
3
Using Arrays

THIS CHAPTER SHOWS YOU HOW TO USE AN important programming construct: arrays.
The variables used in the previous chapters were scalar variables, which store a single
value.An array is a variable that stores a set or sequence of values. One array can have
many elements, and each element can hold a single value, such as text or numbers, or
another array.An array containing other arrays is known as a multidimensional array.

PHP supports both numerically indexed and associative arrays.You are probably
familiar with numerically indexed arrays if you’ve used any programming language, but
unless you use PHP or Perl, you might not have seen associative arrays before.Associative
arrays allow you to use more useful values as the index. Rather than each element hav-
ing a numeric index, it can have words or other meaningful information.

In this chapter, you continue developing the Bob’s Auto Parts example using arrays to
work more easily with repetitive information such as customer orders. Likewise, you
write shorter, tidier code to do some of the things you did with files in the preceding
chapter.

Key topics covered in this chapter include
n Numerically indexed arrays
n Non-numerically indexed arrays
n Array operators
n Multidimensional arrays
n Array sorting
n Array functions

What Is an Array?
You learned about scalar variables in Chapter 1,“PHP Crash Course.”A scalar variable is
a named location in which to store a value; similarly, an array is a named place to store a
set of values, thereby allowing you to group scalars.

05 6728 CH03 9/2/04 1:16 PM Page 79

80 Chapter 3 Using Arrays

Bob’s product list is the array for the example used in this chapter. In Figure 3.1, you
can see a list of three products stored in an array format.These three products are stored
in a single variable called $products. (We describe how to create a variable like this
shortly.)

Figure 3.1 Bob’s products can be stored in an array.

After you have the information as an array, you can do a number of useful things with it.
Using the looping constructs from Chapter 1, you can save work by performing the
same actions on each value in the array.The whole set of information can be moved
around as a single unit.This way, with a single line of code, all the values in the array can
be passed to a function. For example, you might want to sort the products alphabetically.
To achieve this, you could pass the entire array to PHP’s sort() function.

The values stored in an array are called the array elements. Each array element has an
associated index (also called a key) that is used to access the element.Arrays in most pro-
gramming languages have numerical indices that typically start from zero or one.

PHP allows you to use numbers or strings as the array indices.You can use arrays in
the traditional numerically indexed way or set the keys to be whatever you like to make
the indexing more meaningful and useful. (This approach may be familiar to you if you
have used associative arrays or maps in other programming languages.) The programming
approach may vary a little depending on whether you are using standard numerically
indexed arrays or more interesting index values.

We begin by looking at numerically indexed arrays and then move on to using user-
defined keys.

Numerically Indexed Arrays
Numerically indexed arrays are supported in most programming languages. In PHP, the
indices start at zero by default, although you can alter this value.

Initializing Numerically Indexed Arrays
To create the array shown in Figure 3.1, use the following line of PHP code:

$products = array(‘Tires’, ‘Oil’, ‘Spark Plugs’);

product

Tires Oil Spark Plugs

05 6728 CH03 9/2/04 1:16 PM Page 80

81Numerically Indexed Arrays

This code creates an array called $products containing the three values given: ‘Tires’,
‘Oil’, and ‘Spark Plugs’. Note that, like echo, array() is actually a language con-
struct rather than a function.

Depending on the contents you need in your array, you might not need to manually
initialize them as in the preceding example. If you have the data you need in another
array, you can simply copy one array to another using the = operator.

If you want an ascending sequence of numbers stored in an array, you can use the
range() function to automatically create the array for you.The following statement cre-
ates an array called numbers with elements ranging from 1 to 10:

$numbers = range(1,10);

The range() function has an optional third parameter that allows you to set the step
size between values. For instance, if you want an array of the odd numbers between 1
and 10, you could create it as follows:

$odds = range(1, 10, 2);

The range() function can also be used with characters, as in this example:

$letters = range(‘a’, ‘z’);

If you have information stored in a file on disk, you can load the array contents directly
from the file.We look at this topic later in this chapter under the heading “Loading
Arrays from Files.”

If you have the data for your array stored in a database, you can load the array con-
tents directly from the database.This process is covered in Chapter 11,“Accessing Your
MySQL Database from the Web with PHP.”

You can also use various functions to extract part of an array or to reorder an array.
We look at some of these functions later in this chapter under the heading “Performing
Other Array Manipulations.”

Accessing Array Contents
To access the contents of a variable, you use its name. If the variable is an array, you
access the contents using the variable name and a key or index.The key or index indi-
cates which of the values in the array you access.The index is placed in square brackets
after the name.

Type $products[0], $products[1], and $products[2] to use the contents of the
$products array.

By default, element zero is the first element in the array.The same numbering scheme
is used in C, C++, Java, and a number of other languages, but it might take some getting
used to if you are not familiar with it.

