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Abstract: - Using FEM for geotechnical design of constructions with high impact of the soil – structure interaction is a 

common practice. However, for obtaining results close to the real behavior of the analyzed structures it is required to 

use complex constitutive models for all materials, especially for describing the soil behavior. Paper presents the 

differences in the numerical modeling when three different constitutive laws are used: one linear elastic – perfectly 

plastic and two nonlinear elastic - hardening plastic laws. Comparisons between numerical modeling and laboratory 

tests are presented in order to emphasize the differences between the constitutive laws and to calibrate their parameters. 

As well, a numerical calculation using FEM for an embedded retaining wall is presented, using different soil 

constitutive models. The results regarding the displacements of the wall and the bending moments in the wall are 

compared with the experimental values. 
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1   Introduction 
The materials used in civil engineering have been and 

still are continuously studied in order to obtain effective 

design of the structures. For the design calculations 

materials (concrete, steel, soil etc.) are assimilated with 

continuous media. As every continuous medium, these 

are governed by physical and mechanical principles (as, 

for example, the energy conservation principle). 

However, the general physical laws don’t allow making 

the difference between various material behaviors.  

Thus, it is desired to characterize the specific 

behavior of the continuum and its equivalence with the 

studied material. This is the constitutive law associated 

with the specific material and it has to describe the 

material evolution under external actions. Knowing this 

constitutive law is indispensable for having a complete 

equations system for any continuum medium mechanics 

or structural calculation problem. Diversity and 

complexity of materials led to emphasize a complex 

behavior too: elasticity, viscosity, plasticity and 

combinations of those.  

Soils represent, by their composition itself, a 

complex, heterogeneous material, having a strongly non-

linear response under load, [1]. For this reason the 

constitutive laws associated to various soil types 

(cohesive, non-cohesive, saturated or unsaturated etc.), 

[2], are continuously developed and improved.  

In this framework, FEM applications for geotechnical 

design of structures for which soil – structure interaction 

is important, [3], [4], (e.g. retaining structures, dams, 

bridges, special foundations etc.) allow using more and 

more complex constitutive laws for describing the 

material behavior. However, more complex the law, 

more difficult to estimate the defining parameters.  

The following paragraphs are describing some of the 

typical soil constitutive laws. First of all is presented the 

Mohr – Coulomb criterion, a linear elastic – perfect 

plastic model, which is probably the most used for 

modeling soils. The large use of this model is due to its 

simplicity and to the easiness of determining the specific 

parameters.  

Two other constitutive laws, more evolved, nonlinear 

elastic – hardening plastic are also presented, meaning 

Nova and Vermeer. The specific equations are presented 

and their ability for modeling soils is judged through 

comparisons with experimental results.  

A practical case study is also used for comparison: a 

retaining wall used for supporting a deep excavation.  

 

 

2   Constitutive laws for soils 
Soils are a heterogeneous material whose behavior is 

strongly influenced by various factors as: grain size, 

mineralogy, structure, pore water, initial stress state etc. 

Moreover, soils are characterized by time dependent 

modifications (creep), thus having a strong rheological 

character.  
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For this reason the constitutive laws associated to 

soils are numerous and various, using one or other being 

dependent of soil type, of problem to be solved and, 

most of the time, of the possibilities of estimating  

complex parameters.  

 

 

2.1 Mohr-Coulomb model 
Coulomb proposed the first plasticity model in soil 

mechanics. It is composed of two symmetrical lines in 

Mohr’s plane (σ, τ), having an angle ϕ with the normal 

stresses axis, σ and having as equation, [5]: 

0cosc2sin)()(F 3131ij ≤ϕ−ϕσ+σ−σ−σ=σ       (1) 

where σ1 and σ3 are the extreme main stresses.  

Parameter c represents the soil cohesion, while ϕ is 

the internal friction angle. In the space of main stresses 

(σ1, σ2, σ3) the surface defined by function F is a 

pyramid with hexagonal section having as axis the line 

σ1 = σ2 = σ3
 (figure 1).  
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Fig. 1. Representation of Mohr-Coulomb criterion in 

main stresses space 

 

The plastic potential defined as a function of the 

extreme main stresses is: 

constsin)()(G 3131ij +ψσ+σ+σ−σ=σ  (2) 

where ψ is the dilatancy angle (ψ = ϕ if it is an 

associated criterion). 

