
Using App Inventor in a K-12 Summer Camp

Amber Wagner, Jeff Gray, Jonathan Corley
Department of Computer Science

University of Alabama

{ankrug, jggray, corle001}@bama.ua.edu

David Wolber
Department of Computer Science

University of San Francisco

wolber@usfca.edu

ABSTRACT
Educators are often seeking new ways to motivate or inspire

students to learn. Our past efforts in K-12 outreach included

robotics and media computation as the contexts for teaching

Computer Science (CS). With the deep interest in mobile

technologies among teenagers, our recent outreach has focused

on using smartphones as a new context. This paper is an

experience report describing our approach and observations

from teaching a summer camp for high school students using

App Inventor (AI). The paper describes two separate methods

(one using a visual block language, and another using Java) that

were taught to high school students as a way to create Android

applications. We observed that initiating the instruction with the

block language, and then showing the direct mapping to an

equivalent Java version, assisted students in understanding app

development in Java. Our evaluation of the camp includes

observations of student work and artifact assessment of student

projects. Although the assessment suggests the camp was

successful in several areas, we present numerous lessons learned

based on our own reflection on the camp content and instruction.

Categories and Subject Descriptors
D.2.6. [Software Engineering]: Programming Environments

Keywords

App Inventor, Java Bridge, Summer Camp

1. INTRODUCTION
Students learn best when the learning objective is contextualized

with topics related to their daily activities [14]. Most teenagers

are frequent users of smartphones and texting, which provides a

unique context for engagement. The adoption rate of mobile

computing among teenage students in the US continues to grow

and has been estimated at 58% for smartphone adoption [11].

Based on current US census results [17], this suggests that there

are 12.1M teenage students with smartphones. Educators can

take advantage of these devices as a springboard for motivating

topics involving CS [1], which has always been driven by a love

of tinkering and creative exploration using computational

themes and artifacts.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’13, March 6-9, 2013, Denver, Colorado, USA.

Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

Since 2004, we have offered multiple one-week summer camps

to K-12 students. As a context for motivation and learning, we

have used Lego Mindstorms robots [10], Alice [2], and Media

Computation [9] in our past camps. In Summer 2011 and 2012,

we offered three one-week camps focusing on Java 1 across

multiple themes. The topics and attendance at these camps is

summarized in Table 1. Students had the opportunity to attend

all three weeks or one week. A dormitory option allowed us to

offer the camps to students across the United States (the 2012

camps were attended by high school students from 12 states) in

addition to students from Hong Kong and Beijing.

The third week was focused on App Inventor (AI) [3], which

enabled us to take advantage of the interest that high school

students have in smartphones. AI is a visual programming

language that allows users to write apps using a block-oriented

drag-and-drop interface to create both the user interface of an

app, as well as to specify the app’s behavior and functionality.

An emulator is available for AI so that apps can be executed on

a local desktop. AI also integrates with Android smartphones

and tablets, which enables the user-made applications to be

tested on a physical device. There is also an alternative to using

the block language of AI: the Java Bridge, which allows for the

creation of Java programs that use the same components

available in the AI block language. From our experience in

teaching Android programming to college seniors using the

traditional Android SDK with Java, we found the Java Bridge to

be a much simpler way to program Android apps and an

excellent transition tool for students learning Java.

Table 1. Summary of three camps taught in Summer 2011/2012

Camp Pre-requisites Content Attendance

Week 1:

Intro to

Java

No experience

needed;

Grades 9-12

Taught intro to

Java using

Greenfoot and

Media Comp

2011: 28

2012: 33

Week 2:

Robotics

Existing knowledge

of Java or

attendance of the

first camp

Taught Java

using Lego

NXT and Lejos

2011: 12

2012: 25

Week 3:

Android

App

Inventor

Existing knowledge

of Java or

attendance of the

first camp

App Inventor

Block

Language and

App Inventor

Java Bridge

2011: 16

2012: 24

There are other mobile platforms that support educational

outreach [8]. However, because our camps were for students

new to programming, the visual language of AI was found to be

a positive way to introduce students to problem solving and

computational issues. We observed that after students became

1 http://outreach.cs.ua.edu/camps/

familiar with the components and events of the block language

of AI, they were then more prepared to learn and use the Java

Bridge to rewrite the same programs in Java. In Section 3.2, we

present our approach for easing the students into the Java Bridge

to improve their practice in using Java. The first two days of the

camp were taught using the block language of AI, the next two

days were focused on using Java, and the final day was focused

on student projects (this gave students the ability to be creative

and write a program that they wanted to use in their daily lives).

