
to Power Intelligent Applications

Using Apache Spark,
Apache Kafka

and Apache Cassandra

02USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

Apache Cassandra is well known as the database of choice
for powering the most scalable, reliable architectures
available. Apache Spark is the state-of-the-art advanced and
scalable analytics engine. Apache Kafka is the leading stream
processing engine for scale and reliability.

Deployed together, these technologies give developers the
building blocks needed to build reliable, scalable and
intelligent applications that adapt based on the data they
collect.

This paper discusses the use cases, architectural pattern and
operations considerations for deploying these technologies
to deliver intelligent applications.

03USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

At the core of an IoT application there is a stream of regular
observations from (potentially) a large number of devices or
items with embedded electronics (e.g. switches, sensors, tags).
A stream of IoT data is just “big data”, but analysing that big
data in a way that drives actions, recommendations, or
provides information is where the application delivers value.

Apache Cassandra is extremely well suited to receiving and
storing streams of data. It’s always-on availability matches the
constant stream of data sent by devices to ensure your
application is always able to store data. In addition, its native
storage formats are well suited to efficient storing and using
time series data such as that produced by IoT devices. The
scalability of Apache Cassandra means you can be assured that
your datastore will smoothly scale as the number of devices
and stream of data grows.

The powerful analytics capabilities and distributed architecture
of Apache Spark is the perfect engine to help you make sense
and make decisions based on the data you’re receiving from
your IoT devices. Spark’s stream processing can quickly
determine answers from short-term views of your data as it’s
received. For analysis running over longer time periods, the
Spark Cassandra connector enables Spark to efficiently access
data stored in Cassandra to perform analysis.

Use Cases

Internet of Things

04USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

In this context, Apache Kafka is often used as a reliable
message buffer. In many IOT scenarios, the flow of data from
devices is constant and the devices have very limited
capacity to buffer data in the event the central processing
service is unavailable. Events from the devices can be written
to Kafka when first received and then picked up and
processed by the downstream applications. This ensures
events are not lost even if the processing elements for the
central system become backed up or suffer downtime. In
addition, use of Kafka in this manner easily allows additional
consumers of the event stream to be added to the system.
For example, your initial implementation may have a simple
application that just saves data to Cassandra for later use but
you then you add a second application that performs real
time processing on the event stream. Kafka Streams may also
be used as an alternative to Spark Streaming for real time
stream processing.

05USING APACHE SPARK AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

The pressures for financial services companies to gain
a technological edge in data processing are coming not only
from the competition but also from consumers. Gaining a
competitive edge requires systems that can collect and
quickly analyse vast streams of data. Consumers expect that
the systems they interact with will be instantly up to date,
always available and, increasingly, be aware of the context of
all their previous interactions and related information.

Addressing these joint pressures, while containing technology
costs, requires the adoption of new generation architectural
patterns and technologies. Apache Cassandra, Apache Kafka
and Apache Spark are technologies that are ideally placed to
form the core of such an architecture. The applicability of
these technologies in financial services has been proven many
times by leading organisations such as ING and UBS.

One common application we see for Cassandra in financial
services is as a persistent cache to support high volume client
requests. In particular, we see this requirement with banks
implementing the Payment Services Directive (PSD2) in the
EU. This leverages Cassandra’s extreme reliability and
built-for-the-cloud architecture to enable financial services
organisations to deliver always-on service and avoid the high
cost of scaling their legacy (often mainframe) architectures to
meet increased client interactions needs. Spark is often
included in this architecture to enrich the cached data with
sophisticated analysis of trends and patterns in the data
enabling user-facing applications to make this analysis with
interactive response times. Kafka often sits in this picture as a
message bus to connect the core processing system to
multiple downstream consumers.

Financial Services

06USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

The two use-cases above are great examples where we see regular
adoption of Spark, Kafka and Cassandra. However, there are many
other business problems where the three technologies can combine to
provide an ideal solution. Some examples that we have seen include:

Others

Ad-Tech

Relying on the low-latency (low double digit ms)
responsiveness and always-on availability of Cassandra to
make online advertising placement decisions backed by deep
analysis calculated with Spark. Massive flows of inbound
events and information can be managed with Kafka.

