

Using Corresponding Parts of Congruent Triangles

What You'll Learn

- To identify congruent overlapping triangles
- To prove two triangles congruent by first proving two other triangles congruent

... And Why

To identify overlapping triangles in scaffolding, as in Example 1

Using Overlapping Triangles in Proofs

Vocabulary Tip

Overlapping triangles share part or all of one or more sides.

Some triangle relationships are difficult to see because the triangles overlap. Overlapping triangles may have a common side or angle. You can simplify your work with overlapping triangles by separating and redrawing the triangles.

EXAMPLE **Identifying Common Parts**

Separate and redraw $\triangle DFG$ and $\triangle EHG$. Identify the common angle.

- Quick Check ① Engineering The diagram at the left shows triangles from the scaffolding that workers used when they repaired and cleaned the Statue of Liberty. **a.** Name the common side in $\triangle ADC$
 - and $\triangle BCD$. **CD b.** Name another pair of triangles that
 - share a common side. Name the common side. Answers may vary. Sample: $\triangle ABD$ and $\triangle CBD$; \overline{BD}

H.

G

Common

angle

G

In overlapping triangles, a common side or angle is congruent to itself by the Reflexive Property of Congruence.

> Lesson 4-7 Using Corresponding Parts of Congruent Triangles 241

Differentiated Instruction Solutions for All Learners

Special Needs

For Example 3, help students recognize that they cannot prove $\triangle GED \cong \triangle JEB$ unless they can first prove $\triangle AED \cong \triangle CEB$. By proving $\triangle AED \cong \triangle CEB$, students identify other pairs of congruent parts.

Below Level L2

Use separable transparencies on an overhead projector and different-colored pens to help students distinguish overlapping triangles and congruent corresponding parts.

1. Plan

Objectives

- To identify congruent overlapping triangles
- 2 To prove two triangles congruent by first proving two other triangles congruent

Examples

- Identifying Common Parts 1
- 2 Using Common Parts
- 3 Using Two Pairs of Triangles
- 4 Separating Overlapping Triangles

Math Background

The use of CPCTC in overlapping triangles is fundamental to the investigation of guadrilaterals. For example, the proof that the diagonals of a rectangle are congruent follows easily from using the SAS Postulate to prove that the overlapping right triangles formed by the diagonals are congruent.

More Math Background: p. 196D

Lesson Planning and Resources

See p. 196E for a list of the resources that support this lesson.

Check Skills You'll Need For intervention, direct students to:

Planning a Proof Lesson 4-3: Example 3 Extra Skills, Word Problems, Proof Practice, Ch. 4

Using the HL Theorem

Lesson 4-6: Examples 2 and 3 Extra Skills, Word Problems, Proof Practice, Ch. 4

Additional Examples

1 Name the parts of their sides that $\triangle DFG$ and $\triangle EHG$ share in Example 1. HG and FG

2 Write a Plan for Proof for Example 2 that does not use overlapping triangles. Label the intersection of \overline{ZX} and \overline{WY} point *M*. $\overline{ZW} \cong \overline{YX}$ by CPCTC if $\triangle ZWM \cong \triangle YXM$. Show this congruence by ASA.

Sometimes you can prove one pair of triangles congruent and then use their congruent corresponding parts to prove another pair congruent.

EXAMPLE **Using Two Pairs of Triangles**

Given: In the quilt, *E* is the midpoint of \overline{AC} and \overline{DB} . **Prove:** $\triangle GED \cong \triangle JEB$

See back of book.

Write a plan and then a proof.

Plan: $\triangle GED \cong \triangle JEB$ by ASA if $\angle D \cong \angle B$. These angles are congruent by CPCTC if $\triangle AED \cong \triangle CEB$. These triangles are congruent by SAS.

Proof: *E* is the midpoint of \overline{AC} and \overline{DB} , so $\overline{AE} \cong \overline{CE}$ and $\overline{DE} \cong \overline{BE}$. $\angle AED \cong \angle CEB$ because vertical angles are congruent. Therefore, $\triangle AED \cong \triangle CEB$ by SAS. $\angle D \cong \angle B$ by CPCTC, and $\angle GED \cong \angle JEB$ because they are vertical angles. Therefore, $\triangle GED \cong \triangle JEB$ by ASA.