In Section 4, we summarize our thoughts on why we believe that

teaching the AI block language helped students to be more

successful in programming apps using the Java Bridge.

This paper presents related instruction at other institutions

(Section 2), the layout and content of the camp (Section 3),

observations of student reactions, strengths and weaknesses of

the camp (Section 4), and how the summer camp will evolve in

future offerings (Section 5).

2. RELATED WORK
The popularity of mobile devices has inspired much interest as a

context for teaching computation [13]. In fact, a new learning

model has emerged, LOCAL (Location and Context Aware

Learning) [4], which combines mobile devices and wireless

networks to create a new learning context. In this section, we

summarize a portion of the work that has emerged in using

smartphones as a context for teaching CS.

At the University of San Francisco (USF), co-author Wolber has

integrated AI into a general education course over the past three

years and reported that AI was “his most satisfying teaching

experience in seventeen years” [19]. Before teaching AI, this

course used Lego Robots [10] and Media Computation [9]. The

course focuses both on programming and the real-world impact

of mobile applications [19]. Because students were able to start

building applications immediately with AI, they were motivated

as the semester progressed to learn how to solve hard logic

problems. Although the students attending the course were not

CS majors, they successfully learned how to solve problems

and, more importantly, felt empowered at the conclusion of the

course (they even presented along with Senior and Master’s

project students at USF’s annual CS Night). There were 11

students, out of 41 total, who went on to take the next course in

the CS sequence. In the past, this CS0->CS1 bridge has been

very rare, because the students that enroll in CS0 often take it

because they have little confidence in mathematics. A video

describing student feedback on this course is available2.

As described in [7], Fenwick and Kurtz (from Appalachian State

University) and Hollingsworth (from Elon University), taught

their senior classes using the Android SDK [6] and AI. The Elon

University course started as a lecture-based course with hands-

on activities followed by a project-based approach. The

Appalachian State University course was project-based from the

start. Both universities found that “students enjoyed the course”

and students were once again exhibiting an “entrepreneurial and

independent spirit” [7].

To assist in teaching the importance of human-computer

interaction, Loveland used AI to motivate students [12]. At the

conclusion of the course, one student commented: “It is cool that

the course applied the latest technologies in software

development to mobile and web design.” This statement

summarizes other reports [4, 7, 8, 13, and 19] about why mobile

2 http://www.appinventor.org/

computing is being used as a teaching context. Students are able

to learn about programming using tools that are very personal

and applicable to their daily lives.

A few college courses on mobile computing have been

described above; however, these courses focused on college-

level students in beginning or non-major programming courses.

Roy [15], from Valdosta State University, organized summer

camps for high school students using AI in 2011 and found AI to

be an effective tool for novice programmers due to the visual

environment being similar to Scratch. Moreover, Roy noted that

transitioning from AI to Java would be easy due to the Java

Bridge functionality, but does not provide an assessed study.

The primary difference between these examples and our summer

camp is our approach of presenting a visual language followed

by a strategic transition to Java. The gap among first learners

using graphical languages and textual languages was also

noticed by Cheung et al. [5], who describe an approach for

easing into textual languages from a graphical language. The

new version of Alice 3 also enables such a transition. However,

the benefits of using a common set of examples to support the

transition from a graphical to textual programming language is

not described deeply in the literature.

3. FROM BLOCK LANGUAGE TO JAVA
AI was the focus of our third and final week of camp, meeting

for a total of 35 hours over a 5-day period. Among the 40

students across both summers that attended the AI week of

camp, 14 had Java experience from their high school and 26

were introduced to Java in our first week of camp. This section

introduces our approach for providing a transition path from a

visual language to Java for writing apps.

Given the varied Java experiences of the students, the camp

started with two days of using the AI block language, which

allows novice programmers to build Android apps quickly

(using a blocks metaphor, such as in Scratch [16]). After the

students gained confidence with events, components, and the

general AI environment, students were then introduced to the

Java Bridge. The learning objectives for the camp were to teach

the students the following concepts:

1. Writing Android apps; 2. Objects; 3. Programming

environments; 4. Events; 5. Decision statements; 6. Loops;

7. Method calls; 8. Method creation; 9. Being able to

interpret documentation; 10. Creating a GUI and coding the

components of the GUI; 11. Using phone sensor

components and services (camera, text messaging)