Application Monitoring

We use a combination of Spark and Cassandra in our own
monitoring system that monitors close to 1500 servers.
Cassandra seamlessly handles a steady stream of writes with
metrics data while Spark is used to calculate regular roll-ups
to allow viewing summarised data over long time periods.
Kafka acts as a centralisation point for the messages and also
a message buffer.

Inventory Management, particularly in travel

Use Cassandra to track inventory records and Spark to analyse
available inventory to determine dynamic pricing, capacity
trends, etc.

07USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

At a more rudimentary level, many Cassandra applications have a
need for periodic batch processing for data maintenance. While
this can include summarisation it can also include requirements
like implementing complex data expiry rules. Running these
batches through a single threaded (or single machine) batch
engine will not scale to the same extent your Cassandra cluster
will. Implementing these batch jobs in Spark not only provides a
pre-built set of libraries to assist with development of the data
processing functionality but also the frameworks to automatically
scale the jobs and scale and execute processing logic on the same
servers where the data is stored.

Batch Updating

For most applications, a strong design will store in a single
Cassandra table all of the information required to service a
particular read request (i.e. the data will be highly denormalised). In
some cases this denormalisation process will require calculating or
looking up additional data to add to a stream before the stream of
data is saved. Using Spark Streaming to process data before saving
to Cassandra provides a scalable and reliable technology base to
implement this pattern. Kafka Streams is an alternative engine for
implementing this form of stream enrichment.

Stream Enrichment

Architectural Patterns

08USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

The Lambda Architecture is an increasingly popular architectural pattern for
handling massive quantities of data through both a combination of stream and
batch processing. With the Lambda Architecture, you maintain a short-term,
volatile view of your data (the speed layer) and a longer term, more
permanent view (the batch layer) with a service to join views across the two
(the serving layer).

With Spark and Cassandra, you have the key architectural building blocks you
need to implement the Lambda Architecture. Spark Streaming is an ideal
engine for implementing the speed layer of the architecture (potentially with
results stored in TTL’d tables in Cassandra) while Spark can also be used to
perform the longer-term batch calculations and store results in Cassandra.

Lambda Architecture

The Kappa Architecture takes the next step from the Lambda Architecture,
removing the batch layer and treating the stream of events as the immutable
record of system state. Stream processing maintain summary views as the
stream is processed. If the logic of summary views needs to change then the
stream processing logic is updated and the saved streams reprocessed. The
Kappa Architecture removes the need to maintain separate stream and batch
logic that is required for the Lambda Architecture.

Once again, the combination of Spark and Cassandra gives you the
architectural components you need to implement Kappa Architecture. Spark
Streaming is an ideal processing engine to undertake the calculations needed
on the stream of data. Apache Cassandra can be used both as the long term,
immutable store of the data stream and as a store for the results of the stream
calculations that are used by the serving layer. An alternative is to use Apache
Kafka as your immutable event store and Apache Cassandra as the store for
the materialized views calculated based on these events.

Kappa Architecture

https://en.wikipedia.org/wiki/Lambda_architecture
http://milinda.pathirage.org/kappa-architecture.com/

09USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

Operations
Operating as part of a mission-critical application is
the normal mode of operation for Cassandra and
there is a well established body of knowledge about
how to operate Cassandra to achieve the highest
levels of availability. Although Kafka is a little newer
it is also widely operated at the highest levels of scale
and reliability.

Spark, on the other hand, is often run to provide an
analytics environment for use by a small number of
data scientists. In this situation, reliability and
predictable performance are not as critical as when
Spark is deployed as a component of a production
application. This section of the paper describes some
of the considerations to be applied when deploying
Spark for production usage.

10USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

The key to reliable operations of any technology is to have a solid
overall management environment including aspects such as:

None these items is specific to Kafka, Spark or Cassandra. However,
introducing production usage of these technologies will require
examination of each of these areas to ensure they are fit for
purpose with introduction of new architectural components and
applications.

Automated (or at least well controlled)
deployment and configuration management.

High quality testing of new configurations prior
to deployment.

Backup and disaster recovery procedures.

Appropriate monitoring, and systems and people
that are paying attention to what is being
reported by that monitoring.

