Using adversarial autoencoders to infer actions from
the peripheral nervous system

Jos van der Westhuizen'-2, Tris Edwards', Raphael Schmetterling':2, Robert Tinn'-2
jos@cbas.global, tris@cbas.global, raph_s@cbas.global, rob_t@cbas.global

Oliver Armitage ', Joan Lasenby?, Emil Hewage'
oliver@cbas.global, jl221@cam.ac.uk, emil@cbas.global

Cambridge Bio-Augmentation Systems!
Cambridge University?

Abstract

Advances in neural interface technology are giving rise to a new challenge in
computational neuroscience. Chronic implants are able to record the activity of
neural populations over several months or even years, creating datasets that are
difficult to analyze using current neuroinformatic techniques due to their size and
crude labels. Here we propose a practical solution, an adversarial autoencoder
comprised of LSTMs to generate a label-like latent representation. For this novel
data paradigm, we introduce a dataset of local field potential signals over a 6-
week recording from a porcine specimen with natural animal mobilization. Our
initial implementation yields a classification accuracy of 83.3%, demonstrating the
suitability for neuro-prosthesis applications.

1 Introduction

The peripheral nervous system (PNS) holds a plethora of information on physiological processes
conveyed from the central nervous system to other systems in the body. Recent improvements in
neural interfaces enable long-term recordings of the PNS, generating datasets too large and containing
features too nuanced for manual human analysis. In this paper, we propose an adversarial autoencoder
to infer actions from such signals in the presence of limited crude labels. The data are multi-channel
signals recorded from the tibial nerve of a healthy porcine specimen.

This problem fits under the umbrella of learning representations, more specifically semi-supervised
sequence-to-sequence models. Other generalizations of this problem have been solved in seminal
work by Makhzani et al. (2015); Srivastava et al. (2015); Hinton and Salakhutdinov (2006). This
scenario is pertinent in the medical field where datasets tend to be large and require expert labeling,
warranting the use of unsupervised learning as a practical approach to feature learning (Langkvist
et al., 2014). Being able to infer the actions of an agent from peripheral neural signals using semi-
supervised learning could mitigate the issue of scant or difficult-to-generate labels and as a result,
provide useful control signals for neurological human-machine interfaces with potential benefits for
amputees.

This is also the introduction of a potentially very rich new data paradigm for the neuro-prosthesis
community. Advances in neural interface technology have allowed the collection of peripheral data in
a chronic setting, over long periods of time and in natural mobilization settings. However, compared
to the shorter and restricted laboratory studies, the new datasets are expensive to label.

The proposed solution comprises a sequence-to-sequence model to encode a given snippet of the
neurological signals into a fixed-size representation. The encoder and decoder are long short-term

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

memory recurrent neural networks (Hochreiter and Schmidhuber, 1997). Inspired by the work in
Makhzani et al. (2015), we augment the sequence-to-sequence model with adversarial discriminator
networks that regularize the generated latent representations. The aim is to capture the latent factors
that best explain the data and label the data accordingly. Autoencoders such as sequence-to-sequence
models are well known for being able to extract meaningful latent representations (Murphy, 2012). To
the best of our knowledge, this work-in-progress paper is the first analysis of peripheral neurological
signals with a sequence-to-sequence model.

2 Model architecture

As in Bowman et al. (2015) we make use of a single layer long short-term memory (LSTM) recurrent
neural network as an encoder and decoder in an autoencoder fashion. As illustrated in Figure 1 the
encoder, denoted as ¢(z, y|z), generates two fixed size latent representations z and y of an arbitrary
length sequence x. The decoder network then utilizes both the z and y representations to reconstruct
the original input signal. We assume that the data analysed by the model are generated by a latent
class variable y that comes from a categorical distribution as well as a latent style variable z that
comes from a Gaussian distribution:

p(y) = Cat(y) p(2) = N (2]0, 1)

For each step in the decoder, the y section of the LSTM memory is replaced by the original y,
where the rest of the vector is left to change over time. This places more emphasis on generating an
informative y representation for the decoder to utilize at each step. To simultaneously make learning
stable and the model robust, we alternate the input to the decoder at each training iteration to either be
the true input x, or the output from the previous step in the LSTM. Moreover, we found that reversing
the output when decoding (Srivastava et al., 2015) improves training by allowing the model to start
off with low-range correlations.

In order to ensure that the y representation is label-like, a discriminator network is employed to
introduce an additional loss term. This follows a generative adversarial network approach (Goodfellow
et al., 2014; Makhzani et al., 2015) with the generator being an encoder recurrent neural network. The
discriminator learns to distinguish between samples from a categorical distribution (random one-hot
vectors) and the y representation generated by the encoder. This encourages the y representation
towards a categorical distribution from which we can infer actions.