3.1 Starting with the Visual Block Language
The AI environment, components and visual language were

covered in days one and two by using examples from co-author

Wolber’s textbook [18]. Although the students already had some

previous experience with Java (either from our week 1, or from

an offering at their home school), it was important to introduce

the students to AI via the block language due to the complexity

of the various components, events, GUI, and general metaphors

associated with programming Android apps. The block language

helped familiarize the students with these components before

jumping into the Java Bridge. The apps we selected from the

textbook represent a progressively complex combination of

applications that offer benefits to society (e.g., “No texting while

driving”) as well as entertaining apps such as games (e.g.,

“MoleMash”). Rather than a traditional lecture, the camp was

approached with an inquiry-based hands-on approach, where a

problem was presented and the instructor walked the students

through the problem while answering questions as the instructor

and students completed the app together. Next, a similar

problem was presented that covered one or more new concepts.

The students were presented with each exercise and were given

approximately thirty minutes to implement each app. For those

who implemented an app quickly, an additional challenge was

assigned. After the allotted time, students were asked to

volunteer to present their solution to the class. To emphasize

that more than one solution/approach exists, multiple students

were asked to present their solutions, and the instructor aided the

students in explaining options for various possibilities.

On Day One, students were introduced to the AI interface and

began creating applications immediately. The apps the students

focused on throughout the day are from [18]:

1. “HelloPurr” (see Figure 1; notice that only three lines of

“code” were required to create this app) – this application is

a simple button with an image of a cat. When the button is

clicked, a “meow” sound is played, and the phone vibrates

for 500ms simulating a purr.

2. “PaintPot” – a paintbrush app that has options for changing

pen color, wiping the canvas, drawing circles/lines, and

changing the background image through a call to the

camera component (see Figure 3 for an emulator image).

3. “MoleMash” – this application simulates the “Mole Mash”

game at arcades where a “mole” appears in a random hole,

and the player must hit the “mole” before it disappears.

Figure 1. Block editor and emulator (left to right)

Day Two began by asking the students to explore on their own

several projects from the textbook to continue their familiarity

and confidence in using the visual block language. We then

introduced the week-long project and asked the students to

design and create their own application to present to the class on

Day Five. Students were told they could use either the visual

block language or the Java Bridge (described in Section 3.2) that

would be introduced on day three. Each student gave a 5-minute

presentation to the class of their project idea. Please refer to

Figure 2 for an example of the timeline for the 2012 camp.

3.2 Mapping to the Java Bridge
As noted in Section 2, many universities are beginning to offer a

mobile computing course focusing on app development. The

University of Alabama offers a college senior-level design

course focused on Android development that is taught using

Java and the Android SDK. Although this is a feasible option at

Figure 2. Timing of topics presented in 2012 camps.

the college level, we felt it would be overwhelming for high

school students (with limited Java experience) to learn the core

Android SDK. Thus, our approach transitioned the students from

the visual language of AI into the Java Bridge, which assists in

writing a Java-based app that targets the same AI components

(the Java Bridge is a .jar file containing all of the AI components

that is included in the build path of a Java app in Eclipse). The

Java Bridge was first introduced on Day Three of the camp. Our

approach was to take the same apps that were developed in days

one and two, and show the equivalent implementation in Java.

Our reasoning for this strategy is that the students would be able

to form a mental mapping to the equivalent Java representation.

In fact, the code completion of the Java Bridge components in

the Eclipse editor reveals that the component interfaces provided

in Java are the exact same as those components in the visual

language of AI. We believe that the familiarity with the same

components from the first two days of the camp is an asset to

students learning to use the Java Bridge.

3.2.1 PaintPot with the Java Bridge
The first exercise the students completed using the Java Bridge

was the HelloPurr app. This provided the details on the structure

of a Java Bridge application. From that experience, the students

were then asked to implement the PaintPot app in Java. We

demonstrated how to create the initial setup with the background

image and the creation of the first button to select the pen color,

including both the GUI and the event method code for the

button. Students were asked to create the two remaining pen

buttons and a “Clear” button. Those who completed the problem

quickly were challenged to add a button, which would take a

picture and replace the background image with the newly taken

picture. Six students completed the app within nine minutes, and

all students completed the initial problem within thirty minutes.

Three students successfully implemented the camera challenge

without help from the instructors within that same time period.

We found this to be a remarkable accomplishment – we estimate

that for ourselves to create a similar app using the traditional

Android SDK would take approximately six hours. The fact that

students with little Java experience were able to do this within

30 minutes attests to the power that the AI Java Bridge offers as

a teaching environment, which abstracts many of the accidental

complexities found in the Android SDK.