05 6728 CH03 9/2/04 1:16 PM Page 81

82 Chapter 3 Using Arrays

As with other variables, you change array elements’ contents by using the = operator.
The following line replaces the first element in the array ‘Tires’ with ‘Fuses’:

$products[0] = ‘Fuses’;

You can use the following line to add a new element—’Fuses’—to the end of the
array, giving a total of four elements:

$products[3] = ‘Fuses’;

To display the contents, you could type this line:

echo “$products[0] $products[1] $products[2] $products[3]”;

Note that although PHP’s string parsing is pretty clever, you can confuse it. If you are
having trouble with array or other variables not being interpreted correctly when
embedded in a double-quoted string, you can either put them outside quotes or look up
complex syntax in Chapter 4,“String Manipulation and Regular Expressions.”The pre-
ceding echo statement works correctly, but in many of the more complex examples later
in this chapter, you will notice that the variables are outside the quoted strings.

Like other PHP variables, arrays do not need to be initialized or created in advance.
They are automatically created the first time you use them.

The following code creates the same $products array created previously with the
array() statement:

$products[0] = ‘Tires’;
$products[1] = ‘Oil’;
$products[2] = ‘Spark Plugs’;

If $products does not already exist, the first line will create a new array with just one
element.The subsequent lines add values to the array.The array is dynamically resized as
you add elements to it.This resizing capability is not present in most other programming
languages.

Using Loops to Access the Array
Because the array is indexed by a sequence of numbers, you can use a for loop to more
easily display its contents:

for ($i = 0; $i<3; $i++)

echo “$products[$i] “;

This loop provides similar output to the preceding code but requires less typing than man-
ually writing code to work with each element in a large array.The ability to use a simple
loop to access each element is a nice feature of arrays.You can also use the foreach loop,
specially designed for use with arrays. In this example, you could use it as follows:

foreach ($products as $current)

echo $current.’ ‘;

This code stores each element in turn in the variable $current and prints it out.

05 6728 CH03 9/2/04 1:16 PM Page 82

83Arrays with Different Indices

Arrays with Different Indices
In the $products array, you allowed PHP to give each item the default index.This meant
that the first item you added became item 0; the second, item 1; and so on. PHP also sup-
ports arrays in which you can associate any key or index you want with each value.

Initializing an Array
The following code creates an array with product names as keys and prices as values:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);

The symbol between the keys and values is simply an equal sign immediately followed
by a greater than symbol.

Accessing the Array Elements
Again, you access the contents using the variable name and a key, so you can access the
information stored in the prices array as $prices[‘Tires’], $prices[‘Oil’],
and $prices[‘Spark Plugs’].

The following code creates the same $prices array. Instead of creating an array with
three elements, this version creates an array with only one element and then adds two
more:

$prices = array(‘Tires’=>100);
$prices[‘Oil’] = 10;
$prices[‘Spark Plugs’] = 4;

Here is another slightly different but equivalent piece of code. In this version, you do not
explicitly create an array at all.The array is created for you when you add the first ele-
ment to it:

$prices[‘Tires’] = 100;
$prices[‘Oil’] = 10;
$prices[‘Spark Plugs’] = 4;

Using Loops
Because the indices in an array are not numbers, you cannot use a simple counter in a
for loop to work with the array. However, you can use the foreach loop or the list()
and each() constructs.

The foreach loop has a slightly different structure when using associative arrays.You
can use it exactly as you did in the previous example, or you can incorporate the keys as
well:

foreach ($prices as $key => $value)

echo $key.’=>’.$value.’
’;

05 6728 CH03 9/2/04 1:16 PM Page 83

84 Chapter 3 Using Arrays

The following code lists the contents of the $prices array using the each() construct:

while($element = each($prices))

{

echo $element[‘key’];

echo ‘ - ‘;
echo $element[‘value’];

echo ‘
’;
}

The output of this script fragment is shown in Figure 3.2.

Figure 3.2 An each() statement can be used to loop through arrays.

In Chapter 1, you looked at while loops and the echo statement.The preceding code
uses the each() function, which you have not used before.This function returns the
current element in an array and makes the next element the current one. Because you
are calling each() within a while loop, it returns every element in the array in turn and
stops when the end of the array is reached.

In this code, the variable $element is an array.When you call each(), it gives you
an array with four values and the four indices to the array locations.The locations key
and 0 contain the key of the current element, and the locations value and 1 contain the
value of the current element.Although the one you choose makes no difference, we
chose to use the named locations rather than the numbered ones.

05 6728 CH03 9/2/04 1:16 PM Page 84

85Array Operators

There is a more elegant and more common way of doing the same thing.The con-
struct list() can be used to split an array into a number of values.You can separate two
of the values that the each() function gives you like this:

list($product, $price) = each($prices);

This line uses each() to take the current element from $prices, return it as an array,
and make the next element current. It also uses list() to turn the 0 and 1 elements
from the array returned by each() into two new variables called $product and $price.

You can loop through the entire $prices array, echoing the contents using this short
script:

while (list($product, $price) = each($prices))

echo “$product - $price
”;

It has the same output as the previous script but is easier to read because list() allows
you to assign names to the variables.

When you are using each(), note that the array keeps track of the current element. If
you want to use the array twice in the same script, you need to set the current element
back to the start of the array using the function reset().To loop through the prices
array again, you type the following:

reset($prices);

while (list($product, $price) = each($prices))

echo “$product - $price
”;

This code sets the current element back to the start of the array and allows you to go
through again.

Array Operators
One set of special operators applies only to arrays. Most of them have an analogue in the
scalar operators, as you can see by looking at Table 3.1.

