
Chapter 6 

Differentiation 

The analysis of scientific or engineering data often requires the calculation of 
the first (or higher) derivative of a function or of a curve defined by a table of 
data points. These derivative values may be needed to solve problems involving 
the slope of a curve, the velocity or acceleration of an object, or for other 
calculations. 

Students in calculus courses learn mathematical expressions for the 
derivatives of many types of functions. But there are many other functions for 
which it is difficult to obtain an expression for the derivative, or indeed the 
function may not be differentiable. Fortunately, the derivative can always be 
obtained by numerical methods, which can be implemented easily on a 
spreadsheet. This chapter provides methods for calculation of derivatives of 
worksheet formulas or of tabular data. 

First and Second Derivatives 
of Data in a Table 

The simplest method to obtain the first derivative of a function represented 
by a table of x, y data points is to calculate Ax and Ay, the differences between 
adjacent data points, and use Ay/Ax as an approximation to dy/dx. The first 
derivative or slope of the curve at a given data point x,, y, can be calculated using 
either of the following forward, backward, or central difference formulas, 
respectively (equations 6-1, 6-2, and 6-3). 

- dY N- -  AY - Y,+l - Yl 

dx Ax x,+~ - x, 
(forward difference) 

(backward difference) 

(central difference) 

The second derivative, dy/dx2, of a data set can be calculated in a similar 
manner, namely by calculating A(Ay/Ax)/Ax. 

99 



100 EXCEL: NUMERICAL METHODS 

Calculation of the first or second derivative of a data set tends to emphasize 
the llnoise" in the data set; that is, small errors in the measurements become 
relatively much more important. The central difference formula tends to reduce 
noise resulting from experimental error. 

Points on a curve of x, y values for which the first derivative is a maximum, a 
minimum, or zero are often of particular importance and are termed critical 
points, that is, points where the curvature (the second derivative) changes sign 
are termed inflection points. For example, in the analysis of data from an acid- 
base titration, the inflection point is used to determine the equivalence point. 

Calculating First and Second Derivatives 
A pH titration (measured volumes of a base solution are added to a solution 

of an acid and the pH measured after each addition) is shown in Figure 6- 1, and a 
portion of the spreadsheet containing the titration data in Figure 6-2. The end- 
point of the titration corresponds to the point on the curve with maximum slope, 
and this point can be estimated visually in Figure 6-1. The first and second 
derivatives of the data are commonly used to determine the inflection point of the 
curve mathematically. 

14.0 

12.0 

10.0 

8.0 
I 
P 

6.0 

0.0 1 .o 2.0 3.0 4.0 

Volume of 0.1000 M NaOH 

Figure 6-1. Chart of titration data. 
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs') 



CHAPTER 6 DIFFERENTIATION 101 

Figure 6-2. First derivative of titration data, near the endpoint. 
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs') 

Columns A through F of the spreadsheet shown in Figure 6-2 are used to 
calculate the first derivative, ApWAV. Since the derivative has been calculated 
over the finite volume A V  = K+, - V,, the most suitable volume to use when 
plotting the ApWAVvalues, as shown in column E of Figure 6-2, is 

The maximum in ApWAV indicates the location of the inflection point of the 
titration (Figure 6-3). 

70.0 

60.0 

50.0 

>a 40.0 
2 30.0 

20.0 

1 i 
Figure 6-3. First derivative of titration data, near the endpoint. 

(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs') 



102 EXCEL: NUMERICAL METHODS 

The maximum in the first derivative curve must still be estimated visually. 
The second derivative, A[ApWAV)/AV, calculated by means of columns E 
through J of the spreadsheet (shown in Figure 6-4) can be used to locate the 
inflection point more precisely. The second derivative, shown in Figure 6-5, 
passes through zero at the inflection point. Linear interpolation can be used to 
calculate the point at which the second derivative is zero. 

Figure 6-4. Second derivative of titration data, near the endpoint. 
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs') 

I I 

1.50 1.70 1.90 2.10 2.30 2.50 

V, rnL 

Figure 6-5. Second derivative of titration data, near the endpoint. 
(folder 'Chapter 06 Examples', workbook 'Derivs of Titration Data', worksheet 'Derivs') 



CHAPTER 6 DIFFERENTIATION 103 

There are other equations for numerical differentiation that use three or more 
points instead of two points to calculate the derivative. Since these equations 
usually require equal intervals between points, they are of less generality. Again, 
their main advantage is that they minimize the effect of "noise." Table 6-1 lists 
equations for the first, second and third derivatives, for data from a table at 
equally spaced interval h. 

These difference formulas can be derived from Taylor series. Recall from 
Chapter 4 that the first-order approximation is 

or, in the notation used in Table 6-1 

F ( x  + h)  N F ( x )  + hF'(x) 

YI+1 = YI + hY', 

(6-5) 

(6-6) 

which, upon rearranging, becomes 

admittedly, an obvious result. 

The second derivative can be written as 

When each of the y' terms is expanded according to the preceding expression 
for y', the expression for the second derivative becomes 

or 

(6-10) 

The same result can be obtained from the second-order Taylor series 
expansion 

h2 
2! 

