

Using Event Hooks and API
Roundtable TSMS

Roundtable Development Team

TUGBOAT

SOFTWARE

Table of Contents

Table of Contents .. 1

1 Introduction ... 2

2 Intercepting Roundtable Events .. 2

2.1 The Event Procedure ... 2

2.2 Example – Enforcing Update Notes.. 3

3 Using the Roundtable API.. 4

3.1 The API Procedure .. 4

3.2 Example – Creating a Task ... 4
3.2.1 Initializing the API ... 4
3.2.2 Making the API Call ... 5
3.2.3 Shutting Down the API ... 5
3.2.4 The Entire Procedure .. 5

4 Conclusion ... 6

 2

1 Introduction
Roundtable TSMS delivers Software Configuration Management benefits to your

OpenEdge development environment. The Roundtable event hook extensions and

application programming interface allow you to take those benefits one step further by

automating processes as well as enhancing or overriding default behavior. Since

Roundtable is written in the OpenEdge ABL, all event hook and API coding is also done

using the ABL!

The Roundtable event hook extensions allow you to customize behavior without having

to modify Roundtable source code. All event hooks are implemented through a single

event procedure. Each time an event occurs in Roundtable, such as checking-in an

Object or creating a Task, Roundtable publishes both before and after context of this

event to the event procedure. This allows you to build single point of intercept for all

event hooks.

The Roundtable API is also designed for simplicity and portability by providing a single

entry point for all API calls. This methodology insulates your custom applications from

changes made to Roundtable core architecture and ensures that your customizations will

continue to work with upgrades and service packs.

This white paper provides a head start on using the Roundtable GUI client or server event

handler and API in Roundtable TSMS 9.1D and greater.

2 Intercepting Roundtable Events
The Roundtable event handler extension makes use of the ABL PUBLISH and

SUBSCRIBE statements.

2.1 The Event Procedure

Roundtable publishes before and after context to the Roundtable event handler procedure.

This procedure is deployed as source and is located in <rtb install dir>/rtb_events.p.

Every time a supported event occurs, the following parameters are published in active

OpenEdge session to the event handler procedure.

 DEFINE INPUT PARAMETER Pevent AS CHARACTER.

 DEFINE INPUT PARAMETER Pcontext AS CHARACTER.

 DEFINE INPUT PARAMETER Pother AS CHARACTER.

 DEFINE OUTPUT PARAMETER Pok AS LOGICAL INIT YES.

Parameter Description
p_event The name of event.

p_context The context in which the hook was called, such as the ROWID of the record

being acted upon.

p_other Additional context information that may be needed by programs intercepting the

hook, such as the Workspace currently selected during the intercepted event.

p_ok Setting to FALSE will allow you to cancel default behavior from the “before”

event hooks.

 3

Please see the Roundtable TSMS User Guide or the comments at the top of rtb_events.p

for a complete description of published events and the data passed in each parameter.

2.2 Example – Enforcing Update Notes

A common example of enhancing default behavior would be to disallow the check-in of

an Object version that does not have update notes. This simple customization ensures

that developers document changes that they made to an Object version.

PROCEDURE evRtbUserEvent :

/*---

 Purpose: Roundtable Event Handler

 Parameters: Pevent

 Pcontext

 Pother

 Pok

 Notes: RETURN a value from this procedure to return an error message

 to the caller.

 --*/

 DEFINE INPUT PARAMETER Pevent AS CHARACTER.

 DEFINE INPUT PARAMETER Pcontext AS CHARACTER.

 DEFINE INPUT PARAMETER Pother AS CHARACTER.

 DEFINE OUTPUT PARAMETER Pok AS LOGICAL INIT YES.

 DEFINE VARIABLE cError AS CHARACTER NO-UNDO INITIAL "".

 IF Pevent = "checkinObjectBefore" THEN DO:

 DEFINE VARIABLE hVer AS HANDLE NO-UNDO.

 DEFINE VARIABLE hObj AS HANDLE NO-UNDO.

 DEFINE VARIABLE hVerBuf AS HANDLE NO-UNDO.

 DEFINE VARIABLE hObjBuf AS HANDLE NO-UNDO.

 /*

 Use Roundtable proxy procedures to get the Object and Version data

 */

 RUN rtb/proxy/p/rtbGetObjectByRowid.p

 (INPUT Pcontext, OUTPUT TABLE-HANDLE hObj).

 hObjBuf = hObj:DEFAULT-BUFFER-HANDLE.

 hObjBuf:FIND-FIRST.

 RUN rtb/proxy/p/rtbGetVersionByRowid.p

 (INPUT hObjBuf::objVersionRowid, OUTPUT TABLE-HANDLE hVer).

 hVerBuf = hVer:DEFAULT-BUFFER-HANDLE.

 hVerBuf:FIND-FIRST.

 /*

 If not update notes are present, set the error message

 */

 IF hVerBuf::upd-notes = "" THEN DO:

 cError = "Object version update notes cannot be blank!".

 pOk = FALSE.

 END.

 DELETE OBJECT hVer NO-ERROR.

 DELETE OBJECT hObj NO-ERROR.

 END.

 RETURN cError.

END PROCEDURE.

