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Lecture 1:

Course overview.

Why consider software libraries?
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Course overview

The topic of this course:

Learn how to solve 
partial differential equations

  on computers! *

* Using the finite element method.
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Course overview

The numerical solution of
partial differential equations

  is an immensely practical field!

It requires us to know about:

● Partial differential equations

● Methods for discretizations, solvers, preconditioners

● Programming

● Adequate tools

http://www.dealii.org/
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Partial differential equations

Many of the big problems in scientific computing are 
described by partial differential equations (PDEs):

● Structural statics and dynamics
– Bridges, roads, cars, …

● Fluid dynamics
– Ships, pipe networks, …

● Aerodynamics
– Cars, airplanes, rockets, …

● Plasma dynamics
– Astrophysics, fusion energy

● But also in many other fields: Biology, finance, epidemiology, ...

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

On why to use existing software

There are times when we need to write 
computational software ourselves:

● When developing new computational methods

● When solving non-standard problems

In such cases, we could:

● Start from scratch, write everything ourselves

● Build something from existing components

● Adapt existing code written for similar applications

But: Option 1 could be difficult/time consuming/expensive!

http://www.dealii.org/
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)

Ω Ω
h

Meshing
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into

small volumes (cells)
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have
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Numerics for PDEs

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have

In addition:
● We don't just want a simple algorithm
● We want state-of-the-art methods for everything

http://www.dealii.org/
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Numerics for PDEs

Examples of what we would like to have:
● Adaptive meshes
● Realistic, complex geometries

● Quadratic or even higher order elements

● Multigrid solvers
● Scalability to 1000s of processors
● Efficient use of current hardware

● Graphical output suitable for high quality rendering

Q: How can we make all of this happen in a single code?

http://www.dealii.org/
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How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build on existing libraries?

http://www.dealii.org/
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How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build on existing libraries?

There has been a major shift on how we approach the second 
question in scientific computing over the past 10-15 years!

http://www.dealii.org/
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How we develop software

The secret to good scientific software is
(re)using existing libraries!

http://www.dealii.org/
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Existing software

There is excellent software for almost every purpose!

Basic linear algebra (dense vectors, matrices):
● BLAS
● LAPACK

Parallel linear algebra (vectors, sparse matrices, solvers):
● PETSc
● Trilinos

Meshes, finite elements, etc:
● deal.II – the topic of this course
● …

Visualization, dealing with parameter files, ...

http://www.dealii.org/
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Existing software

Arguments against using other people's packages:

I would need to learn a new piece of software, how it 
works, its conventions. I would have to find my way 
around its documentation. Etc. 
I think I'll be faster writing the code I want myself!

http://www.dealii.org/
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Existing software

Arguments against using other people's packages:

I would need to learn a new piece of software, how it 
works, its conventions. I would have to find my way 
around its documentation. Etc. 
I think I'll be faster writing the code I want myself!

Answers:
● The first part is true.
● The second is not!

● You get to use a lot of functionality you could never in a lifetime 
implement yourself.

● Think of how we use Matlab today!

http://www.dealii.org/
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Existing software

Progress over time:

    Red: Do it yourself. Blue: Use existing software.

Question: Where is the cross-over point?

http://www.dealii.org/
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Existing software

Progress over time, the real picture:

    Red: Do it yourself. Blue: Use existing software.

Answer: Cross-over is after 2–4 weeks! A PhD takes 3–4 years.

http://www.dealii.org/
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Existing software

Experience:

Students developing numerical methods can realistically expect to 
have a code at the end of a PhD time that:

● Works in 2d and 3d
● On complex geometries
● Uses higher order finite element methods
● Uses multigrid solvers or preconditioners
● Solves a nonlinear, time dependent problem

Doing this from scratch would take 10+ years.

http://www.dealii.org/
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Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use 
doesn't have bugs? How can I trust other people's 
software?
With my own software, at least I know that I don't 
have bugs!

http://www.dealii.org/
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Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use 
doesn't have bugs? How can I trust other people's 
software?
With my own software, at least I know that I don't 
have bugs!

Answer 1:
● You can't be serious to think that your own software has no 

bugs!

http://www.dealii.org/
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Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use 
doesn't have bugs? How can I trust other people's 
software?
With my own software, at least I know that I don't 
have bugs!