The elasticity associated to the Mohr – Coulomb 

criterion is a linear isotropic – Hooke type one. The 

criterion contains 5 mechanical parameters: 

� E – elasticity modulus, ν - Poisson’s coefficient: 

elastic parameters; 

� c, ϕ, ψ: plastic parameters. 

 

Determination of Mohr – Coulomb criterion 

parameters 
The parameters of the Mohr – Coulomb criterion can be 

determined using a triaxial compression, axial symmetric 

laboratory test. Figure 2 presents the results of such a 

test and the manner in which the parameters can be 

determined (ε1 – main specific strain; εv – volumetric 

strain). 

If the soil cohesion is not nil (cohesive soils), a 

minimum of two laboratory tests are required, conducted 

under different consolidation pressures, for determining 

the parameters ϕ and c. For each test, the axial stress at 

failure, σ1 and the consolidation pressure are plotted in 

the ((σ1 + σ3)/2, (σ1 - σ3)/2) axis system. The obtained 

points are approximated by a linear regression. The slope 

of the line (sinϕ) provides the ϕ value, while the ordinate 

for x = 0 (c cosϕ) gives the c value (figure 3). 
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Fig. 2. Axial symmetric triaxial compression test 

modeled using Mohr – Coulomb criterion 
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Fig. 3. Determination of parameters ϕ and c 

 

 

2.2   Nova model 
Nova model, [6], is a nonlinear elastic – hardening 

plastic criterion, with isotropic plastic hardening, 

inspired by the Cam-clay model, [5], but adapted to sand 

behavior.   

It has been developed based on tests conducted on 

cylindrical sand samples, which explains the formulation 

as a function of stress invariants, p (mean pressure) and 

q (deviatoric stress) and plastic strain invariants, p
vε  

(plastic volumetric strain) and 
p
dε  (plastic deviatoric 

strain). 

The elastic component of the strain is linked to the 

stress state by the following incremental relationship: 

ijoijo
e
ij

p3

dp
BdLd δ+η=ε    (3) 

where Lo and Bo are two specific parameters of the 
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model and 
p

p ijij

ij

δ−σ
=η , (δij is Kroneker’s tensor). 

The mean pressure, p and the deviatoric stress, q are 

calculated using the following formulas:  

( ) ( ) ( )
2

q          
3

p
2

32
2

31
2

21321 σ−σ+σ−σ+σ−σ
=

σ+σ+σ
= (4) 

 

The expressions for the yield surface and plastic 

potential are given in table 1.  

 

Table 1. Yield surface and plastic potential expressions 

function of stress state 

 

Figure 4 presents the yield surface and the plastic 

potential for Nova’s criterion in (p, q) plane. 
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Fig. 4. Yield surface (a) and plastic potential (b) for 

Nova’s criterion 

 

Variables pco and pc correspond to the intersection of 

the plastic potential with the isotropic compression axis 

for 
2

M

p

q
≥  and to the variable characterizing the 

hardening, respectively. pc is function of the plastic 

strain invariants: 
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where: 
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p
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p
1

p
v ε+ε+ε=ε  and 

( ) ( ) ( )
2

2p
3

p
2

2p
3

p
1

2p
2

p
1p

d

ε−ε+ε−ε+ε−ε
=ε  (6) 

 

Determination of Nova’s criterion parameters 
Nova’s criterion is described by eight parameters 

determined based on triaxial - axial symmetric 

compression tests, in drained conditions, with one 

unloading – reloading cycle, [7].  

 

� Bo: elastic behavior parameter determined by the 

points on the unloading curve. These points form a line 

in the ( pln  ,e
vε ) plan; the slope of this line provides Bo 

value. 

� Lo: elastic behavior parameter determined by the 

points on the unloading curve. These points form a line 

in ( q/p ,e
dε ) plan, which slope gives Lo value. 

� l: parameter linked to the initial tangent to the 

behavior curve (ε1, q): ( )
lL6

9

d

dq

o

3
31

1 +

σ
=σ=σ

ε
. 

� D: parameter modeling the dilatancy. D is the limit of  
p

d
p
v d/d εε  when the failure is approaching. 