F ( x  + h)  is F ( x )  + hF'(x) + -FF"(x)  (6-1 1)  

which is written in Table 6-1 as 
I h2 ,, 

Yl+1 = Y ,  + hY1 + Z Y I  (6-12) 

by substituting the backward-difference formula for F from Table 6-1. 
Expressions for higher derivatives or for derivatives using more terms can be 
obtained in a similar fashion. 



104 EXCEL: NUMERICAL METHODS 

Table 6-1. Some Formulas for Computing Derivatives 
(For tables with equally spaced entries) 

First derivative, using two points: 

Forward difference 

Central difference 

' Yi+l -Y; 
h Yi = 

* Yi - Yi-1 y .  = 
h Backward difference 

First derivative, using three points: 

Forward difference 

First derivative, using four points: 

Central difference 

Second derivative, using three points: 
Forward difference 

Central difference 

Backward difference 

9 - y,+2 + 8Y,+, - 8Y,-I + YI-2 
12h Y ,  = 

,, y;+1 - 2Yi + Yi-I 
h2 Yi = 

I, yi  - 2Yj-I + Yi-2 
h2 Yi  = 

Second derivative, using four points: 
'1 2 ~ ,  - %+I + - x + 3  

h2 Forward difference Y ,  = 

Second derivative, usingjbe points: 

