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Abstract 
Enterprise Guide (EG) 4.1 provides a painless way to learn how to implement SQL joins.  Basic 

SQL joins (inner and outer) can be created using the Filter/Query tool.  Enterprise Guide allows 

the user to see the coding used for these joins, thereby giving the user the ability to learn SQL 

coding in a point-and-click environment.  In addition to joins, SQL can be used for set 

operations.  However, set operations require the user to code in SQL.  By copying the SQL code 

from EG and slightly modifying it using keyword syntax, the user has a tremendous set of tools 

for combining and manipulating data sets. 

 

Introduction 

In most organizations, data for any given project is likely to be scattered across several tables (or 

datasets).  Data can reside on different servers, and be stored using different software.  Proc SQL 

provides a tool for grabbing the data you need from these various tables.  Typically, to get the 

data you need from the tables that already exist, one links the different data tables through key 

fields (or columns).  By matching values in key fields in one table with key fields in another 

tables, the user can create a new table (or view) with only the pertinent information.  

 

Using joins via Proc SQL, the user can subset and combine tables to create a new table that is 

unique and provides the information needed to answer their questions.  In addition, SQL allows 

the user to produce summaries of the data quite easily.  This is useful when doing data 

exploration.  SAS EG allows the user to create these links in a point and click environment. 

 

At other times, joins, because they are based on combining data across key fields, are not what 

are desired.  Instead, what you may want to do is to either combine all data from two data 

sources, update data based on one source, or pull only unique data from a table.  These 

operations are set operations.  For those of you familiar with Venn Diagrams and set operations 

in mathematics, these operations are known as union, intersection, and complement.   

 

The intersection of A and B is defined as A∩B = { x | x in A and x in B }. 

The union of A and B is defined as AUB = { x | x in A or x in B }. 

The complement of A and B is defined as A\B = { x | x in A and x not in B }. 
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Figure 1: Joins and Sets 

 

Set operations can also be done using SQL.  EG 4.1 is much better working with joins than with 

sets, but if you start to use EG and understand what is going on, you can use that code and extend 

it by adding your own coding.  Because having both joins and sets are useful for many data 

manipulations, and because both can be coded in Proc SQL, it makes sense to use the point-and-

click environment of EG to learn how to do joins, then extend your abilities using the code 

provided by EG, along with some SAS keywords to cover set operations. 

 

For those of you used to working in the data step processes, joins are equivalent to a “merge” or 

“match merge”, whereas the sets are equivalent to the “set” statements, or are sometimes 

associated with dataset updating. 

 

We’ll start with Joins using some simple examples. 

 

Data 

Here are two datasets that an organization may have.  In the first table, we see people with 

unique identifiers (the “key” field) and their bank balance.  In the second table, we see people, 

again with unique identifiers, and their savings balance.  Notice that persons 1 and 3 have both a 

bank and savings account, 2 and 4 have bank accounts only, and 5 and 7 have savings accounts 

only. 

 

 
Figure 2: Tables showing bank account and savings account information 
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Cartesian Product 

All inner joins begin with a Cartesian product of your tables.  In a Cartesian product all rows of 

your first table are combined with all rows of the second table.  Thus, for two tables with 4 rows 

each, the resulting table is a table with 16 rows.  Let’s use EG and see how we get the basic 

Cartesian product for these data.  (I’m going to assume you’ve already used EG, and that this 

will just extend your abilities.  If not, there are several good tutorials available for EG online.  I 

suggest you start with those, along with “The Little SAS Book for Enterprise Guide” by 

Slaughter and Delwiche to help you get started.) 

 

To begin, assume we have two tables, one named “Bank” and one named “Savings”.  We select 

one table, let’s say “Bank”, then use the Filter/Query tool (Data -> Filter and Query).  Click on 

“Add Tables”, and add “Savings” from this project.  Select all the variables (shift-left-click) and 

drag them into the Select Data field.  Notice the variable “key” from “Savings” has been 

renamed “key1”.  Now click on “Join”.  Notice by default, SAS assumes that you want an inner 

join based on the field “key”. 

 

 
Figure 3. Inner Join default 

 

For the moment, we’ll ignore what an “Inner Join” means, and create our Cartesian product.  To 

do so right-click the join symbol and hit “Delete Join”.  You should now have the two tables, 

with no arrow linking them.  Close the Join pop-up and respond “Yes” to the pop-up notifying 

you of performance issues. 

 

We’ll not Filter the data yet, so select the “Sort Data” tab.  Say we want to sort by both “key” 

fields.  Drag “key” from the Bank table over, then try to drag “key” from Savings.  Notice, this 

operation cannot be done because whereas in the Select Data tab, “key” was renamed to “key1”, 

such is not the case here.  (Note:  With the release of version EG 4.2, this operation is allowed).  

