4-7

Using Corresponding Parts of Congruent Triangles

What You'll Learn

- To identify congruent overlapping triangles
- To prove two triangles congruent by first proving two other triangles congruent
. . . And Why
To identify overlapping triangles in scaffolding, as in Example 1

Check Skills You'll Need

1. How many triangles will the next two figures in this pattern have? 15; 31
 Lessons 1-1 and 4-3

2. Can you conclude that the triangles are congruent? Explain.
a. $\triangle A Z K$ and $\triangle D R S$
b. $\triangle S D R$ and $\triangle J T N$

1

Using Overlapping Triangles in Proofs

Vocabulary Tip

Overlapping triangles share part or all of one or more sides.

Some triangle relationships are difficult to see because the triangles overlap. Overlapping triangles may have a common side or angle. You can simplify your work with overlapping triangles by separating and redrawing the triangles.

Identifying Common Parts
Separate and redraw $\triangle D F G$ and $\triangle E H G$. Identify the common angle.

Quick Check

Engineering The diagram at the left shows triangles from the scaffolding that workers used when they repaired and cleaned the Statue of Liberty.
a. Name the common side in $\triangle A D C$ and $\triangle B C D . \overline{\mathbf{C D}}$
b. Name another pair of triangles that share a common side. Name the common side. Answers may vary.
 Sample: $\triangle A B D$ and $\triangle C B D ; \overline{B D}$

In overlapping triangles, a common side or angle is congruent to itself by the Reflexive Property of Congruence.

Lesson 4-7 Using Corresponding Parts of Congruent Triangles

Differentiated Instruction Solutions for All Learners

Special Needs L1

For Example 3, help students recognize that they cannot prove $\triangle G E D \cong \triangle J E B$ unless they can first prove $\triangle A E D \cong \triangle C E B$. By proving $\triangle A E D \cong \triangle C E B$, students identify other pairs of congruent parts.

Below Level L2

Use separable transparencies on an overhead projector and different-colored pens to help students distinguish overlapping triangles and congruent corresponding parts.

Guided Instruction

1 Example
 Teaching Tip

Marking the congruent parts of triangles is difficult when triangles overlap. By redrawing separate triangles, the congruent parts can be marked more easily.

ехами:LE Teaching Tip

Both plan and proof are given to help students focus on the gradual development of a proof.

Math Tip

Redrawing overlapping triangles can clarify relationships or make them even more confusing, depending on which overlapping triangles are redrawn. Point out that students may have to try several ideas before they find a good proof plan.Name the parts of their sides that $\triangle D F G$ and $\triangle E H G$ share in Example 1. $\overline{H G}$ and $\overline{F G}$