Central difference 
,, y .  = 

- yi+2 + l 6 ~ , + ~  - 3 0 ~ ;  + 16Yi-l - Yi-2 
12h2 

Third derivative, using four points 
~~~ ~ j + 3  - 3 ~ ; + 2  + 3 ~ i + l  - Yi y .  = 

h 3  
Forward difference 



CHAPTER 6 DIFFERENTIATION 105 

Using LINEST as a Fitting Function 
Instead of calculating a derivative at an x value corresponding to a table 

entry, it may be necessary to obtain the derivative at an intermediate x value. 
This problem is related to the process of interpolation, and indeed some of the 
techniques from the preceding chapter can be applied here (see "Cubic 
Interpolation" in Chapter 5). For example, we can obtain a piecewise fitting 
function that applies to a localized region of the data set, and use the parameters 
of the fitting function to calculate the derivative. In this section and the 
following one, we will use a cubic equation 

F(x) = ax3 + bx2 + cx +d (6- 13) 

as the fitting function, using four data points to obtain the four coefficients of the 
cubic. (The fitted curve will pass exactly through all four points and R2 will be 
exactly 1 .) Once we have obtained the coefficients, the derivatives are calculated 
from them; the first derivative is 

F'(x) = 3ax2 + 2bx + c (6-14) 

and the second derivative is 
F"(x) = 6ax + 2b (6-15) 

We can use the LINEST worksheet function (the multiple linear regression 
worksheet function, described in detail in Chapter 13) to obtain the coefficients a, 
b, c and d, then use the coefficients a, b, and c in equation 6-14 or 6-15 to 
calculate the first or second derivatives. 

The LINEST method will be illustrated using a table of absorbance data taken 
at 5-nm increments, part of which is shown in Figures 6-6 and 6-7; the complete 
range of x values is in $A$5:$A$85 and they values in $B$5:$B$85. We wish to 
obtain the first derivative of this data set at 2-nm increments over the range 390- 
415 nm. 

Figure 6-6. Data used to calculate first and second derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST'. sheet 'Using megaformula') 



106 EXCEL: NUMERICAL METHODS 

Original data points 
o.610 r 

I 1 -  0.550 
390 395 400 405 410 415 420 

Wavelength, nm 

Figure 6-7. Chart of some data used to calculate first and second derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST', sheet 'Using megaformula') 

The steps required in the calculation of the first or second derivative at a 
specified value of x are as follows: 

(i) Use the MATCH function to find the position of the lookup value x in the 
table of x values. The lookup value is in cell D5 in Figure 6-8. 

=MATCH(D5, $A$5:$A$85,1) 

(ii) Use the OFFSET function to select the four bracketing x values: 

=OFFSET($A$S:$A$85,D5-2,0,4,1) 

(iii)Use a similar formula to obtain the four bracketingy values: 

=oFFSET($B$5:$B$85,D5-2,0,4,1) 

(iv) Use these two arrays in the LINEST formula, raising the range of x values to 
an array of powers; the LINEST formula must be entered in a horizontal 
range of three cells, and you must press CONTROL+SHIFT+ENTER: 

=LINEST(OFFSET(known-ys,MATCH(DG, known-xs, 1 )-2,0,4,1), 
0 F FS ET( known-xs, MATCH ( D6, known-xs, 1 )-2,0,4,1 )A{ 1 ,2,3}, 1 , 0) 

(v) Use the INDEX function to obtain each of the regression coefficients a, b and 
c from the LINEST array. (To simplify the formula, the cells containing the 
preceding LINEST formula have been given the name LINEST-array.) The 
following equation returns the coefficient a: 

=INDEX( LI NEST-array , I  ) 



CHAPTER 6 DIFFERENTIATION 107 

(vi) Use the coefficients a, b, and c to calculate the first or second derivative: 

cell E5 in Figure 6-8) is 
If these formulas are combined into one "megaformula", the result (entered in 

=3*INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x_values, 1)-2,0,4, I ) ,  
OFFSET(x-values, MATCH( D5,x_values, 1 )-2,0,4,1 )A{ 1,2,3}, 1 ,O)n 1 )*xA2 
+2*INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x~values, 1)-2,0,4, I ) ,  
OFFSET(x~values,MATCH(D5,x~values, 1)-2,0,4,1)A{1 ,2,3}, 1,0),2)*x 
+INDEX(LINEST(OFFSET(known~ys,MATCH(D5,x~values,1)-2,0,4, I ) ,  
0 FFS ET( x-val ues, MATCH (D5, x-va I ues, 1 )-2,0,4,1 )A{ 1 ,2,3}, 1 , O), 3) 

which is rather confusing. A better approach is to use named formulas. The 
following table lists the named formulas and ranges used to calculate the first 
derivative shown in Figure 6-7. 

x-values =Sheet2!$A$5:$A$85 
y-values =Sheet2!$8$5:$B$85 
lookup-value =Sheet2!$D$5:$D$17 
pointer 
known-xs =OFFSET(x~values,pointer-2,0,4,1) 
known-ys =OFFSET(y-values,pointer-2,0,4,1) 
LI N-array 
aa =INDEX(LINEST-array,l) 
bb =INDEX(LINEST_array,2) 
cc =INDEX( LINEST_array,3) 

=MATCH(INDIRECT(ROW()&":"&ROW()) lookup-value ,x-values, 1 ) 

=LI N EST( Sheet2! known_ys,Sheet2! known-xsA{ 1 ,2,3}, 1 ,O) 

Using these named formulas, the formula for the first derivative becomes 

=3*aa*xA2+2*bb*x+cc 

Note the formula used for pointer. It incorporates an "implicit intersection" 

=MATCH(lookup-value ,x-values, 1) 

expression. Since both lookup-value and x-values are arrays, the formula 

returns an array of values instead of a single value. The formula using the 
expression INDIRECT(ROW()&':"&ROW()) lookup-value returns a single value, 
the value in the array lookup-value that is in the same row as the formula. 



108 EXCEL: NUMERICAL METHODS 

Figure 6-8. First derivative calculated using LI NEST function. 
They values indicate the known experimental points. 

(folder 'Chapter 06 Examples', workbook 'Derivs Using LINEST', sheet 'Using named formulas') 