A second discriminator network is employed to encourage the z representation to be Gaussian
distributed. This discriminator has to distinguish between generated representations z and samples
from a Gaussian distribution N (z|0, I). Hence by concatenating a selected y representation, ¢, and a
Z sampled from a Gaussian distribution, one is able to generate neural-like signals from the decoder.
Additionally, this allows generation of mixed categories in y.

Batch normalization (Ioffe and Szegedy, 2015) is applied to the input and the two ReLu (Nair
and Hinton, 2010) activated hidden layers with 50 and 20 units respectively. This is followed by
minibatch discrimination (Salimans et al., 2016) before being linearly mapped into a scalar value.
The structure of both discriminators is the same. Batch normalization, minibatch discrimination, and
the Wasserstein generative adversarial network (Arjovsky et al., 2017) were found essential to prevent
mode collapse during training.

The model is trained in 3 separate stages. First, the encoder and decoder are trained with the mean
squared error loss of the input reconstruction. Second, the discriminator function f learns the
difference between labels y generated from the generator function g and categorical samples 3’. For
N data points with the input denoted as x, the y discriminator loss is

Lo, = 5 S (£ + Fglea))) (1)
n=1

where each y/, is sampled at random from a categorical distribution. Effectively, the discriminator is
trained to produce negative values when the input is generated and positive values when the input
is sampled from a categorical distribution. Third, the generator (encoder) is trained to generate
a y representation that is one-hot-like by ‘fooling’ the discriminator. The following loss function

WGAN Discriminator
Draw samples
from categorical

,
o | |]

LSTM Encoder (Generator)

OO OO
For Ty

Time

Draw samples from N(z{0.1) WGAN Discriminator

.
0 %H"Hﬁ —

Figure 1: The sequence-to-sequence model regularized by 2 discriminative neural networks. The
top discriminator encourages the y representation to be one-hot-like (categorical). The bottom
discriminator encourages the z representation to be Gaussian distributed. In the decoder, the original
y representation replaces the corresponding elements of the LSTM memory at each time step.

encourages the y encoder to generate a y such that the now fixed function f yields positive values,

1 N
La, == 2_ f(9@n)) @)
n=1

The discriminator and generator training updates for the z representation are the same as those
detailed above for y, with the exception of replacing the categorical y’ with samples 2’ from a
Gaussian distribution. Both z and y generators are updated every third training iteration.

3 Experimental setup

In order to confirm that the model works as intended, we evaluated it on 2 well-understood datasets.
The first is a synthetic dataset with 4 classes (sine-, cosine-, saw-tooth-, and square-waves). Here
150,000 samples were generated with unit amplitudes and random periods between 5 and 40 time
steps. All the waveforms had a length of 50 time steps. 30,000 samples were held out for testing. The
second dataset was a low-resolution version of MNIST (LeCun, 1998) rescaled to range from 0 to
1. Here the MNIST images were resized from a size of 28 x 28 pixels to 7 x 7. The images were
processed in scanline order (Cooijmans et al., 2016), the shorter sequences making learning easier.

The experimental neural data was collected continuously during natural mobilization of a porcine
specimen over a 6-week period. Fifteen channels of local field potential (LFP) data were gathered
from the tibial nerve at a sampling rate of 30 kHz using an IT2 PNS implant (Cambridge Bio-
Augmentation Systems, Cambridge, UK). The data used in this study is from a 2-hour window 3 days
post surgical implantation. Field potentials were identified by means of a 26 uV threshold.

Two variations of the neural data were constructed for investigation. The first dataset consisted of the
raw signals on all 15 channels for 50 time steps after a local field potential (LFP) was detected on any
channel. A total of 250,911 LFPs were detected over all channels in the recorded period and the data
were rescaled to range from 0 to 1. The second dataset consisted of the spike counts on each channel

using a 100ms time window. The counts were similarly rescaled and were then sliced into segments
of 50 consecutive counts, resulting in a total of 6,840 data points. The spike counts reduced some of
the noise present in the raw data and spanned longer periods. For both datasets above, a single data
point had a sequence length of 50 and 15 variables.

Two four-minute video segments of the porcine specimen were recorded during the LFP recordings
used for training. Through a retrospective analysis of the video, we were able to identify five distinct
motion classes during the time of the video. The actions were: walking forwards, standing, shuffling,
reversing, and turning. With the video synchronized to the recorded time series, we were able to label
segments of the raw signal according to the identified actions with a granularity of 0.1s. Of the total
number of data points in the raw dataset and the count dataset, 3003 and 74 were labeled respectively.
The labeled data allowed a quantitative evaluation of the y representation by using the classification
accuracy as a proxy. The labeled data were removed from the datasets and not used during training.

