

$$
\begin{aligned}
& A^{2}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)=S D\left(S S^{-1}\right) D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=A^{2} A=\left(S D^{2} S^{-1}\right)\left(S D S^{-1}\right)=S D^{3} S^{-1}
\end{aligned}
$$

etc.
We can compute D^{k} fairly easily by raising each entry to the k-th power.

Theorem

If A is a nondefective matrix and $A=S D S^{-1}$, then

$$
A^{k}=S D^{k} S^{-1}
$$

Solving linear systems of differential equations

We saw yesterday that linear systems of differential equations with diagonal coefficient matrices have particularly simple solutions. Diagonalization allows us to turn a linear system with a nondefective coefficient matrix into such a diagonal system.

Theorem

Let $\mathbf{x}^{\prime}=A \mathbf{x}$ be a homogeneous system of linear differential equations, for A an $n \times n$ matrix with real entries. If A is nondefective and $S^{-1} A S=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, then all solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ are given by

$$
\mathbf{x}=S \mathbf{y}, \text { where } \mathbf{y}=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars.