0.61 

0.60 

0.59 

C 
0 
0.58 

3 
LL 

0.57 

0.56 

390 395 400 405 410 415 
x 

0.01 0 

0.005 
-c 

X 

$ $  
% =  

!?a 

> m  
0.000 *$ $ 

q 2 -  

-0.005 v, 

Q) 

-0.010 

Figure 6-9. Chart of values of first and second derivative 
calculated using LINEST. 

(folder 'Chapter 06 Examples', workbook 'Derivs Using LWEST', sheet 'Using named formulas') 



109 CHAPTER 6 DIFFERENTIATION -- 

Part of the table of calculated first derivative values is shown in Figure 6-8, 
The formula used in cell F5, for and the values are charted in Figure 6-9. 

example, is 

=3*aa*xA2+2*bb*x+cc 

One could use the x value where F(x) = 0 to locate the maximum in the 
spectrum. 

Depending on the data table being differentiated, the errors in the values 
returned by this method may be as great as several percent. 

Derivatives of a Worksheet Formula 
Instead of calculating the first or second derivative of a curve represented by 

data points, we may wish to find the derivative of a function (a worksheet 
formula). In the following, two different methods are illustrated to calculate the 
first or second derivative of a worksheet formula by using a user-defined 
function. The calculation of the first derivative of the function y = 3x3 + 5x2 - 5x 
+ 11 is used as the example for each method 

Derivatives of a Worksheet Formula 
Calculated by Using a VBA Function Procedure 

The first example is a Function procedure that returns the first derivative of a 
specific worksheet formula. The expression for the derivative is "hard-coded" in 
the VBA procedure. The user must be able to provide the expression for the 
derivative and must modify the VBA code to apply it to a different formula. The 
function's only argument is the value of x ,  the independent variable for which the 
derivative is to be calculated. The main advantage of this approach is that the 
returned value of the derivative is exact. This approach will execute the fastest 
and would be suitable if the same formula is to be used many times in a 
worksheet. 

Function Derivl (x) 
'User codes the expression for the derivative here. 
Derivl = 9 * x A 2 + 1 0 * x - 5  
End Function 

Figure 6-10. Function procedure to demonstrate calculation of a first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', module 'Modulel') 



110 EXCEL: NUMERICAL METHODS 

First Derivative of a Worksheet Formula 
Calculated by Using the Finite-Difference Method 

The second example is a Function procedure that uses the finite-difference 
method. The first derivative of a formula in a worksheet cell can be obtained with 
a high degree of accuracy by evaluating the formula at x and at x + Ax. Since 
Excel carries 15 significant figures, Ax can be made very small. Under these 
conditions AyIAx approximates dyldx very well. 

The user must "hard-code" the worksheet formula in VBA, in a suitable 
form; the derivative is calculated by numerical differentiation. Again, the 
function's only argument is the value of x, the independent variable. This 
approach would be useful if the user is unable to provide an expression for 
derivative. 

Function Deriv2(x) 
OldY = fn(x) 
xx = (1.00000001) * x 
NewY = fn(xx) 
Deriv2 = (NewY - OldY) / (xx - x) 
End Function 

Function fn(x) 
'User codes the expression for the function here. 
fn = 3 * x A 3 + 5 * x  A 2 - 5 * x + 11 
End Function 

the 

Figure 6-1 1. Function procedure to demonstrate calculation of first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', module 'Modulel') 

The Newton Quotient 
In the previous section, the finite-difference method was shown to provide an 

excellent estimate of the first derivative of a function expressed as a worksheet 
formula. The multiplier used in the preceding user-defined function was 
1.00000001. What is the optimum value of this multiplier, so that the Newton 
quotient AylAx gives the best approximation to dyldx? 

There are two sources of error in this finite-difference method of computing 
dyldx: the approximation error, inherent in using a finite value of Ax, and the 
roundoff error, due to the limited precision of the numbers stored in the 
computer. We want to find the value of Ax that strikes the best balance between 
these two errors. If hx is made too large, then the approximation error is large, 
since dy/& -+ AyIAx only when Ax + 0. If Ax is made too small, then the 
roundoff error is large, since we are obtaining Ay by subtracting two large and 
nearly equal numbers, F(x) and F(x + Ax). 



CHAPTER 6 DIFFERENTIATION 111 

Excel carries 15 digits in its calculations, and it turns out that multiplying x 
by a factor of 1.00000001 (a change in the 8th place) produces the minimum 
error, before round-off error begins to have an effect. Figure 6- 12 illustrates this, 
using a quadratic equation as an example; other functions give similar results. 
The values in Figure 6-12 show that we can expect accuracy up to approximately 
the tenth digit. 

Figure 6-12. Newton quotient AyIAx as a function of the magnitude of Ax 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part l)', sheet 'Newton Quotient') 

Derivative of a Worksheet Formula 
Calculated by Using the Finite-Difference Method 

The spreadsheet shown in Figure 6-13 (see folder 'Chapter 06 Examples', 
workbook 'Derivs by Sub Procedure') illustrates the calculation of the first 
derivative of a function y = x3 - 3x2 - 130x + 150 by evaluating the function at x 
and at x + Ax. Here a value of Ax of 1 x was used. For comparison, the first 