For each of the 4 datasets, a validation set was constructed by randomly splitting the training data with
an 80:20 (training:validation) ratio. The best model was selected based on the lowest reconstruction
error achieved on the validation set over the course of training. Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 and no learning rate decay was used for optimization. We denote the number
of elements in representations z and y to be S, and S, respectively. In order to prevent overfitting
on the smaller neural-count dataset, we set S, = 20 and S, = 44. For the synthetic, MNIST, and
neural-raw datasets, we chose S, = 30 and S, = 98. Larger y-representations were chosen based on
the work in Makhzani et al. (2015) showing that this results in more accurate classifications.

4 Related work

Our work is closely related to the thorough study of Pandarinath et al. (2017), who made use of a
variational sequence-to-sequence model to analyze, with unprecedented accuracies, the neurological
signals from electrodes implanted in the motor cortex. Our focus is on peripheral neurological signals
instead of signals measured in the cortex: one can argue that the former exhibits less interference from
other neurological signals, and is certainly a more convenient site for human-machine interfacing for
amputees. We also explicitly cluster the signals using the adversarial autoencoder structure.

The model designed as part of this work is similar to that proposed for unsupervised learning in
Makhzani et al. (2015). Our model employs recurrent neural networks instead of convolutional
neural networks. Kingma et al. (2014) proposed a theoretically grounded technique for doing
unsupervised training. The proposed technique was surpassed by the Gumbel-softmax method (Jang
et al., 2016), however the adversarial approach Makhzani et al. (2015) remained superior. Our
sequence-to-sequence model is based on Bowman et al. (2015). The difference lies in our model
using the adversarial autoencoder approach with WGANS for semi-supervised labeling.

For a thorough review of unsupervised feature learning with machine learning, we refer the reader
to the fascinating work by Lingkvist et al. (2014). The review also gives an overview of all the
unsupervised learning applied to signals such as electrocardiograms and electroencephalographs.
Serruya et al. (2002) have used motor cortex neurons in primates to control a mouse on a screen.
Utilizing the signals in peripheral nerves could replace current electromyography (EMG) systems
with improved resolution. EMG have yielded recognition above 95% when combined with neural
networks and hidden Markov models (Ahsan et al., 2009) and recognition rates above 90% in a study
by Ahsan et al. (2009). To our knowledge, no research has been done to date on a chronic recording
of peripheral neurological signals with adversarial sequence-to-sequence networks.

5 Results

Owing to the generated y representation not being fully one-hot encoded, we plot the generated
representations for the test sets of the MNIST dataset and the neural-raw dataset in Figure 2 using
t-distributed Stochastic Neighbour Embedding (t-SNE) (van der Maaten and Hinton, 2008). From
the figure, it is clear that the different classes are much better separated for the MNIST dataset. As
expected for the neural-raw dataset, there is more inter-class overlap in the t-SNE plot. Here each
data point spans a time of only 0.00167s and thus there could be several data points that are not
related to the action we labeled it as. It should also be noted that the clusters in the t-SNE plots are not
necessarily the eventual clusters of labels derived from the maximum values in each y representation.

To ensure that the data points are not simply clustered with respect to the time of recording, we
overlay the t-SNE plot with a heatmap of the recording time. From this heatmap, it is evident that
clusters contain data points from various points in time.

0 stand
1 ’} ’ walk
2 N 5 % shuffle
3 sl o & reverse
4 "'\‘ §es turn
5 ﬁ’-" 5
a2’ !
7 S ¢ e .
v T’
‘r 8 » . . 4 -~
-~ 9 .. a]
j’ 4 o

f ‘K\\ ' *:.‘ ‘;ﬁ.h:,

Figure 2: t-SNE plots of the y representation. Left: the low-resolution MNIST dataset. Middle: The
neural-raw dataset colored by class. Right: The neural-raw dataset colored by time of recording.

We evaluated classification accuracy as follows: for all dimensions of y find the set X; C X of
data points that have maximum probability p(y|z), € X in dimension i; weight the true class

¢ € CN*F (where k is the number of true classes) of # € X; by the probability p(y = i|z); assign to

y; the maximum class of the average weighted true classes C;, arg max;, + ZTJLO p(y = i|z,)cn by
means of a hashmap. The accuracy is then computed based on the labels assigned to each data point.

The classification accuracies obtained with the aforementioned datasets are shown in Table 1. The
accuracies reported are the averages over five independent runs. We also tabulate the squared error
achieved on the test sets to show the efficacy of the data reconstruction achieved by the model. High
accuracies were achieved for both the synthetic and MNIST datasets, which confirms that the model
works as intended. For the MNIST data, we did not expect similar accuracies to Makhzani et al.
(2015) because we use a low-resolution version making the digits harder to distinguish. A higher
classification accuracy was achieved on the neural-count dataset compared to the neural-raw dataset.
The neural-count dataset reduces the noise present in the raw signal and allows analysis over a
longer section of time. Moreover, a single local field potential as measured in the neural-raw dataset
(0.00167s) does not necessarily contain information about an action, but a set of them could. The
results obtained exceeded expectations given the coarse labeling procedure.