Table 3.1 PHP’s Array Operators

Operator Name Example Result

+ Union $a + $b Union of $a and $b.The array $b is appended
to $a, but any key clashes are not added.

== Equality $a == $b True if $a and $b contain the same elements.

=== Identity $a === $b True if $a and $b contain the same elements in
the same order.

!= Inequality $a != $b True if $a and $b do not contain the same
elements.

<> Inequality $a <> $b Same as !=.

!== Non-identity $a !== $b True if $a and $b do not contain the same
elements in the same order.

05 6728 CH03 9/2/04 1:16 PM Page 85

86 Chapter 3 Using Arrays

These operators are mostly fairly self-evident, but union requires some further explana-
tion.The union operator tries to add the elements of $b to the end of $a. If elements in
$b have the same keys as some elements already in $a, they will not be added.That is, no
elements of $a will be overwritten.

You will notice that the array operators in Table 3.1 all have equivalent operators that
work on scalar variables.As long as you remember that + performs addition on scalar
types and union on arrays—even if you have no interest in the set arithmetic behind that
behavior—the behaviors should make sense.You cannot usefully compare arrays to scalar
types.

Multidimensional Arrays
Arrays do not have to be a simple list of keys and values; each location in the array can
hold another array.This way, you can create a two-dimensional array.You can think of a
two-dimensional array as a matrix, or grid, with width and height or rows and columns.

If you want to store more than one piece of data about each of Bob’s products, you
could use a two-dimensional array. Figure 3.3 shows Bob’s products represented as a
two-dimensional array with each row representing an individual product and each col-
umn representing a stored product attribute.

Figure 3.3 You can store more information about Bob’s products in a two-
dimensional array.

Using PHP, you would write the following code to set up the data in the array shown in
Figure 3.3:

$products = array(array(‘TIR’, ‘Tires’, 100),
array(‘OIL’, ‘Oil’, 10),
array(‘SPK’, ‘Spark Plugs’, 4));

product attribute

product
Tires

Oil

Spark Plugs

100

10

4

TIR

Description PriceCode

OIL

SPK

05 6728 CH03 9/2/04 1:16 PM Page 86

87Multidimensional Arrays

You can see from this definition that the $products array now contains three arrays.
To access the data in a one-dimensional array, recall that you need the name of the

array and the index of the element.A two-dimensional array is similar, except that each
element has two indices: a row and a column. (The top row is row 0, and the far-left
column is column 0.)

To display the contents of this array, you could manually access each element in order
like this:

echo ‘|’.$products[0][0].’|’.$products[0][1].’|’.$products[0][2].’|
’;
echo ‘|’.$products[1][0].’|’.$products[1][1].’|’.$products[1][2].’|
’;
echo ‘|’.$products[2][0].’|’.$products[2][1].’|’.$products[2][2].’|
’;

Alternatively, you could place a for loop inside another for loop to achieve the same
result:

for ($row = 0; $row < 3; $row++)

{

for ($column = 0; $column < 3; $column++)

{

echo ‘|’.$products[$row][$column];
}

echo ‘|
’;
}

Both versions of this code produce the same output in the browser:

|TIR|Tires|100|

|OIL|Oil|10|

|SPK|Spark Plugs|4|

The only difference between the two examples is that your code will be shorter if you
use the second version with a large array.

You might prefer to create column names instead of numbers, as shown in Figure 3.3.
To store the same set of products, with the columns named as they are in Figure 3.3, you
would use the following code:

$products = array(array(‘Code’ => ‘TIR’,
‘Description’ => ‘Tires’,
‘Price’ => 100

),

array(‘Code’ => ‘OIL’,
‘Description’ => ‘Oil’,
‘Price’ => 10

),

05 6728 CH03 9/2/04 1:16 PM Page 87

88 Chapter 3 Using Arrays

array(‘Code’ => ‘SPK’,
‘Description’ => ‘Spark Plugs’,
‘Price’ =>4

)

);

This array is easier to work with if you want to retrieve a single value. Remembering
that the description is stored in the Description column is easier than remembering it is
stored in column 1. Using descriptive indices, you do not need to remember that an
item is stored at [x][y].You can easily find your data by referring to a location with
meaningful row and column names.

You do, however, lose the ability to use a simple for loop to step through each col-
umn in turn. Here is one way to write code to display this array:

for ($row = 0; $row < 3; $row++)

{

echo ‘|’.$products[$row][‘Code’].’|’.$products[$row][‘Description’].
‘|’.$products[$row][‘Price’].’|
’;

}

Using a for loop, you can step through the outer, numerically indexed $products array.
Each row in the $products array is an array with descriptive indices. Using the each()
and list() functions in a while loop, you can step through these inner arrays.
Therefore, you need a while loop inside a for loop:

for ($row = 0; $row < 3; $row++)

{

while (list($key, $value) = each($products[$row]))

{

echo “|$value”;
}

echo ‘|
’;
}

You do not need to stop at two dimensions. In the same way that array elements can
hold new arrays, those new arrays, in turn, can hold more arrays.

A three-dimensional array has height, width, and depth. If you are comfortable think-
ing of a two-dimensional array as a table with rows and columns, imagine a pile or deck
of those tables. Each element is referenced by its layer, row, and column.

If Bob divided his products into categories, you could use a three-dimensional array
to store them. Figure 3.4 shows Bob’s products in a three-dimensional array.