©Write a Plan for Proof for

 Example 2 that does not use overlapping triangles. Label the intersection of $\overline{Z X}$ and $\overline{W Y}$ point $M . \overline{Z W} \cong \overline{Y X}$ by СРСТС if $\triangle Z W M \cong \triangle Y X M$. Show this congruence by ASA.```
2.1. }\triangleACD\cong\triangleBD (Given)
2. \(\angle A D C \cong \angle B C D\) (СРСТС)
```

3. $\overline{C E} \cong \overline{D E}$ (If base $\angle \mathrm{s}$ are $\cong$, the opp. sides are $\cong$.)


Given: $\angle Z X W \cong \angle Y W X, \angle Z W X \cong \angle Y X W$
Write a plan and then a proof to show that the two "outside" segments are congruent.
Prove: $\overline{Z W} \cong \overline{Y X}$


Plan: First, separate the overlapping triangles. $\overline{Z W} \cong \overline{Y X}$ by CPCTC if $\triangle Z X W \cong \triangle Y W X$. Show this congruence by ASA.


Proof:


2 Write a plan and then a proof.
Given: $\triangle A C D \cong \triangle B D C$
Prove: $\overline{C E} \cong \overline{D E}$ See left.


## Using Two Pairs of Congruent Triangles

Sometimes you can prove one pair of triangles congruent and then use their congruent corresponding parts to prove another pair congruent.

## Proof 3 =xaviple Using Two Pairs of Triangles



Given: In the quilt, $E$ is the midpoint of $\overline{A C}$ and $\overline{D B}$.
Prove: $\triangle G E D \cong \triangle J E B$
Write a plan and then a proof.
Plan: $\triangle G E D \cong \triangle J E B$ by ASA if $\angle D \cong \angle B$. These angles are congruent by CPCTC if $\triangle A E D \cong \triangle C E B$. These triangles are congruent by SAS.
Proof: $E$ is the midpoint of $\overline{A C}$ and $\overline{D B}$, so $\overline{A E} \cong \overline{C E}$ and $\overline{D E} \cong \overline{B E}$.
$\angle A E D \cong \angle C E B$ because vertical angles are congruent. Therefore,
$\triangle A E D \cong \triangle C E B$ by SAS. $\angle D \cong \angle B$ by CPCTC, and $\angle G E D \cong \angle J E B$
because they are vertical angles. Therefore, $\triangle G E D \cong \triangle J E B$ by ASA.
Quick Check
Write a plan and then a proof.
Given: $\overline{P S} \cong \overline{R S}, \angle P S Q \cong \angle R S Q$
Prove: $\triangle Q P T \cong \triangle Q R T$
See back of book.


## Differentiated Instruction solutions for All Learners

## Advanced Learners L4

Have students copy the diagram in Example 2, drawing $\overline{Z Y}$. Then have them prove that $\overline{Z Y}$ and $\overline{W X}$ are parallel.

## English Language Learners ELL

Some students may not understand the term overlapping. Use an overhead projector and transparencies with overlays to illustrate its meaning.

When triangles overlap, you can keep track of information by drawing other diagrams that separate the overlapping triangles.


Real-World Connection
The Japanese paper-folding art of origami involves many overlapping triangles.
Given: $\overline{C A} \cong \overline{C E}, \overline{B A} \cong \overline{D E}$
Write a plan and then a proof to show that two small segments inside the triangle are congruent.
Prove: $\overline{B X} \cong \overline{D X}$
Plan: $\overline{B X} \cong \overline{D X}$ by CPCTC if $\triangle B X A \cong \triangle D X E$.

This congruence holds by AAS if $\angle A B X \cong \angle E D X$. These are congruent by CPCTC in $\triangle B A E$ and $\triangle D E A$, which are congruent by SAS.


## Proof:


Statements

1. $\overline{B A} \cong \overline{D E}$
2. $\overline{C A} \cong \overline{C E}$
3. $\angle C A E \cong \angle C E A$
4. Isosceles Triangle Theorem
5. $\overline{A E} \cong \overline{A E}$
6. $\triangle B A E \cong \triangle D E A$
7. Reflexive Property of Congruence
8. $\angle A B E \cong \angle E D A$
9. SAS
10. $\angle B X A \cong \angle D X E$
11. СРСТС
12. $\triangle B X A \cong \triangle D X E$
13. AAS
14. $\overline{B X} \cong \overline{D X}$
15. СРСТС
Plan a proof. Separate the overlapping triangles in your plan. Then follow your plan and write a proof. See margin.
Given: $\angle C A D \cong \angle E A D, \angle C \cong \angle E$
Prove: $\overline{B D} \cong \overline{F D}$


## EXERCISES

For more exercises, see Extra Skill, Word Problem, and Proof Practice.

