

 Using ABAP-OO in BI-
Transformations through Custom
Class

 Applies to:
BI 7.0 BW 3.5. For more information, visit the Business Intelligence homepage.

Summary:

In BI 7.0, BI Transformation routines must use ABAP-OO . Going a step further, using
custom class gives not only tremendous advantages of OO, but also through a logical
segregation of ABAP code from BI design. This is illustrated with a practical application.
Custom classes can also be used on earlier versions of BI.

Author: Varad Desikan

Company: Capgemini(US)LLC

Created on: 4 July 2009

Author Bio
Varad Desikan is Manager, BI with the East Business Unit of Capgemini (US) LLC

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 1

https://www.sdn.sap.com/irj/sdn/nw-bi

 Using ABAP-OO in BI-Transformations through Custom Class

Table of Contents
1. Introduction ... 3

2. Case Application ... 3

3. Calling the Custom Class in the Transformation: ... 3
3.1 Start Routine: .. 3
3.2 End Routine: ... 5

4.0 Construction of the Custom Class Object: .. 5
4.1 Communication between Transformation and Class .. 5
4.2 Class Attributes ... 9
4.3 Methods .. 9
4.4 Parameters .. 10
4.5 Brief on methods used in the case example ... 11

5. Conclusion .. 12

Related Content .. 13

Copyright .. Error! Bookmark not defined.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 2

 Using ABAP-OO in BI-Transformations through Custom Class

1. Introduction
 In BI 7.0, BI Transformation routines must use ABAP-OO and all new constructs by SAP
follow ABAP-OO. Indeed, as per the methodology promoted by SAP, ABAP-OO should be
the right path for any ABAP dvelopment whether in ECC or BI. It has been a common
practice to use function modules(standard and custom) within start routines to avoid
repetitive code. Going further in this process, using custom class gives tremendous
advantage not only in terms of adavntages of OO viz., reliability, re-usability, information
hiding etc. but also in the speed of development and advantage of segregation of code and
BI Modelling. This is illustrated with a real application approach. Indeed, custom classes
can also be used on earlier versions of BI, such as BW 3.5.

2. Case Application
The application is: Custom validation of flat file inputs to load GL DSO for balances from
different companies of a multi-national, into the Acquisition Layer. There are different flat
files for Actual, and Plan(of different types).The file is accepted or rejected in this layer and
only accepted files move into the Integration layer. This necessitates building exhaustive
and complex validation routines, within the transformation for each type of trasaction . The
process is off-loaded into a custom class, which is instantiated in the Transformation. The
custom class takes the source-package as the input and returns the modified source-
package with error codes or success codes and the uploaded request is processed
subsequently by a sepaerate ABAP error-handler. The development of the custom class
and usage in the different transformations is illustrated in the following.

3. Calling the Custom Class in the Transformation:
The build in the Transformation to call the custom class is illustrated here:

3.1 Start Routine:
In the Global Area, define the Class under Data: definition

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 3

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 1: Global Area definition of class

In the Transformation Method, where the user code is written,

First ‚‘Instantiate‘ the class by ‘Create Object ‘.

When you instantiate, the Constructor method of the Class is invoked(if it is included as a
method)

Screen 2: Instantiation of the Class & calling the methods

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 4

 Using ABAP-OO in BI-Transformations through Custom Class

Then, Call the methods of the Class as required; referring to Screen 2, the entire
source_package is passed to the Class-method and it returns with the ‘Changed‘
source_package besides the controls updated in a defined structure.

The first Call is made to the method LINE_ITEM_VALIDATION passing the parameters
vtype = ‘010‘ for value type for actual(transformation to Actuals DSO) and version which
specifies type of actual(eliminated, uneliminated), the datapakid to address special
treatment for the last datapack.

The second call to method TOTALS_VALIDATION invokes validation of the totals(at end
of the last package), where accumulated totals are validated for various criteria.

3.2 End Routine:
In the End Routine, the class is used to transform the Result_Package. In the case, period
value for each line is computed from Totals for Current period and previous period.

Screen 3 Call to a method in the End Routine

4. Construction of the Custom Class Object:
This case example involves passing the entire package: source_package or
result_package to the Class and getting back the changed package

4.1 Communication between Transformation and Class
Create 2 structures which map to the source structure of the data source and the DSO(or
Cube) structure to which the data is loaded by the Data source; the source structure is for
use in the Start Routine and the DSO struture for the End Routine.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 5

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 4 Source Structure

For the DSO structure, the DSO dictionary structure can also be used.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 6

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 5: DSO structure

Create 2 table types based on the 2 structures.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 7

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 6: Source table-type

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 8

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 7: DSO table type

4.2 Class Attributes
In the Class Object, define your Data objects within Attributes after defining custom local
type within Types; this is the Global data that is accessed by the different Methods.