05 6728 CH03 9/2/04 1:16 PM Page 88

89Multidimensional Arrays

Figure 3.4 This three-dimensional array allows you to divide products into
categories.

From the code that defines this array, you can see that a three-dimensional array is an
array containing arrays of arrays:

$categories = array(array (array(‘CAR_TIR’, ‘Tires’, 100),
array(‘CAR_OIL’, ‘Oil’, 10),
array(‘CAR_SPK’, ‘Spark Plugs’, 4)

),

array (array(‘VAN_TIR’, ‘Tires’, 120),
array(‘VAN_OIL’, ‘Oil’, 12),
array(‘VAN_SPK’, ‘Spark Plugs’, 5)

),

array (array(‘TRK_TIR’, ‘Tires’, 150),
array(‘TRK_OIL’, ‘Oil’, 15),
array(‘TRK_SPK’, ‘Spark Plugs’, 6)

)

);

product attribute

Tires

Oil

Spark Plugs

100

10

4

TLR

Description

Truck Parts

PriceCode

OIL

SPK

product attribute

Tires

Oil

Spark Plugs

100

10

4

TLR

Description

Van Parts

PriceCode

OIL

SPK

product attribute

pr
od

uc
t

Tires

Oil

Spark Plugs

100

10

4

CAR_TIR

Description

Car Parts

PriceCode

CAR_OIL

CAR_SPK

pr
od

uc
t c

at
eg

or
y

05 6728 CH03 9/2/04 1:16 PM Page 89

90 Chapter 3 Using Arrays

Because this array has only numeric indices, you can use nested for loops to display its
contents:

for ($layer = 0; $layer < 3; $layer++)

{

echo “Layer $layer
”;
for ($row = 0; $row < 3; $row++)

{

for ($column = 0; $column < 3; $column++)

{

echo ‘|’.$categories[$layer][$row][$column];
}

echo ‘|
’;
}

}

Because of the way multidimensional arrays are created, you could create four-, five-, or
even six-dimensional arrays.There is no language limit to the number of dimensions, but
it is difficult for people to visualize constructs with more than three dimensions. Most
real-world problems match logically with constructs of three or fewer dimensions.

Sorting Arrays
Sorting related data stored in an array is often useful.You can easily take a one-dimensional
array and sort it into order.

Using sort()
The following code showing the sort() function results in the array being sorted into
ascending alphabetical order:

$products = array(‘Tires’, ‘Oil’, ‘Spark Plugs’);

sort($products);

The array elements will now appear in the order Oil, Spark Plugs, Tires.
You can sort values by numerical order, too. If you have an array containing the

prices of Bob’s products, you can sort it into ascending numeric order as follows:

$prices = array(100, 10, 4);

sort($prices);

The prices will now appear in the order 4, 10, 100.
Note that the sort() function is case sensitive.All capital letters come before all low-

ercase letters. So A is less than Z, but Z is less than a.
The function also has an optional second parameter.You may pass one of the con-

stants SORT_REGULAR (the default), SORT_NUMERIC, or SORT_STRING.The ability to specify
the sort type is useful when you are comparing strings that might contain numbers, for
example, 2 and 12. Numerically, 2 is less than 12, but as strings ‘12’ is less than ‘2’.

05 6728 CH03 9/2/04 1:16 PM Page 90

91Sorting Multidimensional Arrays

Using asort() and ksort() to Sort Arrays
If you are using an array with descriptive keys to store items and their prices, you need to
use different kinds of sort functions to keep keys and values together as they are sorted.

The following code creates an array containing the three products and their associated
prices and then sorts the array into ascending price order:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);
asort($prices);

The function asort() orders the array according to the value of each element. In the
array, the values are the prices, and the keys are the textual descriptions. If, instead of
sorting by price, you want to sort by description, you can use ksort(), which sorts by
key rather than value.The following code results in the keys of the array being ordered
alphabetically—Oil, Spark Plugs, Tires:

$prices = array(‘Tires’=>100, ‘Oil’=>10, ‘Spark Plugs’=>4);
ksort($prices);

Sorting in Reverse
The three different sorting functions—sort(), asort(), and ksort()—sort an array
into ascending order. Each function has a matching reverse sort function to sort an array
into descending order.The reverse versions are called rsort(), arsort(), and krsort().

You use the reverse sort functions in the same way you use the ascending sort func-
tions.The rsort() function sorts a single-dimensional numerically indexed array into
descending order.The arsort() function sorts a one-dimensional array into descending
order using the value of each element.The krsort() function sorts a one-dimensional
array into descending order using the key of each element.

Sorting Multidimensional Arrays
Sorting arrays with more than one dimension, or by something other than alphabetical
or numerical order, is more complicated. PHP knows how to compare two numbers or
two text strings, but in a multidimensional array, each element is an array. PHP does not
know how to compare two arrays, so you need to create a method to compare them.
Most of the time, the order of the words or numbers is fairly obvious, but for complicat-
ed objects, it becomes more problematic.