� M: parameter related to the extreme point of the 

plastic volumetric strain ( 0d p
v =ε ). M can be determined 

from the ( p
v1  , εε ) graph. The strain p

vε  is evaluated as 

the difference between the experimental volumetric 

strain (or total strain) and the elastic volumetric strain 

calculated using Nova’s criterion (Bo being known). 

� µµµµ: parameter related to the soil sample failure. It is 

determined using the relationship: ( ) D/Mf −η=µ , 

where fη  corresponds to stress rate q / p at failure. 

� m: parameter related to the position of the 

characteristic state (the extreme point of the volumetric 

strain, dεv = 0). Its determination is delicate and often is 

preferred to be adjusted successively based on an 

estimated value of the characteristic state. The equation 

of the tangent to the curve (ε1, q) for the point 

(ε1, dεv = 0) can be written and the following relationship 

is deduced: 

Stress 
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Stress – 
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plastic potential G(p, q, pc) 
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( )( )( )
( )co

cco

MlDB

M3Bl
m

η−+µ

η−η−−−
= , where ηc is the stress 

rate q / p for the characteristic state. 

� pco: parameter depending on the initial state, equal to 

the consolidation pressure of a triaxial test or calculated 

function of initial stress state so that no initial elastic 

domain exists into the soil mass.  

 

As the parameters of the Nova’s criterion haven’t an 

obvious physical signification as the Mohr – Coulomb 

parameters it is difficult to quantify their influence on 

the soil behavior.  

 

 

2.3   Vermeer’s model 
The constitutive model developed by Vermeer, [8], is a 

nonlinear elastic – hardening plastic model also, with 

two hardening mechanisms. The first hardening 

mechanism is a pure volumetric one (consolidation), 

while the second one is purely deviatoric (shear). The 

plastic potential coincides with the yield surface for the 

first mechanism (associated potential), while for the 

second mechanism a relationship type stress – dilatancy 

is used for the plastic potential. The elastic part of the 

criterion is non-linear and isotropic and derives from a 

potential.  

The elastic component of the Vermeer’s model is 

based on Hooke elasticity with a Young’s modulus 

depending on the stress state and a nil Poisson’s 

coefficient. The relationship linking stresses and strains 

is the following:  

( ) ( ) [ ]( )β−
σ=σσε=σ

1
onoijsijsijij p/GG    with                G2  (7) 

where po is an initial isotropic reference pressure for 

which the volumetric strain is e
oε  ( o

e
oo p3G2 =ε ), β is a 

constant and σn represents the following stress invariant: 

3

2
3

2
2

2
12

n

σ+σ+σ
=σ      (8) 

The volumetric yield surface has the following 

expression: 

( ) ( ) [ ] 0p/ε ,Gε ,F p
vcon

c
o

p
ijijv

p
ijijv =ε−σε=σ=σ β  (9) 

where c
oε  is a constant and p

vcε  represents the hardening 

parameter of the yield surface.  

The deviatoric yield surface has the following 

expression: 

( ) ( ) 0xAIIIpII3 ,F 32
p
ijijc =+−=εσ    (10) 

where p, II2, III3 are the classical invariants using the 

sign convention of the continuum medium mechanics:  

( )

3213

3231212

321

III

   ;II

  ;3/p

σσσ−=

σσ−σσ−σσ−=

σ+σ+σ−=

   (11) 

A(x) is a scalar function defined as follows: 

( )
( )( )

( )( ) ( )( )

( ) [ ] onoo
p2

p

p

p//pG2    x          2/xcx4/xxh

sin-3

6sin
c          

xh33xh2

xh327
xA

β
σγ=−+=

φ

φ
=

−+

+
=

 (12) 

where c is a parameter defined function of the maximum 

internal friction angle φp and γp
 represents the plastic 

distortion: ( ) 5.0p
ij

p
ij

p 2/ee=γ . 

These complex expressions cover a very simple reality. 