So, let’s sort solely by “key”, and later I’ll show you how to also sort by the second key field as 

well. 
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The result of our first join is the Cartesian product shown below.  Notice we have 16 rows, and 

that each “key” field from the “Bank” table is combined with each “key1” field from the 

“Savings” table. 

 

 
Figure 4. Cartesian Product of "Bank" and "Savings" 

 

Inner Joins  

Inner joins return all rows from one table that have matching rows in a second table (Note: More 

than two tables can be joined.  We are limiting our examples to two tables to keep things simple).  

For our data, only the “key” field makes sense to use for an inner join.  So, do as before, 

selecting “Bank”, adding “Savings” (Figure 2), then select Join.  Notice the default is an inner 

join on our “key” field, which is what we want (Figure 3).  (If we wanted to change which fields 

we were interested in joining, it is as easy as clicking the variable in the first table and dragging 

it to the variable in the second table.) 

 

The resulting table (Figure 5) shows what is expected; two rows, those with “key” fields of 

“1”and “3”. 

 
Figure 5.  Inner join table 

 

An extension of this simple example is to add a summary column, say the total balance of the 

bank and savings.  Open the query (by double-clicking on it in the Project Designer) and select 

“Computed Columns”.  Select “New”, then “Build Expression”.  To compute the total, insert the 

cursor in the “Expression Text” box and type in “SUM(“, double left-click “bank_balance”, add 

a comma, double left-click “savings_balance”, and add a right parenthesis (Figure 6).  You can 

rename the default name “Calculated1” by selecting the name, then selecting “Rename”. 
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Figure 6. Creating the sum as a computed column 

 

 
Figure 7. Computed column result 

 

Outer Joins  

Previously, we showed where a join links rows in one table with rows in another. Occasionally, 

you may want to include rows from one or both tables that have no related rows. This type of 

operation is an outer join. 

 

Left Join 

A Left Outer Join takes all rows from the first table (on the left) and includes matching rows 

from the second table (on the right).  To do a left outer join, go through the steps as before, but 

when you get to the stage where the default join is the inner join, right-click on the join and 

select “Modify Join”.  This then allows you to change the inner join to a Left Join, Right Join, or 

Full Outer Join.  Notice the small diagram in the bottom middle reinforces how this join will 

work.  The result will be all those people with bank accounts, and will show, of those, what is 

their savings balance.  We added a computed column as well to show our customers total 

balance. 
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Figure 8.  Left Join and resulting data set 

 

 

Right Join 

A Right Outer Join works very similarly.  It takes all rows from the second table (on the right) 

and includes matching rows from the first table (on the left).  It is obvious that order is important.  

If the user reverses the order the tables are selected, they will also need to reverse the type of 

outer join.  

 

Full Outer Join 

A Full Outer Join takes all rows from the first table and all rows from the second table.  Initially, 

this may sound like a Cartesian product, but it is not.  Instead of matching each row in the first 

table with each row in the second table, matching rows are linked, but unmatching rows are also 

included. 
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Figure 9.  Full Outer Join and resulting dataset 

 

While all the pertinent data are here, this default arrangement is odd because your new dataset 

has two “key” fields.  What you likely want is a single “key” field, with missing data for 

“savings_balance” for those with just bank accounts, and missing data for “bank_balance” for 

those customers with just savings accounts.  You might be tempted to think this could be 

achieved in EG by only including “key” from “Bank”.  Unfortunately, that does not work, as the 

“key” field for customers 5 and 7 are coded as missing values.  We’ll resolve this issue later 

when we learn how to use the COALESCE keyword.  The COALESCE keyword must be typed 

in version 4.1; in version 4.2, COALESCE has been added to the list of available functions. 

Extending Inner and Outer Joins - I  

Let’s use what we’ve learned to answer a simple question, “Which of our customers gives us the 

most money; those with bank accounts only, those with savings accounts only, or those with 

both?”  To do so we will make use of three queries to the original data sets, use the computed 

columns options, and filter the data. 

 

Both Bank Accounts and Savings Accounts 

Customers with both bank accounts and savings accounts refers to the dataset created using the 

inner join.  To calculate the average amount these users have in our location, we need to 

summarize the data.  One way to do this is the following: 
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Select the Inner Join dataset.  Create two new computed columns.  Name the first “Avg”, and 

create it as AVG(Total Balance) using the “Build an Expression” as before. 

Create the second computed column using the “Recode Columns” option.  What we’re trying to 

do is label this average with the string “Both”.  Select any one of the existing variables, for 

example “key”.  Name the new variable by typing “Type” in the “New Column Name” field.  