User-Defined Sorts
The following is the definition of a two-dimensional array used earlier.This array stores
Bob’s three products with a code, a description, and a price for each:

$products = array(array(‘TIR’, ‘Tires’, 100),
array(‘OIL’, ‘Oil’, 10),
array(‘SPK’, ‘Spark Plugs’, 4));

05 6728 CH03 9/2/04 1:16 PM Page 91

92 Chapter 3 Using Arrays

If you sort this array, in what order will the values appear? Because you know what the
contents represent, there are at least two useful orders.You might want the products sort-
ed into alphabetical order using the description or by numeric order by the price. Either
result is possible, but you need to use the function usort() and tell PHP how to com-
pare the items.To do this, you need to write your own comparison function.

The following code sorts this array into alphabetical order using the second column
in the array—the description:

function compare($x, $y)

{

if ($x[1] == $y[1])

return 0;

else if ($x[1] < $y[1])

return -1;

else

return 1;

}

usort($products, ‘compare’);

So far in this book, you have called a number of the built-in PHP functions.To sort this
array, you need to define a function of your own.We examine writing functions in detail
in Chapter 5,“Reusing Code and Writing Functions,” but here is a brief introduction.

You define a function by using the keyword function.You need to give the function
a name. Names should be meaningful, so you can call it compare() for this example.
Many functions take parameters or arguments.This compare() function takes two: one
called $x and one called $y.The purpose of this function is to take two values and deter-
mine their order.

For this example, the $x and $y parameters are two of the arrays within the main
array, each representing one product.To access the Description of the array $x, you
type $x[1] because the Description is the second element in these arrays, and number-
ing starts at zero.You use $x[1] and $y[1] to compare each Description from the
arrays passed into the function.

When a function ends, it can give a reply to the code that called it.This process is
called returning a value.To return a value, you use the keyword return in the function.
For example, the line return 1; sends the value 1 back to the code that called the
function.

To be used by usort(), the compare() function must compare $x and $y.The func-
tion must return 0 if $x equals $y, a negative number if it is less, or a positive number if
it is greater.The function will return 0, 1, or -1, depending on the values of $x and $y.

The final line of code calls the built-in function usort() with the array you want
sorted ($products) and the name of the comparison function (compare()).

05 6728 CH03 9/2/04 1:16 PM Page 92

93Sorting Multidimensional Arrays

If you want the array sorted into another order, you can simply write a different
comparison function.To sort by price, you need to look at the third column in the array
and create this comparison function:

function compare($x, $y)

{

if ($x[2] == $y[2])

return 0;

else if ($x[2] < $y[2])

return -1;

else

return 1;

}

When usort($products, ‘compare’) is called, the array is placed in ascending order
by price.

The u in usort() stands for user because this function requires a user-defined com-
parison function.The uasort() and uksort() versions of asort and ksort also require
user-defined comparison functions.

Similar to asort(), uasort() should be used when sorting a non-numerically
indexed array by value. Use asort if your values are simple numbers or text. Define a
comparison function and use uasort() if your values are more complicated objects such
as arrays.

Similar to ksort(), uksort() should be used when sorting a non-numerically
indexed array by key. Use ksort if your keys are simple numbers or text. Define a com-
parison function and use uksort() if your keys are more complicated objects such as
arrays.

Reverse User Sorts
The functions sort(), asort(), and ksort() all have a matching reverse sorts with an r
in the function name.The user-defined sorts do not have reverse variants, but you can
sort a multidimensional array into reverse order. Because you provide the comparison
function, you can write a comparison function that returns the opposite values.To sort
into reverse order, the function needs to return 1 if $x is less than $y and -1 if $x is
greater than $y. For example,

function reverse_compare($x, $y)

{

if ($x[2] == $y[2])

return 0;

else if ($x[2] < $y[2])

return 1;

else

return -1;

}

05 6728 CH03 9/2/04 1:16 PM Page 93

94 Chapter 3 Using Arrays

Calling usort($products, ‘reverse_compare’) would now result in the array being
placed in descending order by price.

Reordering Arrays
For some applications, you might want to manipulate the order of the array in other
ways.The function shuffle() randomly reorders the elements of your array.The func-
tion array_reverse() gives you a copy of your array with all the elements in reverse
order.

Using shuffle()
Bob wants to feature a small number of his products on the front page of his site. He has
a large number of products but would like three randomly selected items shown on the
front page. So that repeat visitors do not get bored, he would like the three chosen prod-
ucts to be different for each visit. He can easily accomplish his goal if all his products are
in an array. Listing 3.1 displays three randomly chosen pictures by shuffling the array into
a random order and then displaying the first three.

Listing 3.1 bobs_front_page.php—Using PHP to Produce a Dynamic Front Page
for Bob’s Auto Parts

<?php

$pictures = array(‘tire.jpg’, ‘oil.jpg’, ‘spark_plug.jpg’,
‘door.jpg’, ‘steering_wheel.jpg’,
‘thermostat.jpg’, ‘wiper_blade.jpg’,
‘gasket.jpg’, ‘brake_pad.jpg’);

shuffle($pictures);

?>

<html>

<head>

<title>Bob’s Auto Parts</title>
</head>

<body>

<center>

<h1>Bob’s Auto Parts</h1>
<table width = ‘100%’>
<tr>

<?php

for ($i = 0; $i < 3; $i++)

{

echo ‘<td align=”center”><img src=”’;
echo $pictures[$i];

echo ‘“ width=”100” height=”100”></td>’;

05 6728 CH03 9/2/04 1:16 PM Page 94

95Reordering Arrays

}

?>

</tr>

</table>

</center>

</body>

</html>

Because the code selects random pictures, it produces a different page nearly every time
you load it, as shown in Figure 3.5.