derivative was calculated from the exact expression from differential calculus: 
F(x) = 3x2 - 6x - 130. 

The Excel formulas in cells B l l ,  C11, D11, E l l ,  F11, G11 and H I 1  
(columns C-F are hidden) are 

B11 = t*xA3+u*xA2+v*x + w F(x) 

C11 =All*(l+delta) X + A x  

D11 = t*C1 IA3+u*C1 IA2+v*C1 1 + w 

E l  1 =A1 l*delta Ax 

F(x + Ax) 

F11 =D11-B11 AY 

G I 1  = F I I / E I I  AJ?h  

H I  1 =3*t*A1IA2+2*u*A1 1 +v dyldx from calculus 



112 EXCEL: NUMERICAL METHODS 

Figure 6-13. First derivative calculated on a worksheet by using Ax. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The value in cell G21 illustrates that, using this technique, an x value of zero 
will have to be handled differently, since multiplying zero by 1.00000001 does 
not produce a change in x.  This problem will be dealt with in a subsequent 
section. 

First Derivative of a Worksheet Formula 
Calculated by Using a VBA Sub Procedure 
Using the Finite-Difference Method 

The approach used in the preceding section can be performed by using a 
VBA Sub procedure. The VBA code is shown in Figure 6-14. By means of an 
input box the user identifies the range of cells containing the formulas for which 
the derivative is to be calculated, with a second input box, the corresponding 
cells containing the independent variable x,  and with a third input box, the range 
of cells to receive the first derivative. 



CHAPTER 6 DIFFERENTIATION 113 

Option Explicit 
Option Base 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sub Derivs() 
Dim z As Integer, N As Integer 
Dim Old-Ys() As Double, New-Ys() As Double, Old-Xs() As Double, 
Dim Derivs() As Double, increment As Double 
Dim known-& As Object, known-Ys As Object, cel As Object 

increment = 0.00000001 

'Use the Set keyword to create an object variable 
Set known-Ys = Application.lnputBox - 
("Select the range of Y values", "STEP 1 OF 3 ,  , , , , , 8) 
N = known-Ys.Count 
ReDim Old-Ys(N), New-Ys(N), Old-Xs(N), Derivs(N) 
z = l  
For Each cel In known-Ys 
Old-Ys(z) = cel.Value 
z = z + 1  

Next cel 

Set known-Xs = ApplicationhputBox - 
("Select the range of X values", "STEP 2 OF 3, , , , , , 8) 
z = l  
For Each cel In known-Xs 
Old-Xs(z) = cel.Value 
cel.Value = Old-Xs(z) * (1 + increment) 
z = z + 1  

Next cel 
z = l  
For Each cel In knownYs 
New-Ys(z) = cel.Value 
z = z + I  

Next cel 
z = l  
For Each cel In known-Xs 
cel.Value = Old-Xs(z) 
z = z + l  

Next cel 

Application.lnputBox("Select the destination for derivatives", - 
"STEP 3 OF 3 ,  , , , , , 8)Select 
For z = 1 To N 
Derivs(z) = (New-Ys(z) - Old-Ys(z)) / (increment * Old-Xs(z)) 
ActiveCell.Offset(z - 1, O).Value = Derivs(z) 

Next 

End Sub 

Figure 6-14. Sub procedure to calculate first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', module 'Derivs') 



114 EXCEL: NUMERICAL METHODS 

Figure 6-15. Calculating the first derivative of a formula. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The Sub procedure saves the values of x and y from the worksheet (OldX and 
OldY), then writes the incremented value of x (NewX) to the worksheet cell. This 
causes the worksheet to recalculate and display the corresponding value of y + Ay 
(NewY). The derivative is calculated and written to the destination cell. Finally, 
the original value of x is restored. Figure 6-15 illustrates the spreadsheet of 
Figure 6-13 after the Sub procedure has been run. The errors produced by this 
method are much smaller than those produced by the function based on LINEST. 

The code in Figure 6-14 can easily be modified to calculate the partial 
derivatives of a function with respect to one or several parameters of the function 
(e.g., dy/da, dy/db, etc.) for a cubic equation. Similar code is used in the SolvStat 
macro (see Chapter 14, "The Solver Statistics Add-In") and a similar approach is 
used in the Solver itself (see "How the Solver Works" in Chapter 14). 



CHAPTER 6 DIFFERENTIATION 115 

Figure 6-16. A chart of a function and its first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by Sub Procedure', sheet 'Deriv') 

The advantage of using a Sub procedure is that the derivative can be 
obtained easily, even for the most complicated worksheet formulas. All of the 
difficult calculations are done when the spreadsheet updates after the new value 
of x is entered in, for example, cell A9. The disadvantage of a Sub procedure is 
that if changes are made to precedent cells in the worksheet, the Sub procedure 
must be run in order to update the calculations. 

First Derivative of a Worksheet Formula 
Calculated by Using a VBA Function Procedure 
Using the Finite-Difference Method 

Unlike the Sub procedure described in the preceding section, a Function 
procedure automatically recalculates each time changes are made to precedent 
cells. A Function procedure to calculate the first derivative of a formula in a cell 
would be very useful. However, a function procedure can't use the approach of 
the preceding section (i.e., changing the value of the cell containing the x value), 
since a function procedure can't change the contents of other cells. A different 
approach will have to be found. 

The following VBA code illustrates a simple Function procedure to 
calculate the first derivative dy/& of a formula in cell, using the same approach 
that was used in the preceding section: the procedure calculates OldX, OldY, 



116 EXCEL: NUMERICAL METHODS 

NewX and NewY in order to calculate AxlAy. But in this function procedure, both 