Proof

Quick Check 3 Write a plan and then a proof. **Given:** $\overline{PS} \cong \overline{RS}, \angle PSQ \cong \angle RSQ$

Prove: $\triangle QPT \cong \triangle QRT$

242 Chapter 4 Congruent Triangles

Differentiated Instruction Solutions for All Learners

ė.

Advanced Learners

Have students copy the diagram in Example 2. drawing ZY. Then have them prove that \overline{ZY} and \overline{WX} are parallel.

English Language Learners ELL

Some students may not understand the term overlapping. Use an overhead projector and transparencies with overlays to illustrate its meaning.

learning style: visual

When triangles overlap, you can keep track of information by drawing other diagrams that separate the overlapping triangles.

Real-World < Connection

The Japanese paper-folding art of origami involves many overlapping triangles.

EXAMPLE Separating Overlapping Triangles Given: $\overline{CA} \cong \overline{CE}, \overline{BA} \cong \overline{DE}$ Write a plan and then a proof to show that two small segments inside the triangle are congruent. **Prove:** $\overline{BX} \cong \overline{DX}$

Plan: $\overline{BX} \cong \overline{DX}$ by CPCTC if $\triangle BXA \cong \triangle DXE$. This congruence holds by AAS if $\angle ABX \cong \angle EDX$. These are congruent by CPCTC in $\triangle BAE$ and $\triangle DEA$, which are congruent by SAS.

Proof:

StatementsReasons1. $\overline{BA} \cong \overline{DE}$ 1. Given2. $\overline{CA} \cong \overline{CE}$ 2. Given3. $\angle CAE \cong \angle CEA$ 3. Isosceles Triangle Theorem4. $\overline{AE} \cong \overline{AE}$ 4. Reflexive Property of Congruence5. $\triangle BAE \cong \triangle DEA$ 5. SAS6. $\angle ABE \cong \angle EDA$ 6. CPCTC7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent.8. $\triangle BXA \cong \triangle DXE$ 8. AAS9. $\overline{BX} \cong \overline{DX}$ 9. CPCTC	FIUUI.	$A \longrightarrow E A \longrightarrow$			
2. $\overrightarrow{CA} \cong \overrightarrow{CE}$ 2. Given 3. $\angle CAE \cong \angle CEA$ 3. Isosceles Triangle Theorem 4. $\overrightarrow{AE} \cong \overrightarrow{AE}$ 4. Reflexive Property of Congruence 5. $\triangle BAE \cong \triangle DEA$ 5. SAS 6. $\angle ABE \cong \angle EDA$ 6. CPCTC 7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent. 8. $\triangle BXA \cong \triangle DXE$ 8. AAS	Statements	Reasons			
3. $\angle CAE \cong \angle CEA$ 3. Isosceles Triangle Theorem 4. $\overline{AE} \cong \overline{AE}$ 4. Reflexive Property of Congruence 5. $\triangle BAE \cong \triangle DEA$ 5. SAS 6. $\angle ABE \cong \angle EDA$ 6. CPCTC 7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent. 8. $\triangle BXA \cong \triangle DXE$ 8. AAS	1. $\overline{BA} \cong \overline{DE}$	1. Given			
4. $\overline{AE} \cong \overline{AE}$ 4. Reflexive Property of Congruence 5. $\triangle BAE \cong \triangle DEA$ 5. SAS 6. $\angle ABE \cong \angle EDA$ 6. CPCTC 7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent. 8. $\triangle BXA \cong \triangle DXE$ 8. AAS	2. $\overline{CA} \cong \overline{CE}$	2. Given			
5. $\triangle BAE \cong \triangle DEA$ 5. SAS6. $\angle ABE \cong \angle EDA$ 6. CPCTC7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent.8. $\triangle BXA \cong \triangle DXE$ 8. AAS	3. $\angle CAE \cong \angle CEA$	3. Isosceles Triangle Theorem			
6. $\angle ABE \cong \angle EDA$ 6. CPCTC7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent.8. $\triangle BXA \cong \triangle DXE$ 8. AAS	$4. \ \overline{AE} \cong \overline{AE}$	4. Reflexive Property of Congruence			
7. $\angle BXA \cong \angle DXE$ 7. Vertical angles are congruent.8. $\triangle BXA \cong \triangle DXE$ 8. AAS	5. $\triangle BAE \cong \triangle DEA$	5. SAS			
8. $\triangle BXA \cong \triangle DXE$ 8. AAS	6. $\angle ABE \cong \angle EDA$	6. CPCTC			
	7. $\angle BXA \cong \angle DXE$	7. Vertical angles are congruent.			
9. $\overline{BX} \cong \overline{DX}$ 9. CPCTC	8. $\triangle BXA \cong \triangle DXE$	8. AAS			
	9. $\overline{BX} \cong \overline{DX}$	9. CPCTC			