In fact, the deviatoric yield surface was built so that it is 

reduced to Drucker-Prager’s criterion [5] when the 

conditions of a triaxial axial symmetric test conditions 

are fulfilled. In this case, the yield surface equation is 

reduced to the following simple relationship: 

( ) 0xhp/qFc =−=  `   (13) 

The plastic potential is not associated and it is built using 

the following relationship: 

( ) ( ) 3/sinp43/ss2G mijijijc ψ−=σ    (14) 

By definition, angle ψm is the dilatancy angle which is 

related to the stress state by the following expression: 

cvm

cvm
m

sinsin1

sinsin
sin

φφ−

φ−φ
=ψ     (15) 

where φcv is the internal friction angle at constant 

volume. Angle φm is related to the stress state by: 

( )
( ) qp6

q3

xA1

xA9
sin m

+
=

−

−
=φ     (16) 

Failure for Vermeer model is obtained for the following 

stress rate (q/p)r: 

( )
p

p

r
sin3

sin6
p/q

φ−

φ
=     (17) 
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Fig. 5. Volumetric yield surface (a) and deviatoric yield 

surface (b) for Vermeer’s model 
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Thus, Vermeer model has six parameters: φp, φcv, 
e
oε , 

c
oε , β and po. The reduced number of parameters 

represents an important advantage in using this 

constitutive law. Figure 5 presents the volumetric and 

the deviatoric yield surfaces for Vermeer’s model. 

 

Determination of Vermeer’s model parameters 
As for Nova’s criterion, the parameters of Vermeer’s 

model are determined based on triaxial compression - 

axial symmetric tests, in drained conditions and with one 

unloading – reloading cycle, [9].  

� εεεεe
o and ββββ: elastic behavior parameters determined for 

the unloading curve. These points form a line on the 

(
n

e
n ln,ln σε ) graph. The equation of this line is:  

( ) ( )3/ln/plnln e
ono

e
n ε+σβ=ε , with ( ) 5.0e

ij
e
ij

e
n 3/εε=ε  and 

( ) 5.0
ijijn 3/σσ=σ . 

� εεεε
c
o: parameter related to the initial tangent to the graph  

(ε1, q), ( )
( ) βε+β+ε

σ
=σ=σ

ε c
o

e
o

3
31

1 2

9

d

dq . 

� φφφφp: parameter related to the soil sample failure; φp is 

the maximum friction angle. 

� φφφφcv: parameter related to dilatancy modeling. Angle φcv 

is determined using the following relationship:  

( )13

v

mp

mp

cv
dd4

3d
sin  with  

sinsin1

sinsin
sin

ε−ε

ε
=ψ

ψφ−

ψ−φ
=φ ,  

where ψ represents the dilatancy angle during the test 

and ψm is its limit before failure. 

� po: parameter depending on the initial state, equal to 

the consolidation pressure for a triaxial compression test 

or calculated function of the initial state so that no initial 

elastic domain exists in the soil mass.  

 

 

3   Calibration of constitutive law 

parameters based on numerical FEM 

modeling 
As it has been seen previously, the difficulty in obtaining 

the parameters of constitutive laws is direct proportional 

with laws complexity. In general, they suppose triaxial 

tests with imposed stress path, which is not easily done 

by ordinary geotechnical laboratories.  

Even after a proper determination of the parameters, 

before their use in numerical calculation for structural 

design is necessary to calibrate them. This is done 

through numerical modeling of the same experimental 

tests giving the laws parameters, [10]. The following 

paragraphs present such numerical calculations for the 

three constitutive models described above. The soil is a 

fine, poorly graded, dry sand.  

 

3.1   Calibration of Mohr-Coulomb criterion 

parameters 
The results obtained by FEM modeling of the triaxial 

test providing the parameters of this model are shown 

figure 6. The consolidation pressure of the sand sample 

was 60 kPa. 
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Fig. 6. Calibration of the Mohr-Coulomb parameters 

 

On the graph figure 6 one can note a good 

approximation of the initial elastic modulus, as well as 

of the failure stresses. Being an elastic – perfectly plastic 

criterion, Mohr – Coulomb model cannot model the 

yield and, as a consequence, the curvature of the 

experimental results (graph q - ε1) cannot be seen. 

 

 

3.2   Calibration of Nova’s criterion parameters 
Based on the triaxial tests conducted under a 

consolidation pressure of 60 kPa, 4 FEM analyses have 

been performed. The Nova parameters used for these 

models are presented table 2, while the graphs – curves 

(ε1, q) and (ε1, εv) - are shown figures 7 and 8, 

respectively. 