the worksheet formula and the independent variable are passed to the function as 
arguments. The procedure is shown simply to illustrate the method; a number of 
modifications, to be described later, will be necessary in order to produce a 
"bulletproof" procedure. 

(i) The two arguments of the function are references to the independent 
variable x and the cell containing the formula to be differentiated, F(x). 

(ii) Use the Value property to obtain the values of the arguments; these are 
OldX and OldY. 

(iii) Use the Formula property of the cell to get the worksheet formula to be 
differentiated as the text variable FormulaText. 

(iv) Use the SUBSTITUTE worksheet function to replace references to the x 
variable in FormulaText by the incremented x value, NewX. 

(v) Use the Evaluate method to get the new value of the formula. This is 
NewY. 

The basic principle used in this Function procedure is the following: 

Since other procedures in this chapter and in subsequent chapters will use the 
same method for modifying and evaluating a formula, it will be worthwhile to 
examine the VBA code shown in Figure 6-17. The syntax of the function is 
FirstDerivDemo(expression,variab/e). The nine lines of code in this procedure 
perform the following actions: 

Get Formulastring, the worksheet formula (as text) by using the Formula 
property of expression. 
Get OldY, the value of the worksheet formula, by using the Value property 
of expression. 
Get XRef, the reference to the independent variable x,  by using the Address 
property of variable. The address will be an Al-style absolute reference 
Get OldX, the value of the independent variable x,  by using the Value 
property of variable. 
Calculate NewX, the incremented value of the independent variable, by 
multiplying OldX by 1.000000001. 
Convert all references in Formulastring to absolute by using the 
ConvertFormula method. 
Replace all instances of XRef in Formulastring by the value of the new 
variable NewX. This is done by using the SUBSTITUTE worksheet 
function. For example, the formula string 

when cell $6$3 contains the value 2, is converted to 
=3*$B$3"3+5*$B$3"2-5*$B$3+11 

=3*2.00000002"3+5*2.00000002"2-5*~+11. 



CHAPTER 6 DIFFERENTIATION 117 

(8) Calculate NewY, the new value of the function, by applying the Evaluate 
method to the new formula string. 

(9) Calculate and return the first derivative. 

Function FirstDerivDemo(expression, variable) As Double 
'Custom function to return the first derivative of a formula in a cell. 

Dim OldX As Double, OldY As Double, NewX As Double, NewY As Double 
Dim Formulastring As String, XAddress As String 

Formulastring = expression.Formula 
OldY = expression.Value 
XAddress = variable.Address 'Default is absolute reference 
OldX = variable.Value 
NewX = OldX * 1.00000001 
Formulastring = Application.ConvertFormula(FormulaString, x lAl  , x lA l  , - 
xlAbsol Ute) 
Formulastring = Application.Substitute(FormulaString, XAddress, NewX) 
NewY = Evaluate(Formu1aString) 
FirstDerivDemo = (NewY - OldY) / (NewX - OldX) 
End Function 

Figure 6-17. Function procedure to demonstrate calculation of first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'Demo') 

'Convert all references in formula to absolute 

Examples of the first derivative of some worksheet formulas calculated by 

= FirstDerivDemo (C3,B3) 

The formulas labeled "exact" in column E are the appropriate formulas from 
For 

the custom function are shown in Figure 6-18. The formula in cell D3 is 

differential calculus for the first derivative of the respective functions. 
example, the formula in cell E3 is 

=9*B3"2+ 10*B3-5 

Figure 6-18. Using a simple Function procedure to calculate some first derivatives. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'Demo Function') 



118 EXCEL: NUMERICAL METHODS 

Improving the VBA Function Procedure 
The simple procedure shown in Figure 6-17 requires some modification. 
First, the simple procedure replaces all instances of XRef, the reference to the 

independent variable x, in Formulastring with a number value. For example, a 
cell reference such as A2 will be replaced with a number value such as 0.05. But 
there are cases where the substring A2 should not be replaced. Our procedure 
needs to handle the following possibilities, all of which contain the substring A2 
within Formulastring: 

(i) the reference XRef and references in Formulastring may be relative, 
absolute or mixed, 

(ii) FormulaString contains a name such as BETA2, 
(iii) Formulastring contains a reference such as AA2, or 
(iv) FormulaString contains a reference such as A25. 

By using the Address property to obtain an absolute reference (e.g., $A$2) 
and using the ConvertFormula method to convert all references in 
FormulaString to absolute, we have already eliminated problems arising from 
cases (i), (ii), and (iii). Only case (iv) poses a problem: the substring $A$2 in 
$A$25 will be substituted by 0.05, yielding 0.055. And so, as is often the case 
with computer programming, a project that initially appeared to be simple 
requires some additional programming. 

We could write a formula parser that would break Formulastring into its 
component parts and inspect each one. Not impossible, but that would require 
extensive programming. A much simpler solution turns out to be the following: 
by means of a loop, we replace each instance of, for example, A2 individually, 
and, instead of replacing the reference with a number (e.g., 0.05), we replace the 