Figure 3.5 The shuffle() function enables you to feature three randomly
chosen products.

In older versions of PHP, the shuffle() function required that you seed the random
number generator first by calling srand().This step is no longer required.

The shuffle() function has not had a very illustrious history. In older versions of
PHP, it did not shuffle very well, giving a result that was not very random. In version
4.2.x on Windows, for instance, it did not shuffle at all, giving a result that was exactly
what you started with. In version 5, it seems to work. If this function is important to
you, test it on your server before employing it in your applications.

Because you do not really need the whole array reordered, you can achieve the same
result using the function array_rand().

Listing 3.1 Continued

05 6728 CH03 9/2/04 1:16 PM Page 95

96 Chapter 3 Using Arrays

Using array_reverse()
The function array_reverse() takes an array and creates a new one with the same
contents in reverse order. For example, there are a number of ways to create an array
containing a countdown from 10 to 1.

Using range() usually creates an ascending sequence, which you could place in
descending order using array_reverse() or rsort().Alternatively, you could create the
array one element at a time by writing a for loop:

$numbers = array();

for($i=10; $i>0; $i--)

array_push($numbers, $i);

A for loop can go in descending order like this:You set the starting value high and at
the end of each loop use the -- operator to decrease the counter by one.

Here, you create an empty array and then use array_push() for each element to add
one new element to the end of an array.As a side note, the opposite of array_push() is
array_pop().This function removes and returns one element from the end of an array.

Alternatively, you can use the array_reverse() function to reverse the array created
by range():

$numbers = range(1,10);

$numbers = array_reverse($numbers);

Note that array_reverse() returns a modified copy of the array. If you do not
want the original array, as in this example, you can simply store the new copy over the
original.

If your data is just a range of integers, you can create it in reverse order by passing –1
as the optional step parameter to range():

$numbers = range(10, 1, -1);

Loading Arrays from Files
In Chapter 2,“Storing and Retrieving Data,” you learned how to store customer orders
in a file. Each line in the file looked something like this:

15:42, 20th April 4 tires 1 oil 6 spark plugs $434.00 22 Short St, Smalltown

To process or fulfill this order, you could load it back into an array. Listing 3.2 displays
the current order file.

Listing 3.2 vieworders.php— Using PHP to Display Orders for Bob

<?php

//create short variable name

$DOCUMENT_ROOT = $_SERVER[‘DOCUMENT_ROOT’];

05 6728 CH03 9/2/04 1:16 PM Page 96

97Loading Arrays from Files

$orders= file(“$DOCUMENT_ROOT/../orders/orders.txt”);

$number_of_orders = count($orders);

if ($number_of_orders == 0)

{

echo ‘<p>No orders pending.
Please try again later.</p>’;

}

for ($i=0; $i<$number_of_orders; $i++)

{

echo $orders[$i].’
’;
}

?>

This script produces almost exactly the same output as Listing 2.3 in the preceding
chapter, which was shown in Figure 2.4.This time, the script uses the function file(),
which loads the entire file into an array. Each line in the file becomes one element of an
array.This code also uses the count() function to see how many elements are in an
array.

Furthermore, you could load each section of the order lines into separate array ele-
ments to process the sections separately or to format them more attractively. Listing 3.3
does exactly that.

Listing 3.3 vieworders2.php— Using PHP to Separate, Format, and Display Orders
for Bob

<?php

//create short variable name

$DOCUMENT_ROOT = $_SERVER[‘DOCUMENT_ROOT’];
?>

<html>

<head>

<title>Bob’s Auto Parts - Customer Orders</title>
</head>

<body>

<h1>Bob’s Auto Parts</h1>
<h2>Customer Orders</h2>

<?php

//Read in the entire file.

//Each order becomes an element in the array

$orders= file(“$DOCUMENT_ROOT/../orders/orders.txt”);

Listing 3.2 Continued

05 6728 CH03 9/2/04 1:16 PM Page 97

98 Chapter 3 Using Arrays

// count the number of orders in the array

$number_of_orders = count($orders);

if ($number_of_orders == 0)

{

echo ‘<p>No orders pending.
Please try again later.</p>’;

}

echo “<table border=’1’>\n”;
echo ‘<tr><th bgcolor=”#CCCCFF”>Order Date</th>

<th bgcolor=”#CCCCFF”>Tires</th>
<th bgcolor=”#CCCCFF”>Oil</th>
<th bgcolor=”#CCCCFF”>Spark Plugs</th>
<th bgcolor=”#CCCCFF”>Total</th>
<th bgcolor=”#CCCCFF”>Address</th>

<tr>’;
for ($i=0; $i<$number_of_orders; $i++)

{

//split up each line

$line = explode(“\t”, $orders[$i]);
// keep only the number of items ordered (discard other stored data)

$line[1] = intval($line[1]);

$line[2] = intval($line[2]);

$line[3] = intval($line[3]);

// output each order

echo “<tr><td>$line[0]</td>
<td align=’right’>$line[1]</td>
<td align=’right’>$line[2]</td>
<td align=’right’>$line[3]</td>
<td align=’right’>$line[4]</td>
<td>$line[5]</td>

</tr>”;
}

echo ‘</table>’;
?>

</body>

</html>

The code in Listing 3.3 loads the entire file into an array, but unlike the example in
Listing 3.2, here you use the function explode() to split up each line so that you can
apply some processing and formatting before printing.The output from this script is
shown in Figure 3.6.