Answer 2:
● deal.II is developed by professionals with a lot of experience
● It has an extensive testsuite:

We run 2,800+ tests after every single change!

http://www.dealii.org/
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Conclusions

● When having to implement software for a particular problem, re-
use what others have done already

● There are many high-quality, open source software libraries for 
every purpose in scientific computing

● Use them:
– You will be far more productive
– You will be able to use state-of-the-art methods
– You will have far fewer bugs in your code

If you are a graduate student:
Use them because you will be able to impress

your adviser with quick results!

http://www.dealii.org/
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Lecture 2:

A real short overview of deal.II
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deal.II

Deal.II is a finite element library. It provides:

● Meshes

● Finite elements, quadrature,

● Linear algebra

● Most everything you will ever need when writing a finite element 
code

On the web at

http://www.dealii.org/

http://www.dealii.org/
http://www.dealii.org/
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deal.II

deal.II is probably the largest FEM library:

● Presently ~600,000 lines of C++ code

● 10,000+ pages of documentation

● ~45 tutorial programs 

● Fairly widely distributed: 
20,000+ downloads in 2012

● At least 65+ publications in 2012,
400+ overall, that use it

● Used in teaching at a number 
of universities

● 2007 Wilkinson prize. 0
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What's in deal.II

Meshes and elements:

● Supports adaptive meshes in 1d, 2d, and 3d

● Easy ways to adapt meshes: Standard refinement 
indicators already built in

● Many standard finite element types (continuous, 
discontinuous, mixed, Raviart-Thomas, ...)

● Low and high order elements

● Full support for multi-component problems

http://www.dealii.org/
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What's in deal.II

Linear algebra in deal.II:

● Has its own sub-library for dense + sparse linear algebra

● Interfaces to PETSC, Trilinos, UMFPACK

Pre- and postprocessing:

● Can read most mesh formats

● Can write almost any visualization file format

Parallelization:

● Uses threads and tasks on multicore machines

● Uses MPI, up to 10,000s of processors

●

●

http://www.dealii.org/
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What deal.II is used for

Apparently any PDE can be solved with deal.II.

In 2008–2010, papers were published that simulate:

● Biomedical imaging
● Heart muscle fibers

● Microfluidics
● Oil reservoir flow
● Fuel cells
● Aerodynamics

● Quantum mechanics
● Neutron transport

● Numerical methods research

● Fracture mechanics
● Damage models
● Sedimentation
● Biomechanics
● Root growth of plants
● Solidification of alloys
● Glacier mechanics

● Deterioration of 
statues due to air 
pollution

http://www.dealii.org/
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What deal.II is used for

Example:  The mantle convection code ASPECT

http://aspect.dealii.org/

Methods:
● 2d, 3d, adaptive meshes, multigrid solvers
● Higher order finite elements
● Fully parallel

http://www.dealii.org/
http://aspect.dealii.org/
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How deal.II is developed

Development:

● 4–6 core developers (in the US, South Africa, Germany)

● ~10 occasional contributors (around the world)

● 100+ people have contributed over the past 10 years

● ~3000 lines of new code per month

deal.II is a typical open source project:

● People primarily develop what they need

● Open culture: 
– All development happens in the open
– We (really) welcome everyone's contributions!

http://www.dealii.org/
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On the web

Visit the deal.II library:

http://www.dealii.org/

http://www.dealii.org/
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Conclusions

● Mission: 
To provide everything that is needed in finite element
computations.

● Development:
As an open source project

 As an inviting community to all who want to contribute

As professional-grade software to users

http://www.dealii.org/
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Lecture 3:

The building blocks of a
finite element code
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Implementing the finite element method

Brief re-hash of the FEM, using the Poisson 
equation:

We start with the strong form:
−Δu  = f       in Ω
u        =  0       on ∂Ω

http://www.dealii.org/
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Implementing the finite element method

Brief re-hash of the FEM, using the Poisson 
equation:

We start with the strong form:

...and transform this into the weak form by multiplying 
from the left with a test function:

The solution of this is a function u(x) from an infinite-
dimensional function space.

−Δu  = f

(∇ φ ,∇ u)=(φ , f )     ∀φ

http://www.dealii.org/
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Implementing the finite element method

Since computers can't handle objects with infinitely many 
coefficients, we seek a finite dimensional function of the 
form

To determine the N coefficients, test with the N basis 
functions:

If basis functions are linearly independent, this yields N 
equations for N coefficients.