Figure 3 illustrates a portion of a completed implementation of

the PaintPot app in Java. As can be seen, in the Java Bridge the

“main” method is replaced with $define. The code that is

shown in Figure 4 is focused on the creation of the GUI. Java

components are created and added to the default Form object

(i.e., the this object). Other parts not shown in this figure

include the import section, the registration of events for

dispatching, and the implementation of event handlers.

The complete implementation of the PaintPot, as well as the

other apps given to students, is available at our Google code

sites at both the University of San Francisco3 and the University

of Alabama4.

3.2.2 Skeleton of a Java Bridge App
The skeleton of a Java Bridge app is shown in Figure 4. The

required packages from the Java Bridge .jar file include classes

for handling the event dispatching, as well as the importation of

all the GUI components used in the app. The class representing

the app must extend the Form class within the Android SDK

and implement the interface specified by the event dispatcher.

The main class also declares all of the GUI components that will

be used, which are then constructed at the beginning of the

$define method and inserted into the form. At the end of the

$define method, the events that the app is interested in are

registered (sample events include things like Click, Dragged,

Touched). A separate dispatching method is then called

whenever an event occurs in the app. Those events that are

filtered by the dispatcher have their appropriate handlers called,

which represent the remaining methods in the class.

We have observed that students very quickly pick up on the

mechanism for registering events in a manner that is much more

intuitive to them than the listener approach required in the core

Android SDK. An important aspect of AI is its event-based

nature; i.e., an app is a set of event-handlers. The only challenge

that students faced was uncovering the specific names of the

handlers, which are available in documentation.

At USF, co-author Wolber explored a different way for Java

Bridge programmers to specify event handlers that is a bit higher

level than registering them. In this approach, a slightly modified

Java Bridge is used, one where the components are not final

classes. The programmer subclasses the components (e.g.,

Canvas), then can override the event methods (e.g., Dragged) to

build the event-handler. This simplifies things for beginners

because they do not have to worry about the low-level event

names and event registration. The event-handler method

headings are already in the superclass and the programmer need

only override them to program the handler (Eclipse even

generates the override method header). For example, consider

the following code:

class GameCanvas extends Canvas {

 @Override

 public void Touched(float x, float y, boolean touchedSprite) {

The downside with this approach is that inheritance is used, but

in limited testing novice students have grasped the approach

readily and with less problems than the event registration

scheme of the traditional Java Bridge.

As an extension of the Java Bridge idea, students at USF have

created an application to generate the Java code automatically

for an app created within AI5. This assists students transitioning

from AI to Java from a different perspective. The students can

create their own app and then see the Java code required to build

the app.

3 https://sites.google.com/site/mobileprogrammingusf/paintpot-

java-bridge
4 http://code.google.com/p/appinventor-java-

translation/downloads/list
5 http://usfaicg.appspot.com

3.3 Final Project
In addition to the exercises that we used from [18], the students

were asked to work on their final project that was initially

introduced on Day Two. The primary time for project design

and implementation occurred on Days Four and Five. The

student projects were often collaborative (done in teams) and

very creative. The projects varied from applications that would

benefit the community to games and entertainment apps. The

final projects serve as the artifacts that are assessed in Section

4.2. These apps are publicly available on our camp website.

One beneficial app created using the Java Bridge assists

environmental scientists in collecting information about samples

from photos taken of the environment. This app allows a citizen

scientist to help collect information by taking a photo of some

reactive test and then report details about the image by touching

various parts of the image. This project actually turned into a

regional science fair project for the student, with continued

mentoring by one of the co-authors. The app will return various

properties about the pixel that is touched. Another final project,

created using Java, acts as a study aid for science. The

application asks the user for initial and final data for one or more

of the following fields: pressure, temp, moles, molecular mass,

and/or density. Based on the information the user enters, the app

fills in the remaining information according to laws of gases:

Boyle’s Law, Charles’s Law, Gay-Lussac’s Law, Combined Gas

Law, and Ideal Gas Law (true and false). This application

required the use of data structures, loops, decisions, custom

methods, events, objects, and components. Although this student

had previous Java experience, this was her first time using Java

to program Android phones. Based on the complexity of the

project, she mastered the material thoroughly and quickly.

4. EVALUATION AND DISCUSSION
This section introduces two assessment approaches to determine

the impact of using AI in our summer camps. In Section 4.1, we

summarize our observations made throughout the week; Section

4.2 provides some insight from an artifacts assessment that we

performed on the publicly available final student projects.

