
http://www.dealii.org/ Wolfgang Bangerth

Using finite elements
via the deal.II library

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 1:

Course overview.

Why consider software libraries?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Course overview

The topic of this course:

Learn how to solve
partial differential equations

 on computers! *

* Using the finite element method.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Course overview

The numerical solution of
partial differential equations

 is an immensely practical field!

It requires us to know about:

● Partial differential equations

● Methods for discretizations, solvers, preconditioners

● Programming

● Adequate tools

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 5

Partial differential equations

Many of the big problems in scientific computing are
described by partial differential equations (PDEs):

● Structural statics and dynamics
– Bridges, roads, cars, …

● Fluid dynamics
– Ships, pipe networks, …

● Aerodynamics
– Cars, airplanes, rockets, …

● Plasma dynamics
– Astrophysics, fusion energy

● But also in many other fields: Biology, finance, epidemiology, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

On why to use existing software

There are times when we need to write
computational software ourselves:

● When developing new computational methods

● When solving non-standard problems

In such cases, we could:

● Start from scratch, write everything ourselves

● Build something from existing components

● Adapt existing code written for similar applications

But: Option 1 could be difficult/time consuming/expensive!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 7

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)

Ω Ω
h

Meshing

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 8

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into

small volumes (cells)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 9

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 10

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 11

Numerics for PDEs

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have

In addition:
● We don't just want a simple algorithm
● We want state-of-the-art methods for everything

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 12

Numerics for PDEs

Examples of what we would like to have:
● Adaptive meshes
● Realistic, complex geometries

● Quadratic or even higher order elements

● Multigrid solvers
● Scalability to 1000s of processors
● Efficient use of current hardware

● Graphical output suitable for high quality rendering

Q: How can we make all of this happen in a single code?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 13

How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build on existing libraries?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 14

How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build on existing libraries?

There has been a major shift on how we approach the second
question in scientific computing over the past 10-15 years!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 15

How we develop software

The secret to good scientific software is
(re)using existing libraries!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 16

Existing software

There is excellent software for almost every purpose!

Basic linear algebra (dense vectors, matrices):
● BLAS
● LAPACK

Parallel linear algebra (vectors, sparse matrices, solvers):
● PETSc
● Trilinos

Meshes, finite elements, etc:
● deal.II – the topic of this course
● …

Visualization, dealing with parameter files, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 17

Existing software

Arguments against using other people's packages:

I would need to learn a new piece of software, how it
works, its conventions. I would have to find my way
around its documentation. Etc.
I think I'll be faster writing the code I want myself!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 18

Existing software

Arguments against using other people's packages:

I would need to learn a new piece of software, how it
works, its conventions. I would have to find my way
around its documentation. Etc.
I think I'll be faster writing the code I want myself!

Answers:
● The first part is true.
● The second is not!

● You get to use a lot of functionality you could never in a lifetime
implement yourself.

● Think of how we use Matlab today!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 19

Existing software

Progress over time:

 Red: Do it yourself. Blue: Use existing software.

Question: Where is the cross-over point?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 20

Existing software

Progress over time, the real picture:

 Red: Do it yourself. Blue: Use existing software.

Answer: Cross-over is after 2–4 weeks! A PhD takes 3–4 years.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 21

Existing software

Experience:

Students developing numerical methods can realistically expect to
have a code at the end of a PhD time that:

● Works in 2d and 3d
● On complex geometries
● Uses higher order finite element methods
● Uses multigrid solvers or preconditioners
● Solves a nonlinear, time dependent problem

Doing this from scratch would take 10+ years.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 22

Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use
doesn't have bugs? How can I trust other people's
software?
With my own software, at least I know that I don't
have bugs!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 23

Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use
doesn't have bugs? How can I trust other people's
software?
With my own software, at least I know that I don't
have bugs!

Answer 1:
● You can't be serious to think that your own software has no

bugs!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 24

Existing software

Arguments against using other people's packages:

How do I know that that software I'm supposed to use
doesn't have bugs? How can I trust other people's
software?
With my own software, at least I know that I don't
have bugs!