## Practice and Problem Solving

Practice by Example
Example 1
(page 241)
for
Help

## side or angle


M

Guided Instruction

## ) $x$ EanPle Error Prevention

Students may think they can prove $\triangle G E D \cong \triangle J E B$ directly from the information given. Discuss how proving $\triangle A E D \cong$ $\triangle C E B$ acts as a bridge from the Given to proving $\triangle G E D \cong \triangle J E B$. Point out that a proof often involves finding such a bridge between ideas.

## Additional Examples

Write a paragraph proof.


Given: $\overline{X W} \cong \overline{Y Z}, \angle X W Z$ and $\angle Y Z W$ are right angles.
Prove: $\triangle X P W \cong \triangle Y P Z \overline{X W} \cong \overline{Y Z}$ (Given), $\angle X W Z \cong \angle Y Z W$ (right angles) and $\overline{W Z} \cong \overline{Z W}$ (Reflexive Prop.), so $\triangle X W Z \cong \triangle Y Z W$ by SAS. $\angle W X Z \cong \angle Z Y W$ by СРСТС, $\angle X P W \cong \angle Y P Z$ (vert. angles are $\cong$ ), and $\overline{X W} \cong \overline{Y Z}$ (Given), so $\triangle X P W \cong \triangle Y P Z$ by AAS.

(4)Use the Given from Example 4 to write a two-column proof to show that $\angle C B E \cong \angle C D A$.

1. $\angle B C E \cong \angle D C A$ (Reflexive)
2. $\overline{C A} \cong \overline{C E}, \overline{B A} \cong \overline{D E}$ (Given)
3. $C A-B A=C E-D E$
(Subtraction Prop. of Equality)
4. $C A-B A=C B$,
$C E-D E=C D$ (Seg. Add. Post.)
5. $C B=C D$ (Substitution)
6. $\overline{C B} \cong \overline{C D}$ (Def. of $\cong)$
7. $\triangle C B E \cong \triangle C D A$ (SAS)
8. $\angle C B E \cong \angle C D A$ (СРСTC)

## Resources

- Daily Notetaking Guide 4-7 L3
- Daily Notetaking Guide 4-7Adapted Instruction


## Closure

Explain how CPCTC can be used in the middle of a proof. Sometimes you can prove a pair of triangles congruent and then use CPCTC to prove another pair congruent.

## 3. Practice

## Assignment Guide

1 A B 1-9, 12-15
2 A B $10,11,16-22$
C Challenge 23-25
$\begin{array}{ll}\text { Test Prep } & 26-30\end{array}$
Mixed Review
31-40

## Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 6, 10, 14, 19, 21.

## Error Prevention!

Exercise 7 In step b, identifying $\angle P$ using two different names may confuse students and prevent them from realizing that the Reflexive Property of Congruence applies. Ask: Why is $\angle \mathrm{P}$ named in two ways? to show the order of the corresponding vertices in $\triangle T P Q$ and $\triangle R P V$

Exercise 16 Students need to recognize that $\overline{S U} \cong \overline{V T}$ because the same quantity $T U$, is being added to the congruent segments $\overline{V U}$ and $\overline{S T}$.


## Separate and redraw the indicated triangles. Identify any common angles or sides.

4. $\triangle P Q S$ and $\triangle Q P R$
5. $\triangle A C B$ and $\triangle P R B$
6. $\triangle J K L$ and $\triangle M L K$


Example 2
(page 242)
7. Developing Proof Complete the flow proof.

Given: $\angle T \cong \angle R, \overline{P Q} \cong \overline{P V}$
Prove: $\angle P Q T \cong \angle P V R$


Reflexive Prop. of $\cong \mathbf{b}$. ?


Proof Write a plan and then a proof.
8. Given: $\overline{R S} \cong \overline{U T}, \overline{R T} \cong \overline{U S}$

Prove: $\triangle R S T \cong \triangle U T S$
8-9. See back of book.


Examples 3, 4
(pages 242 and 243)

13.


Apply Your Skills


Homework Help
Visit: PHSchool.com Web Code: aue-0407
9. Given: $\overline{Q D} \cong \overline{U A}, \angle Q D A \cong \angle U A D$

Prove: $\triangle Q D A \cong \triangle U A D$

11. Given: $\overline{A D} \cong \overline{E D}$,
$D$ is the midpoint of $\overline{B F}$.
Prove: $\triangle A D C \cong \triangle E D G$


12-15. Answers may vary.
Samples are given.
12. Draw a vertical segment on your paper. On the right side of the segment draw two triangles that share the given segment as a common side. See left.
13. Draw two triangles that have a common angle. See left.
14. Draw two regular pentagons, each with its five diagonals. a-b. See margin. a. In one, shade two triangles that share a common angle.
b. In the other, shade two triangles that share a common side.