reference with the number concatenated with the space character (e.g., 0.05 0). 
We then evaluate the resulting string after each substitution. The reference 
$A$25 yields the string 0.05 5. When evaluated, this gives rise to an error, and 
an On Error GoTo statement is used so that the faulty substitution is not 
incorporated into the FormulaString to be evaluated. Inspection of the code in the 
latter half of the procedure in Figure 6-21 should make the process clear. 

A second problem with the simple procedure of Figure 6-17 is that when x = 
0, NewX = OldX, NewY = OldY and the procedure returns a #VALUE! error. The 
error produced by a zero value for the independent variable x is handled by 
adding an additional optional argument scale-factor. The syntax of the function 
is dydx(expression, reference, Optional scale-factoq. If x is zero, a value for 
scale-factor must be entered by the user. Scale-factor is used to calculate the Ax 
for numerical differentiation. Scale-factor should be the same order of 
magnitude as typical x values used in the formula. 

The Function procedure is shown in Figure 6-19. 



CHAPTER 6 DIFFERENTIATION 119 

Option Explicit 
Function dydx(expression, variable, Optional scale-factor) As Double 
'Custom function to return the first derivative of a formula in a cell. 
'expression is F(x), variable is x. 
'scale-factor is used to handle case where x = 0. 
'Workbook can be set to either R1 C1- or Al-style. 

Dim OldX As Double, NewX As Double, OldY As Double, NewY As Double 
Dim delta As Double 
Dim NRepl As Integer, J As Integer 
Dim Formulastring As String, XRef As String, dummy as String 
Dim T As String, temp As String 

'Get formula and value of cell formula (y). 
Formulastring = expression.Forrnula 
absolute. 
OldY = expression.Value 
'Get reference and value of argument (x). 
OldX = variable.Value 
XRef = variable.Address 

'Handle the case where x = 0. 
'Use optional scale-factor to provide magnitude of x. 
'If not provided, returns #DIVO! 
If OldX <> 0 Then 
NewX = OldX (1 + delta) 

Else 
If IsMissing(sca1e-factor) Or scale-factor = 0 Then - 
dydx = CVErr(xlErrDiv0): Exit Function 
NewX = scale-factor delta 

I delta = 0.00000001 

'Returns A1 -style formula; default is 

'Default is A1 -style absolute reference. 

End If 

'Convert all references to absolute 
'so that only text that is a reference will be replaced. 
T = Application.ConvertFormula(FormulaString, xlAl , xlA1, xlAbsolute) 

'Do substitution of all instances of x reference with value. 
'Substitute reference, e.g., $A$2, 
'with a number value, e.g., 0.2, followed by a space 
'so that $A$25 becomes 0.2 5, which results in an error. 
'Must replace from last to first. 
NRepl = ( L e n 0  - Len(Application.Substitute(T, XRef, "'I))) / Len(XRef) 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewX & " 'I, J) 
If IsError(Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl: Next J 
NewY = Evaluate0 
dydx = (NewY - OldY) / (NewX - OldX) 
End Function 

Figure 6-19. Improved Function procedure to calculate first derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'FirstDeriv') 



120 EXCEL: NUMERICAL METHODS 

Figure 6-20. Using the improved function procedure to calculate some first derivatives. 
The optional argument scale-factor is used in row 9 to eliminate the #VALUE! error seen in row 8. 

(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet Better Function') 

The examples in Table 6-20 illustrate the values of the first derivative 

The worksheet formulas in column C and the corresponding functions in 

C4 =3*B4"3+5*B4"2-5*B4+11 D4 =dydx($C$4,$B$4) 

C5 =SIN($B5) 05  =dydx(CS,B5) 

C6 =EXP($B$6) D6 =dydx(CG,BG) 

C7 =aAB7 D7 =dydx(C7,B7) 

C8 =3*88"3+5*88"2-5*B8+1 1 D8 =dydx(C8,B8) 

C9 =3*B9"3+5*B9"2-5*B9+11 D9 =dydx(C9,B9,1) 

Rows 4-6 illustrate that relative, absolute or mixed references can be used in 
the worksheet formula or in the arguments of the custom function. Row 9 
illustrates the use of the optional argument scale-factor when the x value is zero. 

calculated by using the function dydx, compared with the "exact" values. 

column D are: 

Second Derivative of a Worksheet Formula 
The VBA code for the Function procedure shown in Figure 6-21 requires 

only slight modification to provide a function that returns the second derivative 
of a function as a cell formula. The syntax of the d2xdy2 function is identical to 
that of the function dydx. 

The function calculates the central 
derivative uing three points (see the formula in Table 6-1). Note that the 
multiplier used to calculate Ax is 1E-4 instead of 1E-8. 

The code is shown in Figure 6-21. 



CHAPTER 6 DIFFERENTIATION 121 

Option Explicit 
Function d2ydx2(expression, variable, Optional scale-factor) As Double 
'Custom function to return the second derivative of a formula in a cell. 
'expression is F(x), variable is x. 
'Uses central difference formula. 
'scale-factor is used to handle case where x = 0. 
'Workbook can be set to either RICI -  or Al-style. 

Dim OldX As Double, OldY As Double 
Dim NewXl As Double, NewX2 As Double 
Dim NewYl As Double, NewY2 As Double 
Dim XRef As String 
Dim delta As Double 
Dim Formulastring As String, T As String 
Dim temp As String 
Dim NRepl As Integer, J As Integer 

delta = 0.0001 

'Get formula and value of cell formula (y). 
Formulastring = expression.Formula 
OldY = expression.Value 
'Get reference and value of argument (x). 
OldX = variable.Value 