4.1 Observations from the AI camp
Of the three different camps, students were noticeably most

excited for the start of the AI camp. During the PaintPot

exercise, students were not initially impressed with the

difficulty-level of the application; however, as soon as they

completed the app and ran it on their phones, smiles began

appearing throughout the classroom. The students enjoyed

working with AI and learned how to use the programming

environment within a day of its introduction.

When transitioning to the Java Bridge, the students were

challenged, but because we repeated the same applications

(HelloPurr and PaintPot), they were able to create a mental map

between the Java syntax and what they previously created with

the blocks language. The majority of the students appeared to

understand how to use Java in creating an app. Some of the

students preferred using the blocks language to using the Java

Bridge, due to the ease of creating GUIs in the blocks language

(as compared to programmatic creation of the GUI in Java).

Overall, the students were more engaged this week than in

previous weeks. Because students were so enthusiastic about

creating their own apps, which they could install on their phone,

they wanted to arrive early to the camp and stay later. We did

not see this level of engagement in previous weeks.

http://usfaicg.appspot.com/

Figure 3. PaintPot application written in Java

import com.google.devtools.simple.runtime.components.HandlesEventDispatching;

import com.google.devtools.simple.runtime.events.EventDispatcher;

import com.google.devtools.simple.runtime.components.android.*;

public class MyApp extends Form implements HandlesEventDispatching

{

 /* Declaration of GUI components goes here */

 void $define()

{

 /* GUI components constructed and added to Form, similar to code in Figure 3 */

 EventDispatcher.registerEventForDelegation(this, "MyApp", "SomeEvent");

 }

 public void dispatchEvent(Object component, String id, String eventName, Object[] args)

 {

 if(eventName.equals("SomeEvent"))

 if(component.equals(someComponent))

 someComponent_DoAction();

 /* Other event dispatching goes here */

 }

 private void someComponent_DoAction()

 {

 /* Some specific event handler code here */

 }

}

Figure 4. Skeleton of a Java Bridge app

4.2 Student Project Assessment
To evaluate what the students learned throughout the week, we

reviewed the 23 (9 from 2011 and 14 from 2012) complete and

submitted final projects (students gave permission to post

online) based on the eleven learning objectives presented in

Section 3.1 (several of the projects were team-based). Some

students did not submit a project because they were unable to

complete it, which indicates either the project was too ambitious

or we should start the project time earlier in the week. Table 2

lists the given learning objectives and the number of projects

where each learning objective was met (the learning objective

had to be used correctly to be counted). The projects used in this

assessment were student selected projects; therefore, the

difficulty level is indicative of the student’s understanding. The

results are positive considering only 35% of the students had

exposure to Java prior to this summer (i.e., 65% of the students

learned Java just from our first week of camp).

It is clear from Table 2 that iteration was not a common need in

the final projects (only 3 projects used a looping construct), but

many students had no need for loops in their applications

because the event processing did not require iteration. 15

projects included decision statements, which is also a critical

construct used for problem solving; therefore, most students felt

confident using decision statements in their applications. The

majority of students also felt comfortable with the use of

objects, learning a new environment, working in teams

collaboratively, using and programming events, calling methods,

reading documentation, creating GUIs, and using components

based on project assessment and observations.

Table 2. Number of projects meeting the learning objectives

Learning Objective Number of projects

How Android apps can be written 23

Objects 23

Programming environments

(Block Language and Java)
23

Events 23

Decision statements 15

Loops 3

Method calls 23

Method creation 7

Understanding how to read documentation 14

Creating a GUI 23

Using components 23

5. CONCLUSION
In order to inspire students to study CS and understand its

relevancy to their lives, educators should identify meaningful

learning contexts. From our experience, we found that mobile

computing provides a powerful new context for motivating

computational thinking. The 40 students attending our AI week

of camp across two years were exposed to both the AI block

language and the Java Bridge to familiarize them with multiple

environments and solutions, GUI development, and Java.

It was clear that students needed solidification of Java concepts

at the beginning of the week. Based on information in Table 2,

we feel the approach of teaching a visual language followed by

Java (using common examples in each) allowed students to gain

the confidence necessary to build applications, while reinforcing

core concepts such as objects, decision statements, and methods.