Rigorous incident response procedures and
well-trained staff.

Management Environment

11USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

One specific area to be considered is high availability
architecture (ensuring your overall service continues to run
even when components fail). Cassandra is effectively
high-availability by default — if you use multiple machines and
a basic, competent setup you will have a high-availability
cluster. Of course, there is more you can do for the absolute
high level of availability. Kafka follows a somewhat similar
architecture and has similar considerations in terms of
distributing data across multiple replicas and placing replicas
in multiple availability zones.

For Spark, more detailed consideration is required. Spark by
default is resilient to the failure of worker processes with work
being automatically redistributed to running workers should a
worker fail. However, the Spark Master and Driver require
further consideration. Apache Spark has built-in capability to
make the Spark Master highly available by using an Apache
Zookeeper cluster to control the election of which machine
will be the active Master at any point in time.

For the Driver component (that submits jobs to the cluster), it
is possible to configure Spark to automatically retry jobs that
fail. To enable this, the job must be submitted in cluster mode
(--deploy-mode:cluster) and with the --supervise
flag set. As this will restart failed jobs from scratch, it is
necessary to ensure your jobs are idempotent when using this
functionality.

High Availability

https://www.instaclustr.com/maximising-availability-with-apache-cassandra/?utm_source=whitepaper&utm_medium=whitepaper
https://www.instaclustr.com/maximising-availability-with-apache-cassandra/?utm_source=whitepaper&utm_medium=whitepaper

12USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

It is important for any production system to have quality monitoring in
place to help detect and diagnose problems. This starts with basic
operating-system level monitoring of metrics such as CPU load and free
disk space. It should then extend to monitoring that the expected
system processes are running.

For Cassandra and Kafka, a broad range of metrics are available out of
the box and are sufficient to monitor usage of Cassandra and Kafka for
the vast majority of use cases. It will likely be necessary to tune alerting
thresholds for your application, but the important metrics to monitor are
fairly standard and well known.

Spark also provides built-in monitoring capabilities including a UI to
allow you to review the progress of your jobs. However, given the
extremely diverse nature of workloads that Spark can handle, it will also
likely be necessary to implement error handling and reporting as part of
your production jobs as well as relying on the native Spark metrics.

Monitoring

One of the unique advantages of Cassandra is its ability to provide
workload isolation through its native multi-data center architecture
support. By setting up two Cassandra “data centres” in the same physical
data centre (or cloud provider region) you can isolate the loads of your
Spark analytic reads to a single data centre, ensuring processing capacity
and response times of your online process are minimally impacted when
batch processing runs in Spark.

Workload Isolation

https://www.instaclustr.com/debugging-jobs-apache-spark-ui/?utm_source=whitepaper&utm_medium=whitepaper
https://www.instaclustr.com/multi-data-center-sparkcassandra-benchmark-round-2/?utm_source=whitepaper&utm_medium=whitepaper
https://www.instaclustr.com/multi-data-center-sparkcassandra-benchmark-round-2/?utm_source=whitepaper&utm_medium=whitepaper
https://www.instaclustr.com/multi-data-center-sparkcassandra-benchmark-round-2/?utm_source=whitepaper&utm_medium=whitepaper
https://www.instaclustr.com/multi-data-center-sparkcassandra-benchmark-round-2/?utm_source=whitepaper&utm_medium=whitepaper

Cassandra, Kafka and Spark form a powerful combination
for many use cases. However, architecting and running
distributed technologies at scale and with the highest
levels of reliability and security requires a specialist
environment including tools such as monitoring,
management processes and skilled and experienced staff.

Instaclustr’s focus is the provision of the world’s best
managed environment for running open-source,
distributed technologies reliably, at scale. We bring to
your application a proven management platform and
over 13 million node hours of experience running these
technologies in production.

13USING APACHE SPARK, APACHE KAFKA AND APACHE CASSANDRA TO POWER INTELLIGENT APPLICATIONS |

Conclusion

Discover More

Apache Spark

Apache Cassandra

Apache Kafka

https://www.instaclustr.com/solutions/managed-apache-kafka/
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-spark/

Brought to you by

instaclustr.com