Note: This is called the Galerkin method.

uh=∑ j=1

N
U jφ j(x)

(∇ φ i ,∇ uh)=(φ i , f )     ∀i=1. ..N

http://www.dealii.org/
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element method, this is done using 
the following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is mapped from the reference cell
● Definition of basis functions on the reference cell
● Each shape function corresponds to a degree of freedom 

on the global mesh

http://www.dealii.org/
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: 

Ω Ω
h

Meshing

Reference
cell

Mapping F
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: 

Ω

Reference cell 
(geometry)

Mapping F

Reference cell 
(degrees of freedom)

Enumeration

0
1

2 3 4

5

6

7
8
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element method, this is done using 
the following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is mapped from the reference cell
● Definition of basis functions on the reference cell
● Each shape function corresponds to a degree of freedom 

on the global mesh

Concepts in red will correspond to things we need to 
implement in software, explicitly or implicitly.

http://www.dealii.org/
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Implementing the finite element method

Given the definition                        , we can expand the 
bilinear form

to obtain:

This is a linear system

with

(∇ φ i ,∇ uh)=(φ i , f )     ∀i=1. ..N

∑ j=1

N
(∇ φ i ,∇ φ j)U j=(φ i , f )     ∀i=1. ..N

uh=∑ j=1

N
U jφ j(x)

AU=F

Aij=(∇ φ i ,∇ φ j)             F i=(φ i , f )

http://www.dealii.org/
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Implementing the finite element method

Practical question 2: How to compute

Answer: By mapping back to the reference cell...

...and quadrature:

Similarly for the right hand side F.

Aij=(∇ φ i ,∇ φ j)             F i=(φ i , f )

A ij  = (∇ φi ,∇ φ j)                                                          

     =  ∑K∫K
∇ φi(x)⋅∇ φ j(x)

     =  ∑K∫K̂
JK

−1
( x̂) ∇̂ φ̂i ( x̂ )  ⋅ J K

−1
( x̂)∇̂ φ̂ j( x̂)  ∣det JK ( x̂)∣

Aij  ≈  ∑K ∑q=1

Q
J K

−1( x̂q) ∇̂ φ̂i( x̂q)  ⋅ J K
−1( x̂q)∇̂ φ̂ j( x̂q)  ∣det J ( x̂q)∣ wq⏟

=: JxW

http://www.dealii.org/
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Implementing the finite element method

Practical question 3: How to store the matrix and 
vectors of the linear system

Answers:
● A is sparse, so store it in compressed row format
● U,F are just vectors, store them as arrays
● Implement efficient algorithms on them, e.g. matrix-

vector products, preconditioners, etc.
● For large-scale computations, data structures and 

algorithms must be parallel

AU=F

http://www.dealii.org/
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Implementing the finite element method

Practical question 4: How to solve the linear system

Answers: In practical computations, we need a variety of
● Direct solvers
● Iterative solvers
● Parallel solvers

AU=F

http://www.dealii.org/
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Implementing the finite element method

Practical question 5: What to do with the solution of the 
linear system

Answers: The goal is not to solve the linear system, but to 
do something with its solution:

● Visualize
● Evaluate for quantities of interest
● Estimate the error

These steps are often called postprocessing the solution.

AU=F

http://www.dealii.org/
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Implementing the finite element method

Together, the concepts we have identified lead to the 
following components that all appear (explicitly or 
implicitly) in finite element codes:

http://www.dealii.org/
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Implementing the finite element method

Each one of the components in this chart… 

… can also be found in the manual at

 http://www.dealii.org/7.2.0/index.html

http://www.dealii.org/
http://www.dealii.org/7.2.0/index.html
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Implementing the finite element method

Summary:
● By going through the mathematical description of the 

FEM, we have identified concepts that need to be
represented by software components.

● Other components relate to what we want to do with
numerical solutions of PDEs.

● The next few lectures will show the software realization 
of these concepts.

http://www.dealii.org/
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Lecture 4:

A first example

–

The step-1 tutorial program: 
Triangulations

http://www.dealii.org/
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step-1

Step-1 shows:

● The Triangulation class

● How to think of a triangulation: as a collection of cells

● How to query cells for information, and what to do with 
them

● How to output a mesh, and a way to visualize it.

http://www.dealii.org/
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step-1

Tutorial programs have the following structure:

● Introduction:
- lays out the problem to be solved
- discusses the numerical method
- introduces basics of the implementation

● Thoroughly documented code, processed for better 
readability

● Results section, often with suggestions for further 
extensions

● Copy of the code without the comments

All programs use similar structure and naming convention.