Table 1: Model performance on test data

Dataset Accuracy [%] Reconstruction error
Synthetic 89+ 1.9 0.001316
Low-resolution MNIST 83.5 2.1 0.000177
Neural-raw 63+1.5 0.012113
Neural-count 833+ 14 0.006509

Nearly perfect reconstruction was achieved on the MNIST and synthetic dataset. However, the neural
data was harder to model and as a result, the reconstructions are smoothed versions of the original
signal as shown in Appendix A. Both reconstructions with and without teacher forcing (Goodfellow
et al., 2016) are illustrated.

6 Discussion and conclusion

This study, part of a larger on-going project, has proved the utility of the novel, long-term dataset.
By means of an adversarial autoencoder, we were able to successfully characterise the dynamics of
peripheral neurological signals. We believe this could be of great benefit to amputees by allowing
control of smart prosthetic devices through the nerves in a limb. The chosen approach allows the use
of a continuous y representation as input to the decoder, which could provide the benefit of allowing
combinations of actions as a signal to a prosthetic device. Although the data already span a long

period of time, future work will include validating that the model is able to generalize over much
longer periods. One of the main goals is to stitch together datasets collected from different patients
as in Pandarinath et al. (2017) to make a large part of the model agnostic to the specific patient. In
further work we also aim to compare the model with other architectures.

References

Ahsan, M. R., Ibrahimy, M. L., Khalifa, O. O., and others (2009). EMG signal classification for
human computer interaction: A review. European Journal of Scientific Research, 33(3):480-501.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. arXiv:1701.07875 [cs, stat].

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2015). Generating
Sentences from a Continuous Space. arXiv:1511.06349 [cs].

Cooijmans, T., Ballas, N., Laurent, C., Giilgehre, C., and Courville, A. (2016). Recurrent Batch
Normalization. arXiv:1603.09025 [cs].

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative Adversarial Nets. In Advances in Neural Information Processing
Systems 27, pages 2672-2680.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504-507.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9(8):1735-1780.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. arXiv:1502.03167 [cs].

Jang, E., Gu, S., and Poole, B. (2016). Categorical Reparameterization with Gumbel-Softmax.
arXiv:1611.01144 [cs, stat].

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs].

Kingma, D. P.,, Mohamed, S., Jimenez Rezende, D., and Welling, M. (2014). Semi-supervised
Learning with Deep Generative Models. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27,
pages 3581-3589. Curran Associates, Inc.

Langkvist, M., Karlsson, L., and Loutfi, A. (2014). A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognition Letters, 42:11-24.

LeCun, Y. A. (1998). The MNIST Database of Handwritten Digits. http.//yann.lecun.com/exdb/mnist/.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, 1., and Frey, B. (2015). Adversarial Autoencoders.
arXiv:1511.05644 [cs].

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
807-814.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann,
E. M., Kaufman, M. T., Ryu, S. 1., Hochberg, L. R., Henderson, J. M., Shenoy, K. V., Abbott,
L. F., and Sussillo, D. (2017). Inferring single-trial neural population dynamics using sequential
auto-encoders. bioRxiv, page 152884.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016). Improved
Techniques for Training GANs. arXiv:1606.03498 [cs].

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., and Donoghue, J. P. (2002).
Brain-machine interface: Instant neural control of a movement signal. Nature, 416(6877):141-142.

Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised learning of video
representations using Istms. CoRR, abs/1502.04681, 2.

van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579-2605.

A Appendix: Example reconstructions

True label: walk | Assigned label: walk True label: stand | Assigned label: stand

1.00

1.00

0.75 0.75

}m“

0.50 n'q | 0.50

0.25 0.25

0.00 0.00 d- < ——

1.00 1.00 Reconstructe true Input I 0SS 0 00868

0.75 0.75

0.50 0.50
MM&A@A&L

0.00 0.00

1.00 Reconstructed prev output | loss 0.02899 100 Reconstructed - prev output | loss 0.01555

0.75 ; 0.75
0.50 4 0.50
025 0.25 /\—’x/\
000 0 10 20 30 40 50 0.00 =

0 10 20 30 40 50

Figure 3: Example reconstructions for the neural-count dataset (left) and the neural-raw data (right).
The colors represent the different channels of the signal. The top plot is the original input z, the
middle is the reconstructed input where the correct input was fed to the decoder at each step. The
bottom graphs are the reconstructions where the output from the previous step is used as input to the
next.