Listing 3.3 Continued

05 6728 CH03 9/2/04 1:16 PM Page 98

99Loading Arrays from Files

Figure 3.6 After splitting order records with explode(), you can put each
part of an order in a different table cell for better-looking output.

The explode function has the following prototype:

array explode(string separator, string string [, int limit])

In the preceding chapter, you used the tab character as a delimiter when storing this
data, so here you call

explode(“\t”, $orders[$i])

This code “explodes” the passed-in string into parts. Each tab character becomes a break
between two elements. For example, the string

“15:42, 20th April\t4 tires\t1 oil\t6 spark plugs\t$434.00\t
22 Short St, Smalltown”

is exploded into the parts “15:42, 20th April”, “4 tires”, “1 oil”, “6 spark
plugs”, “$434.00”, and “22 Short St, Smalltown”.

Note that the optional limit parameter can be used to limit the maximum number
of parts returned.

This example doesn’t do very much processing. Rather than output tires, oil, and
spark plugs on every line, this example displays only the number of each and gives the
table a heading row to show what the numbers represent.

You could extract numbers from these strings in a number of ways. Here, you use the
function intval().As mentioned in Chapter 1, intval() converts a string to an inte-
ger.The conversion is reasonably clever and ignores parts, such as the label in this exam-
ple, which cannot be converted to an integer.We cover various ways of processing
strings in the next chapter.

05 6728 CH03 9/2/04 1:16 PM Page 99

100 Chapter 3 Using Arrays

Performing Other Array Manipulations
So far, we have covered only about half the array processing functions. Many others will
be useful from time to time; we describe some of them next.

Navigating Within an Array: each(), current(), reset(),
end(), next(), pos(), and prev()
We mentioned previously that every array has an internal pointer that points to the cur-
rent element in the array.You indirectly used this pointer earlier when using the each()
function, but you can directly use and manipulate this pointer.

If you create a new array, the current pointer is initialized to point to the first ele-
ment in the array. Calling current($array_name) returns the first element.

Calling either next() or each() advances the pointer forward one element. Calling
each($array_name) returns the current element before advancing the pointer.The
function next() behaves slightly differently: Calling next($array_name) advances the
pointer and then returns the new current element.

You have already seen that reset() returns the pointer to the first element in the
array. Similarly, calling end($array_name) sends the pointer to the end of the array.
The first and last elements in the array are returned by reset() and end(), respectively.

To move through an array in reverse order, you could use end() and prev().The
prev() function is the opposite of next(). It moves the current pointer back one and
then returns the new current element.

For example, the following code displays an array in reverse order:

$value = end ($array);

while ($value)

{

echo “$value
”;
$value = prev($array);

}

For example, you can declare $array like this:

$array = array(1, 2, 3);

In this case, the output would appear in a browser as follows:

3

2

1

Using each(), current(), reset(), end(), next(), pos(), and prev(), you can write
your own code to navigate through an array in any order.

05 6728 CH03 9/2/04 1:16 PM Page 100

101Performing Other Array Manipulations

Applying Any Function to Each Element in an Array:
array_walk()
Sometimes you might want to work with or modify every element in an array in the
same way.The function array_walk() allows you to do this.The prototype of
array_walk() is as follows:

bool array_walk(array arr, string func, [mixed userdata])

Similar to the way you called usort() earlier, array_walk() expects you to declare a
function of your own.As you can see, array_walk() takes three parameters.The first,
arr, is the array to be processed.The second, func, is the name of a user-defined func-
tion that will be applied to each element in the array.The third parameter, userdata, is
optional. If you use it, it will be passed through to your function as a parameter.You see
how this works shortly.

A handy user-defined function might be one that displays each element with some
specified formatting.The following code displays each element on a new line by calling
the user-defined function my_print() with each element of $array:

function my_print($value)

{

echo “$value
”;
}

array_walk($array, ‘my_print’);

The function you write needs to have a particular signature. For each element in the
array, array_walk takes the key and value stored in the array, and anything you passed as
userdata, and calls your function like this:

yourfunction(value, key, userdata)

For most uses, your function will be using only the values in the array. For some, you
might also need to pass a parameter to your function using the parameter userdata.
Occasionally, you might be interested in the key of each element as well as the value.
Your function can, as with MyPrint(), choose to ignore the key and userdata
parameter.

For a slightly more complicated example, you can write a function that modifies the
values in the array and requires a parameter.Although you may not interested in the key,
you need to accept it to accept the third parameter:

function my_multiply(&$value, $key, $factor)

{

$value *= $factor;

}

array_walk(&$array, ‘my_multiply’, 3);

05 6728 CH03 9/2/04 1:16 PM Page 101

102 Chapter 3 Using Arrays

This code defines a function, my_multiply(), that will multiply each element in the
array by a supplied factor.You need to use the optional third parameter to array_walk()
to take a parameter to pass to the function and use it as the factor to multiply by.
Because you need this parameter, you must define the function, my_multiply(), to take
three parameters: an array element’s value ($value), an array element’s key ($key), and
the parameter ($factor).You can choose to ignore the key.