15. Draw two regular hexagons and their diagonals. For these diagrams, do parts (a) and (b) of the preceding exercise. See margin.
14. a.

b.

15. a.

b.

16. Multiple Choice In the diagram, $\angle V \cong \angle S$, $\overline{V U} \cong \overline{S T}$, and $\overline{P S} \cong \overline{Q V}$. Which two triangles can you prove congruent by SAS? B
(A) $\triangle W V U \cong \triangle R S T$
(B) $\triangle P S U \cong \triangle Q V T$
(C) $\triangle P W X \cong \triangle Q R X$
(D) none of these
(Given)
2. $\angle C \cong \angle C$ (Reflexive Prop. of $\cong$ )
3. $\triangle A C D \cong \triangle E C B$ (SAS)
4. $\angle A \cong \angle E$ (CPCTC)


Real-World Connection
Careers A clothing designer must carefully measure angles and segments to create a sewing pattern.
17. Given: $\overline{A C} \cong \overline{E C}, \overline{C B} \cong \overline{C D}$

Prove: $\angle A \cong \angle E$ See left.


Clothes Design The figure at the right is part of a clothing design pattern. In the figure, $\overline{A B}\|\overline{D E}\| \overline{F G}, \overline{A B} \perp \overline{B C}$, and $\overline{G C} \perp \overline{A C}$. $\triangle D E C$ is isosceles with base $\overline{D C}$, and $m \angle A=56$.
19. Find the measures of all the numbered angles

GPS in the figure. See margin.
20. $\overline{A B} \cong \overline{F C}$. Name two congruent triangles and tell how you can prove them congruent. $\triangle A B C \cong \triangle F C G ; A S A$
18. Given: $\overline{Q T} \perp \overline{P R}, \overline{Q T}$ bisects $\overline{P R}$, $\overline{Q T}$ bisects $\angle V Q S$.

Prove: $\overline{V Q} \cong \overline{S Q}$
See margin.



Proof 21. Given: $\overline{T E} \cong \overline{R I}, \overline{T I} \cong \overline{R E}$,
$\angle T D I$ and $\angle R O E$ are right $\triangle$.
Prove: $\overline{T D} \cong \overline{R O} \begin{aligned} & \text { 21-22. See back } \\ & \text { of book. }\end{aligned}$

22. Given: $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}$,

Prove: $\overline{A E} \cong \overline{D E}$


C Challenge
23b. Use $\overline{D B} \cong \overline{D B}$ (Refl. Prop.) and alt. int. $\triangle \subset$ to show $\triangle A D B \cong \triangle C B D$ (ASA), $\overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$ (СРСТС). $\triangle A E B \cong \triangle C E D$ (ASA and $\triangle A E D \cong \triangle C E B$ (ASA). Then $\overline{A E} \cong \overline{E C}$ and $\overline{D E} \cong \overline{E B}$ (СРСТС).
23. Reasoning Draw a quadrilateral $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \| \overline{B C}$, and its diagonals $\overline{A C}$ and $\overline{D B}$ intersecting at $E$. Label your diagram to indicate the parallel sides. $\overline{A D} \cong \overline{B C} ; \overline{A B} \cong \overline{D C} ; \overline{A E} \cong \overline{E C} ; \overline{D E} \cong \overline{E B}$
a. List all the pairs of congruent segments that you can find in your diagram.
b. Writing Explain how you know that the segments you listed are congruent.

Name a pair of overlapping congruent triangles in each diagram.
State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL. Plan and write a proof.

$$
\begin{aligned}
& \text { 24. Given: } \\
& \overline{A C} \cong \overline{B C}, \\
& \angle A \cong \angle B
\end{aligned}
$$

25. Given:
$\overline{W Y} \perp \overline{Y X}$, $\overline{Z X} \perp \overline{Y X}$,
$\overline{W X} \cong \overline{Z Y}$

Online lesson quiz, PHSchool.com, Web Code: aua-0407 Lesson 4-7 Using Corresponding Parts of Congruent Triangles
18. $\overline{P Q} \cong \overline{R Q}$ and $\angle P Q T \cong$ $\angle R Q T$ by Def. of $\perp$ bisector. $\overline{Q T} \cong \overline{Q T}$ so $\triangle P Q T \cong \triangle R Q T$ by SAS. $\angle P \cong \angle R$ by СРСТС. $\overline{Q T}$ bisects $\angle V Q S$ so $\angle V Q T \cong \angle S Q T$ and $\angle P Q T$ and $\angle R Q T$ are
both rt. $\angle$. So $\angle V Q P \cong$ $\angle S Q R$ since they are compl. of $\cong \angle . \triangle P Q V$ $\cong \triangle R Q S$ by ASA so $\overline{Q V} \cong \overline{Q S}$ by CPCTC.
19. $m \angle 1=56 ; m \angle 2=56$; $m \angle 3=34 ; m \angle 4=90 ;$ $m \angle 5=22 ; m \angle 6=34 ;$