 

Table 2. Nova’s model parameters – FEM analyses of 

the triaxial test  
FEM Bo Lo m l 

1 0.000185 0.000597 0.167 0.00107 

2 0.0002 0.00061 0.793 0.00113 

3 0.00022 0.00065 0.8 0.0013 

4 0.0002 0.00065 0.719 0.0031 

FEM D M µ pco kPa 

1 0.587 1.294 0.62 60 

2 0.582 1.224 0.647 60 

3 0.58 1.26 0.64 60 

4 0.586 1.279 0.62 60 

 

As it can be seen on the graphs figures 7 and 8, the 

differences between the experimental curves and the 

theoretical ones are quite important. Even if the failure 

stresses are properly modeled numerically, the plastic 

strains and the slope of the (ε1 – q) graph are not well 

approximated. By analyses no. 1 and 4 it was tried to 
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obtain a more ample plastic response, but the elastic 

strains are not well modeled and the position of the 

characteristic state is very different than the 

experimental one (graph ε1, εv). However, in the analyses 

no. 2 and 3 the position of the characteristic state is 

closer than the real one and the initial slope of the curve 

ε1 – q is the same as the experimental one. The plastic 

response is, however, more reduced than the real one. 
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Fig. 7. Calibration of the Nova’s model parameters, 

graph ε1 – q 
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Fig. 8. Calibration of Nova’s model parameters, graph ε1 

-  εv 

 

 

3.3   Calibration of Vermeer’s model parameters 
For the triaxial test under a consolidation pressure of 

60 kPa, 5 finite element analyses have been used for 

calibrating the parameters of the Vermeer’s criterion. 

The values used for the analyses are presented table 3, 

while the graphs in figures 9 and 10. 

 

Table 3. Vermeer’s model parameters – FEM analyses of 

the triaxial test  

 

As it can be observed on the graphs figures 9 and 10, 

the parameters of the first two FEM analyses are poorly 

approximating the sand sample response. But the three 

following FEM analyses are close to the real response, 

being able to estimate quite accurately the two graphs - 

ε1 - q and ε1 - εv. Opposite to Nova’s criterion, a better 

estimation of both elastic and plastic part is observed and 

the position of the unloading – reloading cycles is, also, 

accurate compared to the experiment. 
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Fig. 9. Calibration of Vermeer’s model parameters, 

graph ε1 – q 
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Fig. 10. Calibration of Vermeer’s criterion, graph ε1 -  εv 

 

 

4   Case study. Retaining wall 
Retaining walls are often used for supporting deep 

excavations, especially in urban areas. The correct 

estimation of their behavior is very important taking into 

account the impact on the neighboring buildings. The 

influence of a retaining structure can extend up to 2 – 3 

times the excavation depth. The parameters influencing 

the wall behavior are numerous and difficult to consider 

and the classical methods based on limit equilibrium do 

not offer the possibility of estimating them [11]. FEM is 

offering the best of modeling possibilities if an adequate 

numerical model, with correct and calibrated values is 

used. 

The FEM numerical modeling parameters influencing 

decisively the calculation results are [12]: 

- two and three-dimensional analysis; 

- model size; 

FEM e

oε  φcv φp β c

oε  pco 

kPa 

1 0.003 26.2 42.1 0.87 0.004 60 

2 0.0037 30 42.1 0.72 0.0048 60 

3 0.002 25 40.5 0.38 0.0028 60 

4 0.002 24 40.7 0.32 0.0025 60 

5 0.0018 23 40.3 0.29 0.0022 60 
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- mesh generation; 

- constitutive laws used for the soil and retaining wall; 

- initial stress state acting into the ground; 

- retaining wall construction; 

- excavation and retaining structure loading. 

Here below is presented the numerical modeling 

using FEM of an embedded retaining wall. The 

numerical analysis was carried out using the CESAR-

LCPC finite element code. 

 

 

4.1   Geometrical characteristics of the retaining 

wall 
The modeled retaining wall represents an experimental 

laboratory model (Laboratoire Central des Ponts et 

Chaussées – LCPC, Nantes) which has been studied in 

the centrifuge [13], [14]. 

Figure 11 shows the overall size of the model, which 

corresponds to the real prototype modeled by laboratory 

tests.  The lateral and lower limits imposed by the 

container in which the experimental model has been 

created are also the limits of the numerical model.  