Quick Check ④ Plan a proof. Separate the overlapping triangles in your plan. Then follow your plan and write a proof. See margin.

> **Given:** $\angle CAD \cong \angle EAD, \angle C \cong \angle E$ **Prove:** $\overline{BD} \cong \overline{FD}$

6. $\triangle BDC \cong \triangle FDE$ (ASA)

7. $\overline{BD} \cong \overline{FD}$ (CPCTC)

EXERCISES

Practice and Problem Solving

1. *K*

In each diagram, the red and blue triangles are congruent. Identify their common side or angle.

For more exercises, see Extra Skill, Word Problem, and Proof Practice.

Lesson 4-7 Using Corresponding Parts of Congruent Triangles 243

Quick Check

- 1. $\angle CAD \cong \angle EAD$: 4. $\angle C \cong \angle E$ (Given)
 - 2. $\overline{AD} \cong \overline{AD}$ (Reflexive Prop. of \cong)

3. $\triangle ACD \cong \triangle AED$ (AAS) 4. $\overline{CD} \cong \overline{ED}$ (CPCTC) 5. $\angle BDC \cong \angle FDE$ (Vert. <u>∕</u>s are ≅.)

Guided Instruction

3 EXAMPLE **Error Prevention**

Students may think they can prove $\triangle GED \cong \triangle JEB$ directly from the information given. Discuss how proving $\triangle AED \cong$ $\triangle CEB$ acts as a bridge from the Given to proving $\triangle GED \cong \triangle JEB$. Point out that a proof often involves finding such a bridge between ideas.

3 Write a paragraph proof.

Given: $\overline{XW} \cong \overline{YZ}$, $\angle XWZ$ and $\angle YZW$ are right angles.

Prove: $\triangle XPW \cong \triangle YPZ \ \overline{XW} \cong \overline{YZ}$ (Given), $\angle XWZ \cong \angle YZW$ (right angles) and $\overline{WZ} \cong \overline{ZW}$ (Reflexive Prop.), so $\triangle XWZ \cong \triangle YZW$ by SAS. $\angle WXZ \cong \angle ZYW$ by CPCTC, $\angle XPW \cong \angle YPZ$ (vert. angles are \cong), and $\overline{XW} \cong \overline{YZ}$ (Given), so $\triangle XPW \cong \triangle YPZ$ by AAS.

4 Use the Given from Example 4 to write a two-column proof to show that $\angle CBE \cong \angle CDA$.

- 1. $\angle BCE \cong \angle DCA$ (Reflexive) 2. $CA \cong CE, BA \cong DE$ (Given)
- 3. CA BA = CE DE
- (Subtraction Prop. of Equality)
- $4. \quad CA BA = CB,$
- CE DE = CD (Seg. Add. Post.)
- 5. CB = CD (Substitution)
- 6. $\overline{CB} \cong \overline{CD}$ (Def. of \cong)
- 7. $\triangle CBE \cong \triangle CDA$ (SAS)
- 8. $\angle CBE \cong \angle CDA$ (CPCTC)

Resources

- Daily Notetaking Guide 4-7 L3
- Daily Notetaking Guide 4-7— L1 Adapted Instruction

Closure

Explain how CPCTC can be used in the middle of a proof. Sometimes you can prove a pair of triangles congruent and then use CPCTC to prove another pair congruent.