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

step-1

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_1.html

Notes when reading:
● Read the introduction!
● If you want to understand the entire code, read from the 

top
● If you just want to follow the flow of the program, read 

from the bottom!
● Think about modifying the code as you read.

http://www.dealii.org/
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step-1

After reading, play with the program:
cd examples/step-1
cmake -DDEAL_II_DIR=/path/to/deal.II .
make run

This will run the program and generate output files:
ls -l
okular grid-2.eps

Next step: Play by following the suggestions in the
results section. This is the best way to learn!

http://www.dealii.org/
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Lecture 5:

A second example:

The step-2 tutorial program
–

Degrees of freedom (DoFs)

http://www.dealii.org/
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step-2

Step-2 shows:

● How degrees of freedom are defined with finite 
elements

● The DoFHandler class

● How DoFs are connected by bilinear forms

● Sparsity patterns of matrices

● How to visualize a sparsity pattern

http://www.dealii.org/
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step-2

Sparsity of system matrices:

● For PDEs, finite element matrices are always sparse 

● Result of
– local definition of shape functions
– locality of the differential operator

Sparsity is not a coincidence. It is a design choice of the 
finite element method.

Sparsity can not be overestimated as a
factor in the success of the FEM!

http://www.dealii.org/
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step-2

Example: Consider this mesh and bilinear form:

Note: In general we have that

●

●

The bigger the mesh, the more zeros there are per row!

Ω

0
1

2 3 4

5

6

7
8

A ij  = (∇ φi ,∇φ j)

       = ∫
Ω
∇ φi⋅∇ φ j d x

A00≠0, A01≠0, A02≠0, A06≠0

A03=A04=A05=A07=A08=0

http://www.dealii.org/
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step-2

Renumbering: The order of enumerating degrees of 
freedom is arbitrary

vs.

Notes:

● Resulting matrices are just permutations of each other

● Both sparse, but some algorithms care

Ω

0
1

2 3 4

5

6

7
8 Ω

0

1

2

3

4

5

6

7

8
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step-2

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_2.html

Then play with the program:
cd examples/step-2
cmake -DDEAL_II_DIR=/a/b/c . ; make run

This will run the program and generate output files:
ls -l

Then run gnuplot as described in the documentation
gnuplot

Next step: Play by following the suggestions in the results 
section. This is the best way to learn!

http://www.dealii.org/
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Lecture 6:

A third example:

The step-3 tutorial program
–

A first Laplace solver

http://www.dealii.org/
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step-3

Step-3 shows:

● How to set up a linear system

● How to assemble the linear system from the bilinear 
form: 
- The loop over all cells
- The FEValues class

● Solving linear systems

● Visualizing the solution

http://www.dealii.org/
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step-3

Recall:

● For the Laplace equation, the bilinear form is written as 
a sum over all cells:

A ij  = (∇ φi ,∇φ j)                                                          

      = ∑K∫K
∇ φi(x)⋅∇ φ j(x)

http://www.dealii.org/
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step-3

Recall:

● For the Laplace equation, the bilinear form is written as 
a sum over all cells:

● But on each cell, only few shape functions are nonzero!

● For Q
1
, only 16=42 matrix entries are nonzero per cell

● Only compute this (dense) sub-matrix, then “distribute” 
it to the global A

● Similar for the right hand side vector.

A ij  = (∇ φi ,∇φ j)                                                          

      = ∑K∫K
∇ φi(x)⋅∇ φ j(x)

http://www.dealii.org/
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step-3

Example:

● On cell 4, only shape functions 1, 3, 5 are nonzero.

● We get a dense sub-matrix composed of rows and 
columns 1,3,5 of A.

Ω

0
1

2 3 4

5

6

7
8

4
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step-3

Recall:

● We use quadrature

● We really only have to evaluate shape functions, 
Jacobians, etc., at quadrature points – not as functions

● All evaluations happen on the reference cell

A ij
K  = ∫K

∇ φ̂i(x)⋅∇ φ̂ j dx

       ≈  ∑q=1

Q
J K

−1
( x̂q) ∇̂ φ̂i ( x̂q)  ⋅ JK

−1
( x̂q)∇̂ φ̂ j( x̂q)  ∣det J ( x̂q)∣ wq⏟

=: JxW

http://www.dealii.org/
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step-3

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_3.html

Then play with the program:
cd examples/step-3
cmake -DDEAL_II_DIR=/a/b/c . ; make run

This will run the program and generate output files:
ls -l

Then run visit to visualize the output
visit

Next step: Play by following the suggestions in the results 
section. This is the best way to learn!

http://www.dealii.org/
http://www.dealii.org/7.1.0/doxygen/deal.II/step_3.html
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