Screen 8: Class Attributes

4.3 Methods
Private Methods are built for processes which are sub-processes(similar to function
modules which carry out specific tasks) that can be carried out within the Class.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 9

 Using ABAP-OO in BI-Transformations through Custom Class

Screen 9 Class Methods

 Public Methods are built for all the processes that are required to be carried out on the
Source Package(Start routine) or the Result Package(End Routine)(or even Transfer
Routines between fields) from the Transformation. They receive and pass data between
the Transformation and the Class.

4.4 Parameters
The Public methods use the parameters based on structures and table types as stated in
4.1, for Source Structure and Source package, to pass the contents of the package or a
line of the pacakge as required. There can be additional parameters which identify the
source and specific characteristics within the transformation. Parameter Types for the
public method should be known outside the class in the Data dictionary.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 10

 Using ABAP-OO in BI-Transformations through Custom Class

Screen10 Public method Parameters(associated type must be known outside the class)

Parameter types of the Private class may be defined within the class only.

4.5 Brief on methods used in the case example
To get an idea of the advantage and usage of the custom class, here is a brief on the
different methods in the example

Method
Type of
method Objective

CONSTRUCTOR Public
Calls the Private method
STORE_MASTER_DATA

STORE_MASTER_DATA Private Stores master data as internal tables

GET_PSA_NAME Private
Gets the PSA table name based on value
type & version

GET_REQUID Private
Gets the max. Request id and max.
datapakid of the PSA table

GET_INT_DSONAME Private

Composes the DSO table name of
integration layer based on value type and
version

LINE_ITEM_VALIDATION Public Carries out validation at the line item level

TOTALS_VALIDATIONS Public
Carries out validation on the totals at the
end of the request

STORE_PREVIOUS_PERIOD Private
Stores the previous period cumulative
values from the Integration layer

CHECK_PREVIOUS_PERIOD Private
Checks if previous period exists in the
Integration layer

COMPUTE_PERIOD_VALUE Public

Computes period value based on
cumulative values of current and previous
period

CREATE_ZERO_PERIOD Private
Creates zero period values for next year at
end of year

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 11

 Using ABAP-OO in BI-Transformations through Custom Class

Testing: you can debug the class using DTP debugging feature or you may also build a
simple Test report program which uses the custom structure and custom table and calls
the custom class, to test.

5. Conclusion
The Custom class can be used for any Transformation routines. As they are maintained
independent of the transformations, any changes to the routines are handled independent
of the BI-Workbench build. The structure of the class itself provides considerable self-
documentation, if it is split into small self contained private and pubic methods. For e.g.
there can be one class object which manages all transformation routines for a Logistics
application; separate methods are built for specific transformations while common methods
are used by all transformations within the application.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 12

 Using ABAP-OO in BI-Transformations through Custom Class

Related Content

How to Routines within Transformations

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/6090a621-c170-2910-c1ab-
d9203321ee19

Simulating and Debugging DTP Requests

ABAP Objects
http://help.sap.com/saphelp_470/helpdata/en/d3/2e974d35c511d1829f0000e829fbfe/frameset.htm

For more information, visit the Business Intelligence homepage.

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 13

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/6090a621-c170-2910-c1ab-d9203321ee19
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/6090a621-c170-2910-c1ab-d9203321ee19
http://help.sap.com/saphelp_nw70/helpdata/en/45/8594ebd17f1956e10000000a11466f/content.htm
http://help.sap.com/saphelp_470/helpdata/en/d3/2e974d35c511d1829f0000e829fbfe/frameset.htm
https://www.sdn.sap.com/irj/sdn/nw-bi

 Using ABAP-OO in BI-Transformations through Custom Class

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com
© 2009 SAP AG 14

Disclaimer and Liability Notice
This document may discuss sample coding or other information that does not include SAP official interfaces and therefore is not
supported by SAP. Changes made based on this information are not supported and can be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods suggested in this document,
and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of this technical article or
code sample, including any liability resulting from incompatibility between the content within this document and the materials and
services offered by SAP. You agree that you will not hold, or seek to hold, SAP responsible or liable with respect to the content of this
document.

	 Applies to:
	Summary:
	Author Bio
	1. Introduction
	2. Case Application
	3. Calling the Custom Class in the Transformation:
	3.1 Start Routine:
	3.2 End Routine:

	4. Construction of the Custom Class Object:
	4.1 Communication between Transformation and Class
	4.2 Class Attributes
	4.3 Methods
	4.4 Parameters
	4.5 Brief on methods used in the case example

	5. Conclusion
	Related Content
	Disclaimer and Liability Notice