3. Practice

Assignment Guide

🚺 А В 1-9, 12-15

Y AB 10, 11,	16-22
C Challenge	23-25
Test Prep Mixed Review	26-30 31-40

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 6, 10, 14, 19, 21.

Error Prevention!

Exercise 7 In step b, identifying $\angle P$ using two different names may confuse students and prevent them from realizing that the Reflexive Property of Congruence applies. Ask: Why is ∠P named in two ways? to show the order of the corresponding vertices in $\triangle TPQ$ and $\triangle RPV$

Exercise 16 Students need to recognize that $\overline{SU} \cong \overline{VT}$ because the same quantity TU, is being added to the congruent segments \overline{VU} and \overline{ST} .

12

13.

GO

244

14. a.

Differentiated Instruction Resources

1	GPS Guided Problem Solving
	Enrichment L4
	Reteaching L2
A	Adapted Practice
	Practice L3
	Practice 4-7 Using Corresponding Parts of Congruent Triangles Name a pair of overlapping congruent triangles in each diagram. State
	$\begin{array}{c} 1 & \dim_{\mathbb{Z}} \overline{TP} = \overline{TI}_{1} \cdot TVW \\ \text{and } \overline{TP} = \overline{TI}_{1} \cdot TWW \\ u & \text{and } \overline{T} = \overline{TI}_{1} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text{and } \overline{T} = \overline{T} \cdot TV \\ u & \text$
	Support of the inflation of the inflati
	$\begin{bmatrix} \frac{3}{2} & 10, & \text{Gives } \overline{M} = \overline{M}, \overline{CT} \perp \overline{M}, \overline{M}' \perp \overline{M}' & 11, & \text{Gives } \overline{M} = \overline{CT}, & \text{LHCF} = 2.EGF \\ \text{Prove } .BF/A = 2.CAA & \text{Prove } .BF/A = 2.GF \\ \text{Prove } .BF/A = 2.CAA & \text{Prove } .BF/A = 2.GF \\ \text{Prove } .BF/A = 2.GF & \text{Prove } .BF/A = 2.GF \\ \text{Prove } .BF/A$

Separate and redraw the indicated triangles. Identify any common angles or sides.

🝓 nline lesson quiz, PHSchool.com, Web Code: aua-0407 Lesson 4-7 Using Corresponding Parts of Congruent Triangles 245

18. $\overrightarrow{PQ} \cong \overrightarrow{RQ}$ and $\angle PQT \cong \angle RQT$ by Def. of \bot bisector. $\overrightarrow{QT} \cong \overrightarrow{QT}$ so $\triangle PQT \cong \triangle RQT$ by SAS. $\angle P \cong \angle R$ by CPCTC. \overrightarrow{QT} bisects $\angle VQS$ so $\angle VQT \cong \angle SQT$ and $\angle PQT$ and $\angle RQT$ are both rt. ▲. So ∠VQP ≅ ∠SQR since they are compl. of ≅ ▲. ΔPQV ≅ ΔRQS by ASA so QV ≅ QS by CPCTC. 19. m∠1 = 56; m∠2 = 56; m∠3 = 34; m∠4 = 90; m∠5 = 22; m∠6 = 34; *m*∠7 = 34; *m*∠8 = 68; *m*∠9 = 112

24. $\triangle ACE \cong \triangle BCD$ by ASA; $\overline{AC} \cong \overline{BC}, \angle A \cong \angle B$ (Given) $\angle C \cong \angle C$ (Reflective Prop. of \cong) $\triangle ACE \cong \triangle BCD$ (ASA) 25. $\triangle WYX \cong \triangle ZXY$ by HL;

 $\overline{WY} \perp \overline{YX}, \overline{ZX} \perp \overline{YX},$

and ∠ZXY are rt. △

(Def. of \perp) XY \perp XY

 $\triangle WYX \cong \triangle ZXY (HL)$

(Reflective Prop. of \cong)

 $WX \cong ZY$ (Given) $\angle WYX$

Alternative Assessment

Using the diagram below, have partners work together to find all the pairs of congruent triangles. For each pair, they should write a paragraph proof that the triangles are congruent.