$m \angle 7=34 ; m \angle 8=68$; $m \angle 9=112$
24. $\triangle A C E \cong \triangle B C D$ by ASA; $\overline{A C} \cong \overline{B C}, \angle A \cong \angle B$ (Given) $\angle C \cong \angle C$ (Reflective Prop. of $\cong$ ) $\triangle A C E \cong \triangle B C D$ (ASA)

## 4. Assess \& Reteach

## Rowerpoint

1. Identify any common sides and angles in $\triangle A X Y$ and $\triangle B Y X$.

$\overline{X Y}$
For Exercises 2 and 3, name a pair of congruent overlapping triangles. State the theorem or postulate that proves them congruent.
2. $K$

$\Delta K S R \cong \triangle M R S ;$ SAS
3. 


$\Delta G H I \cong \Delta I J G ; A S A$
4. Plan a proof.


Given: $\overline{A C} \cong \overline{B D}, \overline{A D} \cong \overline{B C}$
Prove: $\overline{X D} \cong \overline{X C}$
$\overline{X D} \cong \overline{X C}$ by СРСТС if
$\triangle D X A \cong \triangle C X B$. This congruence holds by AAS if $\triangle B A D \cong \triangle A B C$. Show $\triangle B A D \cong \triangle A B C$ by SSS.
25. $\triangle W Y X \cong \triangle Z X Y$ by HL; $\overline{W Y} \perp \overline{Y X}, \overline{Z X} \perp \overline{Y X}$, $\overline{W X} \cong \overline{Z Y}$ (Given) $\angle W Y X$ and $\angle Z X Y$ are rt. $\angle \mathrm{s}$ (Def. of $\perp$ ) $\overline{X Y} \perp \overline{X Y}$ (Reflective Prop. of $\cong$ ) $\triangle W Y X \cong \triangle Z X Y(H L)$

## Alternative Assessment

Using the diagram below, have partners work together to find all the pairs of congruent triangles.
For each pair, they should write a paragraph proof that the triangles are congruent.


## Test Prep

## Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 253
- Test-Taking Strategies, p. 248
- Test-Taking Strategies with Transparencies

26. C
27. $F$
28. A
29. [2] a. $\triangle H B C \cong \triangle H E D$
b. $\overline{H B} \cong \overline{H E}$ by СРСТС if $\triangle H B C$ $\cong \triangle H E D$ by ASA. Since $\triangle B D C \cong$ $\triangle C E D$ by SAS, then $\angle D B C \cong$ $\angle C E D$ by CPCTC and $\angle C H B \cong$ $\angle D H E$ because vertical $\stackrel{s}{ }$ are $\cong$. [1] one part correct
30. [4] a. HL

c. $x=30$. In $\triangle A D C$
$m \angle A+m \angle A D C$ $+m \angle A C D=180$.

## Test Prep

## Multiple Choice

Short Response

Extended Response
30. a. In the figure at the right, why is $\triangle A C D \cong \triangle B D C$ ? a-e. See margin.
b. Copy the figure. Mark each angle that has measure $x$.
c. What is the value of $x$ ? Explain how you found your answer.

d. What is $m \angle A G B$ ?


## C Mixed Review

Lesson 4-6
for
Help
32.


Lesson 3-8

Lesson 3-6

38-40. Eqs. may vary, depending on pt. chosen.
31. Complete the plan for a proof.

Given: $\angle A$ and $\angle D$ are right angles, $\overline{A B} \cong \overline{D B}$.
Prove: $\triangle A B C \cong \triangle D B C$
Plan: $\triangle A B C$ and $\triangle D B C$ are a. a.? triangles with
 legs that are given to be b. .?. The hypotenuse is $\cong$ congruent to itself by the c. ? Property of Congruence. Reflexive $\triangle A B C \cong \triangle D B C$ by the d.? Theorem. HL

Constructions Draw a line $\boldsymbol{p}$ and a point $\boldsymbol{M}$ not on $p$. Construct the described line.
32. line $n$ through $M$ so that $n \perp p$ See left.
33. line $r$ through $M$ so that $r \| p$ See margin.

Write an equation in point-slope form of the line that contains the given point and has the given slope.
34. $P(2,-6)$; slope $\frac{1}{2} \boldsymbol{y}+6=\frac{1}{2}(\boldsymbol{x}-2)$
35. $Q(0,5)$; slope $1 \boldsymbol{y}-5=1(x-0)$
36. $R(-3,6)$; slope -2
37. $S(0,0)$; slope $-\frac{1}{3} y-0=-\frac{1}{3}(x-0)$
$y-6=-2(x+3)$

Write an equation in point-slope form of the line that contains the given points.
38. $A(1,4), B(0,2)$
39. $E(3,-5), F(6,0)$
40. $X(-4,-3), Y(2,-8)$
$y-4=2(x-1)$
$y+5=\frac{5}{3}(x-3)$
$y+3=-\frac{5}{6}(x+4)$

Chapter 4 Congruent Triangles

Substituting, $90+$ $x+x+x=180$. Solving, $x=30$.
d. 120 ; it is suppl. to a $60^{\circ} \angle$.
e. $6 \mathrm{~m} ; D C=2(A D)$
[3] 4 parts answered correctly
[2] 3 parts answered correctly
33.

[1] 2 parts answered correctly