Figure 11 presents also the boundary conditions used 

in the numerical modeling (no lateral displacements for 

the vertical boundaries and nil vertical displacement 

along the lower boundary). 

The total height of the retaining wall is 10 m, while 

the excavation can reach a maximum depth of 6 m.  
16.5 m

43.25 m

1
8
 m

1
0

 m

0.152 m
26.598 m

H  = 6 m (maximum)e

 
Fig. 11. Geometrical characteristics 

 

 

4.2   Numerical model characteristics 
 

4.2.1 Finite element mesh 
Figure 12 shows the finite element mesh, while in table 4 

the characteristics of the finite elements are indicated. 

The computations were performed in 2D, taking into 

account the fact that the experimental procedure imposed 

a two-dimensional behavior of the wall. The numerical 

computations refer to the prototype modeling, 

corresponding to the small-scale model tested in the 

centrifuge. 

The wall and the soil are modeled by 8-noded plane 

strain elements. This mesh density agrees to a reasonable 

computing time and a good accuracy of the results. In 

order to reproduce the interaction between the wall and 

the soil, a layer of special elements is incorporated at the 

interface area (contact elements - quadrilateral 6-noded 

elements). 

 
Fig. 12. Finite element mesh 

 

Table 4. Mesh characteristics 
Number of nodes Number of elements 

2686 876 

 

4.2.2 Material characteristics 

The soil used for the experimental model is a dry fine 

sand with a dry unit weight γd = 16.0 kN/m3.  

In order to model the soil behavior, two constitutive 

laws were used: Mohr – Coulomb criterion and Vermeer 

criterion. The values of the parameters as they have been 

used in calculations are shown table 5. 

 

Table 5. Values of the soil constitutive laws parameters  
Mohr-Coulomb 

E, MPa ν c, kPa ϕ, ° ψ, ° 

75 or 10 0.275 0 39.4 16.7 

Vermeer 

E, 

MPa 

e

oε  φcv φp β c

oε  pco, 

kPa 

75 0.0018 23 40.3 0.29 0.0022 60 

 

As it can been seen in table 5, in case of Mohr – 

Coulomb criterion two values of the elasticity modulus 

have been used: 75 MPa, which is the real modulus of 

the soil and another value, much lower, of 10 MPa, used 

for improving the numerical results and make them 

closer to the experimental values.  

For Vermeer’s criterion the parameters were obtained 

by calibration with laboratory tests (see paragraph 3.3). 

The contact between soil and wall has been modeled 

using a sliding interface with same parameters for all 

calculations. This interface type has been chosen after 

many numerical calculations using various interface 

types and the results indicated the sliding interface to be 

the one modeling the best the interaction for the studied 

case, [10]. The sliding interface is characterized by an 

elasticity modulus equal to the soil one and it has zero 

traction strength.  

For the wall an elastic constitutive law was adopted, 

taking into account that it is much stiffer then the soil. 
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The wall is a metallic one (sheet-pile type) having an 

elasticity modulus Ew = 22350 MPa and a Poisson’s 

coefficient νw = 0.3. 

  

4.2.3 Calculation stages 
Generally, the numerical calculations followed the stages 

presented here below: 

- stage 0 – calculation of the initial stress state within the 

soil. This stage is indispensable for an excavation work, 

in order to calculate and apply the excavation forces on 

the pit surfaces. The initial stresses have to be calculated 

and not issued from a simple initialization; without this, 

the stresses in the contact elements are nil. For this stage 

a special loading module of the software has been used, 

allowing the stress calculation function of the dead load 

of the material. When passing to the following numerical 

stage, the deformations calculated in the first stage have 

to be cancelled. 

- stages 1…6 – modeling of the excavation by 1.0 m 

thick layers until attempting the non – convergence of 

the calculation process or the maximum value imposed 

at 6.0 m depth. 

 

All the calculation stages were decomposed into 10 

load increments in order to take into account the soil 

non-linearity. 

Due to large time required for reaching the 

convergence for high excavation depths, especially in 

case of Vermeer’s criterion, the numerical calculations 

were stopped for a maximum excavation depth of 4.0 m.  