Left-click on the “Add” button, then on the “Replace Values” tab, click on get values.  Select 

both “1” and “3”.  In the “With This Value” field, enter the string “Both”.  Make the new column 

a character variable using the radio buttons at the bottom of the pop-up, and left-click “OK”. 

 

 
Figure 10.  Recoding the "key" field to a field containing the string "Both" 

 

Select only the new variables “Avg” and “Type” for output, and click the “Select distinct rows 

only” checkbox at the bottom of the window.  Our dataset “Inner Join” has two rows, one for 

customer “1” and a second for customer “3”.  However, we want the average total, which is a 

summary over both customers.  If we run the query without selecting distinct rows only, then we 

would get two rows of output, both with the average amount in the accounts.  By using the 

“Select distinct rows only” checkbox, we only output a single row. 
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Figure 11.  Creating a new table to reflect deposits from customers with both bank and savings accounts. 

 

 

Only Bank Accounts 

Customers with only bank accounts can be extracted from the dataset created using the left join, 

removing those who also have savings accounts.  As with the previous dataset, you will need to 

calculate the average account balance and create the “Type” variable – this time the value of 

“Type” should be “Bank”, not “Both” to reflect these are customers with only bank accounts.   

To remove those with saving accounts, we will use the Filter tab.  Select the “savings_balance” 

variable, and use the “Is Missing” option to remove these from our table. 

 

 
Figure 12. Filtering to remove unwanted rows. 
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Figure 13.  Table of deposits for customers with only bank accounts. 

 

Only Savings Accounts 

Customers with only savings accounts can be extracted from the dataset created using the right 

join, removing those who also have bank accounts.  As with the previous dataset, you will need 

to calculate the average account balance and create the “Type” variable – this time the value of 

“Type” should be “Savings”.  To remove those with bank accounts, we again will use the Filter 

tab.  Select the “bank_balance” variable, and use the “Is Missing” option. 

 

 
Figure 14.  Table of deposits for customers with only savings accounts. 

 

Looking at the three tables, we see people with only savings accounts have an average of 45 

units, people with both bank and savings accounts have an average of 42.5 units, and people with 

only bank accounts have an average of 22.5 units.  This suggests that people with savings 

accounts deposit the most money into our bank. 

Extending Inner and Outer Joins - II  

The previous operations used EG’s point-and-click interface.  However, earlier we encountered 

two problems where the point-and-click approach could not get us the output we wanted.  

Fortunately, in EG, the underlying SAS code is always available and with it, and some 

keywords, we will be able to accomplish much more. 

 

Here is the basic SQL structure: 

 

Proc SQL; 

    Create Table table_name as 

 Select variable(s) 

 From table(s) 

 Where condition(s) 

 Group by variable(s) 

 Having condition(s) 

 Order by variable(s) 

     ; 

Quit; 
 

Some quick notes about SQL code.  First, order of the keywords is important, so Select comes 

before From, etc. (Note: A mnemonic to remember the keyword ordering is helpful here.  One 

we heard was Some French Women Grow Hairy Oranges.  If that works for you, great.  If not, 

create your own.).  Second, not all keywords need to be used for each query (you’ll see how this 

works soon).  Third, unlike other SAS code, variables are segregated using commas.  Fourth, the 

only semi-colons used are at the end of the Proc SQL line, and after the full set of keywords. 
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The underlying SQL code is captured by right-clicking on the Query, and selecting “Open Last 

Submitted Code”.  Take the time now to examine the SQL code behind each Query to see the 

differences between the Cartesian product, the Inner Join and the Outer Joins. 

 

The first example where we got stuck using only point-and-click EG was on the Cartesian 

product.  Recall how in version 4.1 we could not sort on both “key” fields from both datasets 

because in the “Sort By” tab, EG would not distinguish between “key” in the “Bank” table and 

“key” in the “Savings” table.  If we pull up the code that was used, we see: 

 
PROC SQL; 

 CREATE TABLE SCSUG.Cartesian AS  

 SELECT BANK.key, 

  BANK.bank_balance, 

  SAVINGS.key AS key1, 

  SAVINGS.savings_balance  

 FROM SCSUG.BANK AS BANK, 

 SCSUG.SAVINGS AS SAVINGS 

 ORDER BY BANK.key; 

QUIT; 

 

In the SELECT portion of the SQL code, notice that SAVINGS.key is aliased (using the AS 

keyword) as key1 (we saw this in the Select Data tab).  Unfortunately, under EG 4.1 this alias 

did not appear in the “Sort Data” tab.  By using the code, we can get EG to do what we want.  A 

simple change in ORDER BY  the line from  

 
ORDER BY BANK.key 

to 
ORDER BY BANK.key, key1; 

 

allows us to get the output we desire. 