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 253
- Test-Taking Strategies, p. 248 • Test-Taking Strategies with
- Transparencies

 26. C 27. F 28. A 29. [2] a. △HBC ≅ △HED 	Lesson 4-6 for Help 32. M p	31. Complete the plan for a proof. Given: $\angle A$ and $\angle D$ are right angles, $\overline{AB} \cong \overline{DB}$. Prove: $\triangle ABC \cong \triangle DBC$ Plan: $\triangle ABC$ and $\triangle DBC$ are a. ? triangles with legs that are given to be b. ? . The hypotenuse is \cong congruent to itself by the c. ? Property of Congruence. Reflexive $\triangle ABC \cong \triangle DBC$ by the d. ? Theorem. HL
b. $\overline{HB} \cong \overline{HE}$ by $CPCTC \text{ if } \Delta HBC$ $\cong \Delta HED$ by ASA. Since $\Delta BDC \cong$ ΔCED by SAS, then $\angle DBC \cong$ $\angle CED$ by CPCTC and $\angle CHB \cong$ $\angle DHE$ because vertical \pounds are \cong . [1] one part correct 30. [4] a. HL b. A g g g g g g g g	Yn Lesson 3-8 Lesson 3-6 38–40. Eqs. may vary, depending on pt. chosen. 246 Chapter 4 Congruent T	Constructions Draw a line p and a point M not on p. Construct the described line. 32. line n through M so that $n \perp p$ See left. Write an equation in point-slope form of the line that contains the given point and has the given slope. 34. $P(2, -6)$; slope $\frac{1}{2}$ y + 6 = $\frac{1}{2}(x - 2)$ 35. $Q(0, 5)$; slope 1 y - 5 = 1(x - 0) 36. $R(-3, 6)$; slope -2 y - 6 = -2(x + 3) Write an equation in point-slope form of the line that contains the given points. 38. $A(1,4), B(0,2)$ y - 4 = 2(x - 1) 39. $E(3, -5), F(6, 0)$ 40. $X(-4, -3), Y(2, -8)$ y + 3 = $-\frac{5}{6}(x + 4)$ riangles
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	Substituting, 90 - x + x + x = 180. Solving, $x = 30$. d. 120; it is suppl. to $a 60^{\circ} \angle$. e. 6 m; $DC = 2(AD)$	correctly [2] 3 parts answered

Multiple Choice

Use the diagram at the right for Exercises 26–28.

		J			
	26. If <i>m∠KJM</i> A. 25	= 25, what i B. 30	s m∠LKJ? C C. 65	D. 85	
	27. If <i>m∠KJM</i> of <i>∆LKJ</i> ?		= 7.4, what is	the perimet	er
	F. 44.4	G. 22.2	H. 14.8	J. 7.4	
	28. If <i>m∠LJK</i> =	= 47, what is	m∠LJM? A		
	A. 23.5	B. 25	C. 43	D. 47	
Short Response	to prove	ngular. vo triangles $\overline{HB} \cong \overline{HE}$? proof to sho	must be cong		A
tended Response	b. Copy th that has c. What is you fou d. What is	$\stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\in}}}}{=} \triangle BDC? a-$ e figure. Ma s measure x. the value of nd your answ $m \angle AGB?$	e. See margi rk each angle x? Explain ho ver.	3 n	A n x°
	a What is	CD2 Evolain	VOUR SPOMOR		

e. What is CD? Explain your answer.

M 3

Κ

	Review

Extended