A subtle point to note is the way $value is passed.The ampersand (&) before the
variable name in the definition of my_multiply() means that $value will be passed by
reference. Passing by reference allows the function to alter the contents of the array.

We address passing by reference in more detail in Chapter 5. If you are not familiar
with the term, for now just note that to pass by reference, you place an ampersand
before the variable name.

Counting Elements in an Array: count(), sizeof(), and
array_count_values()
You used the function count() in an earlier example to count the number of elements
in an array of orders.The function sizeof() serves exactly the same purpose. Both of
these functions return the number of elements in an array passed to them.You get a
count of one for the number of elements in a normal scalar variable and zero if you pass
either an empty array or a variable that has not been set.

The array_count_values() function is more complex. If you call
array_count_values($array), this function counts how many times each unique value
occurs in the array named $array. (This is the set cardinality of the array.) The function
returns an associative array containing a frequency table.This array contains all the
unique values from $array as keys. Each key has a numeric value that tells you how
many times the corresponding key occurs in $array.

For example, the code

$array = array(4, 5, 1, 2, 3, 1, 2, 1);

$ac = array_count_values($array);

creates an array called $ac that contains

Key Value

4 1

5 1

1 3

2 2

3 1

This result indicates that 4, 5, and 3 occurred once in $array, 1 occurred three times,
and 2 occurred twice.

05 6728 CH03 9/2/04 1:16 PM Page 102

103Performing Other Array Manipulations

Converting Arrays to Scalar Variables: extract()
If you have a non-numerically indexed array with a number of key value pairs, you can
turn them into a set of scalar variables using the function extract().The prototype for
extract() is as follows:

extract(array var_array [, int extract_type] [, string prefix]);

The purpose of extract() is to take an array and create scalar variables with the names
of the keys in the array.The values of these variables are set to the values in the array.

Here is a simple example:

$array = array(‘key1’ => ‘value1’, ‘key2’ => ‘value2’, ‘key3’ => ‘value3’);
extract($array);

echo “$key1 $key2 $key3”;

This code produces the following output:

value1 value2 value3

The array has three elements with keys: key1, key2, and key3. Using extract(), you
create three scalar variables: $key1, $key2, and $key3.You can see from the output that
the values of $key1, $key2, and $key3 are ‘value1’, ‘value2’, and ‘value3’, respec-
tively.These values come from the original array.

The extract() function has two optional parameters: extract_type and prefix.
The variable extract_type tells extract() how to handle collisions.These are cases in
which a variable already exists with the same name as a key.The default response is to
overwrite the existing variable.The allowable values for extract_type are shown in
Table 3.2.

Table 3.2 Allowed extract_type Parameters for extract()

Type Meaning

EXTR_OVERWRITE Overwrites the existing variable when a collision occurs.

EXTR_SKIP Skips an element when a collision occurs.

EXTR_PREFIX_SAME Creates a variable named $prefix_key when a collision
occurs.You must supply prefix.

EXTR_PREFIX_ALL Prefixes all variable names with prefix.You must supply
prefix.

EXTR_PREFIX_INVALID Prefixes variable names that would otherwise be invalid (for
example, numeric variable names) with prefix.You must sup-
ply prefix.

EXTR_IF_EXISTS Extracts only variables that already exist (that is, writes existing
variables with values from the array).This parameter was added
at version 4.2.0 and is useful for converting, for example,
$_REQUEST to a set of valid variables.

05 6728 CH03 9/2/04 1:16 PM Page 103

104 Chapter 3 Using Arrays

EXTR_PREFIX_IF_EXISTS Creates a prefixed version only if the nonprefixed version
already exists.This parameter was added at version 4.2.0.

EXTR_REFS Extracts variables as references.This parameter was added at
version 4.3.0.

The two most useful options are EXTR_OVERWRITE (the default) and EXTR_PREFIX_ALL.
The other options might be useful occasionally when you know that a particular
collision will occur and want that key skipped or prefixed.A simple example using
EXTR_PREFIX_ALL follows.You can see that the variables created are called prefix-
underscore-keyname:

$array = array(‘key1’ => ‘value1’, ‘key2’ => ‘value2’, ‘key3’ => ‘value3’);
extract($array, EXTR_PREFIX_ALL, ‘my_prefix’);
echo “$my_prefix_key1 $my_prefix_key2 $my_prefix_key3”;

This code again produces the following output:

value1 value2 value3

Note that for extract() to extract an element, that element’s key must be a valid vari-
able name, which means that keys starting with numbers or including spaces are skipped.

Further Reading
This chapter covers what we believe to be the most useful of PHP’s array functions.We
have chosen not to cover all the possible array functions.The online PHP manual avail-
able at http://www.php.net/array provides a brief description for each of them.

Next
In the next chapter, you learn about string processing functions.We cover functions that
search, replace, split, and merge strings, as well as the powerful regular expression func-
tions that can perform almost any action on a string.

Table 3.2 Continued

Type Meaning

05 6728 CH03 9/2/04 1:16 PM Page 104