Answer 2:
● deal.II is developed by professionals with a lot of experience
● It has an extensive testsuite:

We run 2,800+ tests after every single change!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 25

Conclusions

● When having to implement software for a particular problem, re-
use what others have done already

● There are many high-quality, open source software libraries for
every purpose in scientific computing

● Use them:
– You will be far more productive
– You will be able to use state-of-the-art methods
– You will have far fewer bugs in your code

If you are a graduate student:
Use them because you will be able to impress

your adviser with quick results!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 2:

A real short overview of deal.II

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 27

deal.II

Deal.II is a finite element library. It provides:

● Meshes

● Finite elements, quadrature,

● Linear algebra

● Most everything you will ever need when writing a finite element
code

On the web at

http://www.dealii.org/

http://www.dealii.org/
http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 28

deal.II

deal.II is probably the largest FEM library:

● Presently ~600,000 lines of C++ code

● 10,000+ pages of documentation

● ~45 tutorial programs

● Fairly widely distributed:
20,000+ downloads in 2012

● At least 65+ publications in 2012,
400+ overall, that use it

● Used in teaching at a number
of universities

● 2007 Wilkinson prize. 0

20

40

60

Year (1998-2011)

P
ub

lic
at

io
ns

 p
er

 y
ea

r
us

in
g

de
al

.II

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 29

What's in deal.II

Meshes and elements:

● Supports adaptive meshes in 1d, 2d, and 3d

● Easy ways to adapt meshes: Standard refinement
indicators already built in

● Many standard finite element types (continuous,
discontinuous, mixed, Raviart-Thomas, ...)

● Low and high order elements

● Full support for multi-component problems

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 30

What's in deal.II

Linear algebra in deal.II:

● Has its own sub-library for dense + sparse linear algebra

● Interfaces to PETSC, Trilinos, UMFPACK

Pre- and postprocessing:

● Can read most mesh formats

● Can write almost any visualization file format

Parallelization:

● Uses threads and tasks on multicore machines

● Uses MPI, up to 10,000s of processors

●

●

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 31

What deal.II is used for

Apparently any PDE can be solved with deal.II.

In 2008–2010, papers were published that simulate:

● Biomedical imaging
● Heart muscle fibers

● Microfluidics
● Oil reservoir flow
● Fuel cells
● Aerodynamics

● Quantum mechanics
● Neutron transport

● Numerical methods research

● Fracture mechanics
● Damage models
● Sedimentation
● Biomechanics
● Root growth of plants
● Solidification of alloys
● Glacier mechanics

● Deterioration of
statues due to air
pollution

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 32

What deal.II is used for

Example: The mantle convection code ASPECT

http://aspect.dealii.org/

Methods:
● 2d, 3d, adaptive meshes, multigrid solvers
● Higher order finite elements
● Fully parallel

http://www.dealii.org/
http://aspect.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 33

How deal.II is developed

Development:

● 4–6 core developers (in the US, South Africa, Germany)

● ~10 occasional contributors (around the world)

● 100+ people have contributed over the past 10 years

● ~3000 lines of new code per month

deal.II is a typical open source project:

● People primarily develop what they need

● Open culture:
– All development happens in the open
– We (really) welcome everyone's contributions!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 34

On the web

Visit the deal.II library:

http://www.dealii.org/

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 35

Conclusions

● Mission:
To provide everything that is needed in finite element
computations.

● Development:
As an open source project

 As an inviting community to all who want to contribute

As professional-grade software to users

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 3:

The building blocks of a
finite element code

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Brief re-hash of the FEM, using the Poisson
equation:

We start with the strong form:
−Δu = f in Ω
u = 0 on ∂Ω

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Brief re-hash of the FEM, using the Poisson
equation:

We start with the strong form:

...and transform this into the weak form by multiplying
from the left with a test function:

The solution of this is a function u(x) from an infinite-
dimensional function space.

−Δu = f

(∇ φ ,∇ u)=(φ , f) ∀φ

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Since computers can't handle objects with infinitely many
coefficients, we seek a finite dimensional function of the
form

To determine the N coefficients, test with the N basis
functions:

If basis functions are linearly independent, this yields N
equations for N coefficients.

Note: This is called the Galerkin method.

uh=∑ j=1

N
U jφ j(x)

(∇ φ i ,∇ uh)=(φ i , f) ∀i=1. ..N

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element method, this is done using
the following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is mapped from the reference cell
● Definition of basis functions on the reference cell
● Each shape function corresponds to a degree of freedom

on the global mesh

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer:

Ω Ω
h

Meshing

Reference
cell

Mapping F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer:

Ω

Reference cell
(geometry)

Mapping F

Reference cell
(degrees of freedom)

Enumeration

0
1

2 3 4

5

6

7
8

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element method, this is done using
the following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is mapped from the reference cell
● Definition of basis functions on the reference cell
● Each shape function corresponds to a degree of freedom

on the global mesh

Concepts in red will correspond to things we need to
implement in software, explicitly or implicitly.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Given the definition , we can expand the
bilinear form

to obtain:

This is a linear system

with

(∇ φ i ,∇ uh)=(φ i , f) ∀i=1. ..N

∑ j=1

N
(∇ φ i ,∇ φ j)U j=(φ i , f) ∀i=1. ..N

uh=∑ j=1

N
U jφ j(x)

AU=F

Aij=(∇ φ i ,∇ φ j) F i=(φ i , f)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 2: How to compute

Answer: By mapping back to the reference cell...