 

Similarly, in our Full Outer Join example, EG forced us to have two “key” fields, but we only 

wanted a single “key” field.  The SQL code for the Full Outer Join is 

 
PROC SQL; 

 CREATE TABLE SCSUG.FULL_JOIN AS  

 SELECT BANK.key, 

  BANK.bank_balance, 

  SAVINGS.key AS key1, 

  SAVINGS.savings_balance  

 FROM SCSUG.BANK AS BANK  

   FULL JOIN SCSUG.SAVINGS AS SAVINGS ON (BANK.key = SAVINGS.key); 

QUIT; 

 

To have a single “key” field one must use the keyword: COALESCE 

 
PROC SQL; 

 CREATE TABLE SCSUG.FULL_JOIN_COAL AS  

 SELECT COALESCE (BANK.key,SAVINGS.key) as Key label="Key", 

  BANK.bank_balance, 

  SAVINGS.savings_balance  

 FROM SCSUG.BANK AS BANK  

 FULL JOIN  

      SCSUG.SAVINGS AS SAVINGS ON (BANK.key = SAVINGS.key); 

QUIT; 
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The COALESCE keyword tells SQL to create a single variable “Key” from Bank.key and 

Savings.key, replacing the missing values from each with a non-missing value.  Although 

version 4.2 has added the COALESCE function, based on my testing, you are not allowed to 

name the new variable the same as the old variable, so coding is still the easiest way to get 

exactly what we want here.   

 

 
Figure 15.  Full outer join with a single "Key" field. 

 

Notice the difference between the newly created dataset (Figure 15) and Figure 9 on page 7. 

Set Operations 

As the previous two examples showed, small additions to existing EG code is a good way to 

extend SQL to do what you want it to do.  In the latter example, it was important to know a 

specific keyword to accomplish the task.  The same is true for Set Operations.  The four 

keywords you need to know are INTERSECT, UNION, EXCEPT, and OUTER UNION. 

 

  
Figure 16.  Datasets used to illustrate Set Operations. 

        

 

To illustrate how set operations work, I will use these two new datasets (Figure 16).  Assume 

that in 2009, we had four customers, and in 2010, we again had four customers.  Two customers 

were retained across both years (“1” and “3”), two were lost in 2010 (“2” and “4”), and two were 

gained in 2010 (“5” and “7”).  This is also illustrated in the Venn Diagram.   

 

To find those customers retained in both years is the same as asking for the intersection of the 

two customer tables.  This is done by: 

 
PROC SQL; 

CREATE TABLE scsug.kept_in_2010 AS 

SELECT key 

FROM scsug.bank_2010 

 INTERSECT 

SELECT key  

FROM scsug.bank_2009 
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; 

QUIT; 

 

To find all customers who came into our bank regardless of year is the same as asking for the 

union of the two customer tables.  This is done by: 

 
PROC SQL; 

CREATE TABLE scsug.all AS 

SELECT key 

FROM scsug.bank_2010 

 UNION 

SELECT key  

FROM scsug.bank_2009 

; 

QUIT; 

 

To find all customers who were unique to either 2009 or 2010, you would use the EXCEPT 

keyword.  We’ll leave this for you to do as practice. 

 

A SAS extension to SQL is the OUTER UNION, which works like the SET keyword in a DATA 

statement.  Variables that are the same in both tables are appended.  Variables that are unique to 

each table are retained, but the values are set to MISSING in the rows that come for the table 

without the unique variable.  If we wanted to join the three datasets we created in “Extending 

Inner and Outer Joins – I”, we would use an OUTER UNION, like so: 

 
PROC SQL; 

CREATE TABLE SCSUG.All_Avg AS  

SELECT * FROM SCSUG.AVG_BOTH 

 OUTER UNION CORR  

SELECT * FROM SCSUG.BANK_ONLY 

 OUTER UNION CORR  

SELECT * FROM SCSUG.SAVINGS_ONLY 

; 

Quit; 

 

In this example, you see use of the wildcard symbol “*”, which means “ALL”.  So, SELECT * 

means “Bring all the variables from this dataset into the new dataset”.  You also see the keyword 

“CORR”, which means, if these columns have the same name, treat them as the same variable. 

 

CONCLUSION 

 

SQL is a powerful tool, and using EG, you can begin to learn and implement SQL queries, joins 

and set operations.  This tool provides a way to combine, subset, or add summary data to your 

tables.  Using EG is easy, and provides an intuitive visual to help you learn and understand what 

SQL joins are doing.  Because it also provides you with the code it is using, you can use the code 

for learning and for extending the SQL code. 

 

SAS’s SQL procedure follows most of the American National Standards Institute (ANSI) 

guidelines, although it is not fully compliant.  This means most of the SQL you learn can be used 

on other systems.  The simplicity and flexibility of performing joins with the SQL procedure 

makes it an especially useful tool for data gathering and manipulations. 
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