XRef = variable.Address 'Default is A1 -style absolute reference 

'Handle the case where x = 0. 
'Use optional scale-factor to provide magnitude of x. 
'If not provided, returns #DIVO! 
If OldX e> 0 Then 
NewXl = OldX * (1 + delta) 
NewX2 = OldX * (1 - delta) 

If IsMissing(sca1e-factor) Or scale-factor = 0 Then - 
d2ydx2 = CVErr(xlErrDiv0): Exit Function 
NewXl = scale-factor delta 
NewX2 = -scale-factor delta 

'Returns Al-style formula 

Else 

End If 

'Convert all references to absolute 
'so that only text that is a reference will be replaced. 
Formulastring = Application.ConvertFormula(FormulaString, xlAl, x lA l  , - 
xlAbsolute) 

T = Formulastring 
NRepl = (Len(T) - Len(Application.Substitute(T, XRef, "'I))) I Len(XRef) 
'Do substitution of all instances of x reference with incremented x value 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewXl & " ", J) 
If IsError(Evaluate(temp)) Then GoTo ptl  
T = temp 

ptl :  Next J 
'Evaluate the expression. 
NewYl = Evaluate(T) 



122 EXCEL: NUMERICAL METHODS 

T = Formulastring 
'Now do substitution of all instances of x reference with decremented x value 
For J = NRepl To 1 Step -1 

temp = Application.Substitute(T, XRef, NewX2 & " 'I, J) 
If IsError(EvaIuate(temp)) Then GoTo pt2 
T = temp 

pt2: Next J 
NewY2 = Evaluate0 
d2ydx2 = (NewY1 + NewY2 - 2 * OldY) / Abs((NewX1 - OldX) * (NewX2 - OldX)) 

EndFunction 

Figure 6-21. Function procedure to calculate second derivative. 
(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', module 'SecondDeriv') 

Figure 6-22 illustrates the use of the dydx and d2ydx2 custom functions. The 

=aa*A4"3+ bb*A4"2+cc*A4+dd 

formula in cell 84 is 

(aa, bb, cc, dd are named ranges. The formula in cell C4 is 

=dydx(B4,A4,1) 

Figure 6-22. Using Function procedures to calculate 
first and second derivatives of a function. 

(folder 'Chapter 06 Examples', workbook 'Derivs by VBA (Part 2)', sheet 'First and Second Derivs') 

Note the use of the optional argument scale-factor that prevents an error in 
cells C9 and F9 when the value of the independent variable in cell A9 is zero. 



CHAPTER 6 DIFFERENTIATION I23 

Concerning the Choice of Ax 
for the Finite-Difference Method 

In preceding sections, the x + Ax used for the calculation of the derivatives 
was calculated by multiplying x by 1.00000001. Thus Ax is a "scaled" increment. 
An alternative approach would have been to use a constant Ax of, e.g., 
0.0000000 1. Either approach has its advantages and disadvantages. 

The constant-increment method eliminates the need to handle the case of x = 0 
separately. However, the method fails when x is very large, e.g., 10'. The 
scaled-increment method handles a wide range of x values, but fails in some 
special cases, such as for sin x when x = 1000. 

You should be aware of these limitations when using the dydx and d2ydx2 
custom functions. 


	Excel for Scientists and Engineers Numerical Methods
	Contents
	Chapter 1 Introducing Visual Basic for Applications
	Visual Basic Procedures
	Entering VBA Code

	Chapter 2 Fundamentals of Programming with VBA
	Components of Visual Basic Statements
	Program Control
	VBA Data Types
	Subroutines
	VBA Code for Command Macros
	Making a Reference to a Cell or a Range
	Interacting with the User
	Visual Basic Arrays
	Custom Functions
	Arrays in Function Procedures
	Creating Add-In Function Macros
	Testing and Debugging

	Chapter 3 Worksheet Functions for Working with Matrices
	Chapter 4 Number Series
	Evaluating Series Formulas
	The Taylor Series

	Chapter 5 Interpolation
	Obtaining Values from a Table
	Interpolation

	Chapter 6 Differentiation
	First and Second Derivatives of Data in a Table
	Calculating First and Second Derivatives
	Using LINEST as a Fitting Function

	Derivatives of a Worksheet Formula
	Derivatives of a Worksheet Formula Calculated by Using a VBA Function Procedure
	First Derivative of a Worksheet Formula Calculated by Using the Finite-Difference Method
	The Newton Quotient
	Derivative of a Worksheet Formula Calculated by Using the Finite-Difference Method
	First Derivative of a Worksheet Formula Calculated by Using a VBA Sub Procedure Using the Finite-Difference Method
	First Derivative of a Worksheet Formula Calculated by Using a VBA Function Procedure Using the Finite-Difference Method
	Improving the VBA Function Procedure
	Second Derivative of a Worksheet Formula
	Concerning the Choice of Dx for the Finite-Difference Method


	Chapter 7 Integration
	Area under a Curve
	Integrating a Function

	Chapter 8 Roots of Equations
	Finding Values Other than Zeroes of a Function

	Chapter 9 Systems of Simultaneous Equations
	Solving Linear Systems by Iteration
	Chapter 10 Numerical Integration of Ordinary Differential Equations Part I: Initial Conditions
	Solving a Single First-Order Differential Equation
	Systems of First-Order Differential Equations
	Predictor-Corrector Methods

	Chapter 11 Numerical Integration of Ordinary Differential Equations Part II: Boundary Conditions 
	The Shooting Method
	Finite-Difference Methods

	Chapter 12 Partial Differential Equations
	Elliptic Partial Differential Equations
	Parabolic Partial Differential Equations
	Hyperbolic Partial Differential Equations

	Chapter 13 Linear Regression and Curve Fitting
	Linear Regression
	Multiple Linear Regression

	Chapter 14 Nonlinear Regression Using the Solver
	Nonlinear Least-Squares Curve Fitting
	Statistics of Nonlinear Regression

	Chapter 15 Random Numbers and the Monte Carlo Method
	Random Numbers in Excel

	APPENDICES