 4

Since the rtb_object ROWID is passed via Pcontext, it could have been possible to look

up in the rtb_object and rtb_ver records directly. However, direct access of the

Roundtable repository database is discouraged unless absolutely necessary.

3 Using the Roundtable API
The Roundtable API provides access to common Roundtable functionality through a

single procedure. The API can be run either stand-alone or from within an active

Roundtable session.

3.1 The API Procedure

The Roundtable API procedure is deployed as source and is located in <rtb install

dir>/rtb/p/rtb_api.p. Complete details on using the API can be found in the definitions

section of the API procedure.

3.2 Example – Creating a Task

3.2.1 Initializing the API

In its most basic form, initializing the API is just a matter running the API procedure

persistently and obtaining its handle. In this example, it is assumed that we are running

the API as a stand-alone process therefore there are additional initialization steps needed

to set the environment.

/*

 Roundtable add_task API example

*/

&SCOPED-DEFINE RTB "c:/work/demo/rtbdemo102b"

DEFINE VARIABLE cError AS CHARACTER NO-UNDO.

DEFINE VARIABLE cDlcPath AS CHARACTER NO-UNDO.

DEFINE VARIABLE hApi AS HANDLE NO-UNDO.

DEFINE VARIABLE iSid AS INTEGER NO-UNDO.

DEFINE VARIABLE rTaskRecid AS RECID NO-UNDO.

IF NOT CONNECTED("rtb") THEN

 CONNECT -db rtb.db -1.

ASSIGN

 cDlcPath = PROPATH /* Preserve the default PROPATH */

 PROPATH = {&RTB} + "," + cDlcPath.

RUN rtb/p/rtb_api.p PERSISTENT SET hApi.

RUN login IN hApi

 (INPUT "sysop", /* User */

 INPUT "password", /* Password */

 OUTPUT iSid, /* Session-Id */

 OUTPUT cError).

RUN set_paths IN hApi

 (INPUT {&RTB}, /* RTB Install Path */

 INPUT cDlcPath, /* Default PROPATH */

 OUTPUT cError).

 5

3.2.2 Making the API Call

Once the API procedure is running, it is now just a matter of calling the appropriate

routine in hApi with the appropriate parameters. The following example creates a new

Task in the Roundtable repository.

RUN add_task IN hApi

 (INPUT "devel", /* Task Workspace */

 INPUT "sysop", /* Task User */

 INPUT "sysop", /* Task Manager */

 INPUT "Task summary", /* Task Summary */

 INPUT "", /* User Ref */

 INPUT "Task description", /* Task Description */

 INPUT "Central", /* Share Status */

 INPUT "", /* Task Directory */

 OUTPUT rTaskRecid, /* rtb_task RECID */

 OUTPUT cError).

3.2.3 Shutting Down the API

When you are done, you should log out of the Roundtable session and delete the API

procedure that is running persistently.

RUN logout IN hApi

 (INPUT iSid, /* Session-Id */

 OUTPUT cError).

DELETE PROCEDURE hApi NO-ERROR.

3.2.4 The Entire Procedure

Below is the entire add_task API example. Please note that this is not a production

quality example. It would be up to you to add necessary error checking and other

optimizations. For this white paper, I wanted to keep the code as simple as possible.

/*

 Roundtable add_task API example

*/

&SCOPED-DEFINE RTB "c:/work/demo/rtbdemo102b"

DEFINE VARIABLE cError AS CHARACTER NO-UNDO.

DEFINE VARIABLE cDlcPath AS CHARACTER NO-UNDO.

DEFINE VARIABLE hApi AS HANDLE NO-UNDO.

DEFINE VARIABLE iSid AS INTEGER NO-UNDO.

DEFINE VARIABLE rTaskRecid AS RECID NO-UNDO.

IF NOT CONNECTED("rtb") THEN

 CONNECT -db rtb.db -1.

ASSIGN

 cDlcPath = PROPATH /* Preserve the default PROPATH */

 PROPATH = {&RTB} + "," + cDlcPath.

RUN rtb/p/rtb_api.p PERSISTENT SET hApi.

RUN login IN hApi

 (INPUT "sysop", /* User */

 INPUT "password", /* Password */

 OUTPUT iSid, /* Session-Id */

 OUTPUT cError).

RUN set_paths IN hApi

 (INPUT {&RTB}, /* RTB Install Path */

 INPUT cDlcPath, /* Default PROPATH */

 OUTPUT cError).

 6

RUN add_task IN hApi

 (INPUT "devel", /* Task Workspace */

 INPUT "sysop", /* Task User */

 INPUT "sysop", /* Task Manager */

 INPUT "Task summary", /* Task Summary */

 INPUT "", /* User Ref */

 INPUT "Task description", /* Task Description */

 INPUT "Central", /* Share Status */

 INPUT "", /* Task Directory */

 OUTPUT rTaskRecid, /* rtb_task RECID */

 OUTPUT cError).

RUN logout IN hApi

 (INPUT iSid, /* Session-Id */

 OUTPUT cError).

DELETE PROCEDURE hApi NO-ERROR.

RETURN.

4 Conclusion
Using the Roundtable TSMS event handler or API is fairly straight-forward and simple.

By combining your OpenEdge ABL expertise with your Roundtable knowledge, you will

soon be on your way to creating useful and time-saving extensions and customizations.

Good luck!