 

4.2.3 Results of numerical modeling and comparison 

with the experimental data 
The calculation results for the maximum horizontal 

displacements of the retaining wall are shown fig. 13.  
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Fig. 13. Maximum horizontal displacements of the 

retaining wall 

As one can note on the graph figure 13, Mohr – 

Coulomb criterion for the real elasticity modulus E = 75 

MPa is not approximating adequately the retaining 

structure behavior. Differences between numerical and 

experimental results are very large (over 200 %). An 

improvement can be obtained using a severe diminution 

of the elasticity modulus to 10 MPa, thus the differences 

being reduced to 30 – 70 %. Even in this case Mohr – 

Coulomb criterion underestimates the lateral 

displacements of the wall. 

By using Vermeer’s criterion an underestimation of 

the displacements was also obtained, but for the real 

characteristics of the soil, an adjustment of the 

parameters not being required. In fact, the results 

obtained with Mohr – Coulomb model for 10 kPa 

elasticity modulus are superposing quite well to the 

results obtained using Vermeer’s criterion.  

Figure 14 shows a comparison between calculations 

and experimental results for wall displacements. 

One can note that the deformation shape is well 

approximated, but the values are underestimated.  
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Fig. 14. Horizontal displacements of the retaining wall 

 

As far as the wall maximum bending moments are 

concerned, their evolution is presented figure 15.  

In this case it can be noted that Mohr – Coulomb 

criterion is less sensitive to elasticity modulus reduction. 

Even if differences between numerical and experimental 

results are reduced, they are still important.  

Vermeer’s criterion indicates instead values 

approximating quite well the experimental bending 

moments.  
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Fig. 15. Maximum bending moments in the retaining 

wall 

 

Figure 16 presents bending moments in the retaining 

wall versus excavation depth graphs.  
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Fig. 16. Bending moments in the retaining wall 

 

One can note a good correlation for the bending 

moment evolution, with a slight underestimation of the 

moments below the maximum moment point. This 

indicates a real embedment of the wall in the soil 

beneath the excavation level at a higher depth than that 

indicated by the numerical calculations. This explains 

also the slightly underestimated displacements which 

have been obtained by numerical calculations.  

 

 

5   Conclusions 
As it was demonstrated here above, using advanced 

constitutive laws for describing material behavior is a 

very important aspect in geotechnical design. The 

development of numerical modeling, especially FEM, 

allows more complex approaches.  

The studied case is the one of a retaining wall, which 

is a common type of structure in civil engineering, used 

especially for deep excavations in urban areas. Soil – 

structure interaction is important in case of these works 

and an incorrect design can lead to important 

degradations of neighboring structures.  

For these reasons using advanced models and 

methods is highly required. But, due to model 

complexity and to the large number of involved 

parameters, FEM calculations can lead to false results. 

For this reason, calibration of the parameters and 

validation of the numerical model are compulsory by 

comparing the calculation results with measurements. 

Paper presents some of the essential aspects of 

modeling geotechnical structures using FEM, taking into 

consideration various constitutive laws for soils and 

comparing experimental and numerical results.  

The advantages of using a simple constitutive law as 

Mohr – Coulomb criterion are obvious: easiness of the 

experimental determination of the law parameters, their 

clear influence on the soil behavior. The inconvenients 

are also obvious and they are related to the linear 

elasticity of the model. For small stresses the numerical 

results strongly underestimate the experimental values. 

Only for high stresses (excavation depths over 3 – 4 m), 

when the plastic response of the soil becomes important 

and when the structure approaches the limit state, the 

numerical values are closed to the experimental ones, 

[10]. 

In case of using Vermeer’s criterion, things are 

different. The advantages of a nonlinear elastic – 

hardening plastic model are obvious. Differences 

between calculations and experiment are reduced to 

acceptable values. Probably, with an improvement of the 

numerical model, these differences could be reduced 

further more. The incovenients in this case are related 

first of all to the determination of the model parameters. 

This implies complex laboratory tests which are not 

possible in any ordinary laboratory. As well, the 

influence of the parameters on the soil behavior is not 

clear and parameters require a calibration before being 

used in numerical models. This calibration is not easy, as 

it has been shown in the paper. Last, but not least, using 

Vermeer’s criterion in numerical calculations led to an 

important increase of the calculation time, compared to 

Mohr – Coulomb and for excavation depths of more than 

4 m we have experienced problems in calculation 

convergence. An improvement of the model must be 
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done in order to be used for higher excavation depths, 

close to the structure limit state.  
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