In a separate week, we also used AI in a teacher-focused

workshop (supported by a Google CS4HS grant) where science

teachers were taught how to create apps focused on their

classroom needs. Several of these teachers are introducing AI

into new CS Principles classes to highlight the way in which

computing affects many disciplines 6 . At the University of

Alabama, we are also Piloting a CS Principles course with the

College Board that uses AI as a core focus.

Moving forward, this camp will be offered in Summer 2013

with improvements made based on student feedback. Our

observations after reflecting on the past two years has led us to

several activities that we plan to try, including: 1) introduce the

Java Bridge earlier (afternoon of Day Two); 2) homework

challenges with notes for those who need more help or more

challenges; and 3) for those students staying in our dormitory,

offer evening sessions for those interested, providing additional

help to those who are behind or deeper challenges for advanced

students. As a contribution to the AI community, we also

developed a prototype tool that will convert AI programs in the

block language into a complete Eclipse project representing the

same app as translated to Java 7 . This allows an integrated

6 http://outreach.cs.ua.edu/camps/
7 http://code.google.com/p/appinventor-java-translation/

mapping mechanism where students can compare their block

language programs to the Java equivalent.

ACKNOWLEDGMENTS
We acknowledge the support of a Google CS4HS award. Thanks

to Josh Swank for assisting in the conversion of several of the

AI programs to the Java Bridge.

REFERENCES
[1] Abelson, H., Mobile Ramblings. EDUCAUSE Quarterly,

vol. 34, no. 1, 2011.

[2] Alice. Carnegie Melon University. http://www.alice.org.

[3] Android App Inventor from MIT Center for Mobile

Learning, http://appinventor.mit.edu.

[4] Barbosa, J., Hahn, R., Rabello, S., and Barbosa, D.,

LOCAL: A model geared towards ubiquitous learning.

SIGCSE Symposium on Computer Science Education,

Portland, OR, March 2008, pp. 432-436.

[5] Cheung, J., Ngai, G., Chan, S., and Lau, W., Filling the gap

in programming instruction: A text-enhanced graphical

programming environment for junior high students, SIGCSE

Symposium on Computer Science Education, Chattanooga,

TN, March 2009, pp. 276-280.

[6] Eclipse. ADT plugin for eclipse.

http://developer.android.com/sdk/eclipse-adt.html.

[7] Fenwick Jr., J., Kurtz, B., and Hollingsworth, J., Teaching

mobile computing and developing software to support

Computer Science education. SIGCSE Symposium on

Computer Science Education, Dallas, TX, March 2011, pp.

589-594.

[8] Goadrich, M. and Rogers, M., Smart smartphone

development: iOS versus Android. SIGCSE Symposium on

Computer Science Education, Dallas, TX, March 2011, pp.

607-612.

[9] Guzdial, M. and Ericson, B., Introduction to Computing and

Programming in Python, A Multimedia Approach. Pearson

Education, 2009.

[10] Lego Mindstorms. http://mindstorms.lego.com.

[11] Nielsen Wire, Young Adults and Teens Lead Growth

Among Smartphone Owners. Written September 10, 2012,

retrieved December 7, 2012 from

http://blog.nielsen.com/nielsenwire/online_mobile/young-

adults-and-teens-lead-growth-among-smartphone-owners/

[12] Loveland, S., Human computer interaction that reaches

beyond desktop applications. SIGCSE Symposium on

Computer Science Education, Dallas, TX, March 2011, pp.

595-600.

[13] Mahmoud, Q., Best practices in teaching mobile application

development. ITiCSE Joint Conference on Innovation and

Technology in Computer Science Education, Darmstadt,

Germany, June 2011, pg. 333.

[14] Perrone, V. Teaching for understanding: How to engage

students in learning. Educational Leadership, Vol. 51(5),

February 1994.

[15] Roy, K. App inventor for Android: report from a summer

camp. SIGCSE Technical Symposium on Computer Science

Education, Raleigh, NC, March 2012, pp. 283-288.

[16] Scratch. Massachusetts Institute of Technology.

http://scratch.mit.edu.

[17] U.S. Census Bureau. Age and Sex Composition: 2010. 2010

Census Briefs, May 2011. Retrieved July 9, 2012.

http://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf.

[18] Wolber, D., Abelson, H., Spertus, E, and Looney, L., App

Inventor: Create Your Own Android Apps. O’Reilly, 2011.

[19] Wolber, D., App Inventor and real-world motivation. In

Proceedings of the 42
nd

 ACM SIGCSE Technical Symposium

on Computer Science Education, Dallas, TX, 2011.