...and quadrature:

Similarly for the right hand side F.

Aij=(∇ φ i ,∇ φ j) F i=(φ i , f)

A ij = (∇ φi ,∇ φ j)

 = ∑K∫K
∇ φi(x)⋅∇ φ j(x)

 = ∑K∫K̂
JK

−1
(x̂) ∇̂ φ̂i (x̂) ⋅ J K

−1
(x̂)∇̂ φ̂ j(x̂) ∣det JK (x̂)∣

Aij ≈ ∑K ∑q=1

Q
J K

−1(x̂q) ∇̂ φ̂i(x̂q) ⋅ J K
−1(x̂q)∇̂ φ̂ j(x̂q) ∣det J (x̂q)∣ wq⏟

=: JxW

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 3: How to store the matrix and
vectors of the linear system

Answers:
● A is sparse, so store it in compressed row format
● U,F are just vectors, store them as arrays
● Implement efficient algorithms on them, e.g. matrix-

vector products, preconditioners, etc.
● For large-scale computations, data structures and

algorithms must be parallel

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 4: How to solve the linear system

Answers: In practical computations, we need a variety of
● Direct solvers
● Iterative solvers
● Parallel solvers

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 5: What to do with the solution of the
linear system

Answers: The goal is not to solve the linear system, but to
do something with its solution:

● Visualize
● Evaluate for quantities of interest
● Estimate the error

These steps are often called postprocessing the solution.

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Together, the concepts we have identified lead to the
following components that all appear (explicitly or
implicitly) in finite element codes:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Each one of the components in this chart…

… can also be found in the manual at

 http://www.dealii.org/7.2.0/index.html

http://www.dealii.org/
http://www.dealii.org/7.2.0/index.html

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Summary:
● By going through the mathematical description of the

FEM, we have identified concepts that need to be
represented by software components.

● Other components relate to what we want to do with
numerical solutions of PDEs.

● The next few lectures will show the software realization
of these concepts.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 4:

A first example

–

The step-1 tutorial program:
Triangulations

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-1

Step-1 shows:

● The Triangulation class

● How to think of a triangulation: as a collection of cells

● How to query cells for information, and what to do with
them

● How to output a mesh, and a way to visualize it.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-1

Tutorial programs have the following structure:

● Introduction:
- lays out the problem to be solved
- discusses the numerical method
- introduces basics of the implementation

● Thoroughly documented code, processed for better
readability

● Results section, often with suggestions for further
extensions

● Copy of the code without the comments

All programs use similar structure and naming convention.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-1

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_1.html

Notes when reading:
● Read the introduction!
● If you want to understand the entire code, read from the

top
● If you just want to follow the flow of the program, read

from the bottom!
● Think about modifying the code as you read.

http://www.dealii.org/
http://www.dealii.org/7.1.0/doxygen/deal.II/step_1.html

http://www.dealii.org/ Wolfgang Bangerth

step-1

After reading, play with the program:
cd examples/step-1
cmake -DDEAL_II_DIR=/path/to/deal.II .
make run

This will run the program and generate output files:
ls -l
okular grid-2.eps

Next step: Play by following the suggestions in the
results section. This is the best way to learn!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 5:

A second example:

The step-2 tutorial program
–

Degrees of freedom (DoFs)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-2

Step-2 shows:

● How degrees of freedom are defined with finite
elements

● The DoFHandler class

● How DoFs are connected by bilinear forms

● Sparsity patterns of matrices

● How to visualize a sparsity pattern

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-2

Sparsity of system matrices:

● For PDEs, finite element matrices are always sparse

● Result of
– local definition of shape functions
– locality of the differential operator

Sparsity is not a coincidence. It is a design choice of the
finite element method.

Sparsity can not be overestimated as a
factor in the success of the FEM!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-2

Example: Consider this mesh and bilinear form:

Note: In general we have that

●

●

The bigger the mesh, the more zeros there are per row!

Ω

0
1

2 3 4

5

6

7
8

A ij = (∇ φi ,∇φ j)

 = ∫
Ω
∇ φi⋅∇ φ j d x

A00≠0, A01≠0, A02≠0, A06≠0

A03=A04=A05=A07=A08=0

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-2

Renumbering: The order of enumerating degrees of
freedom is arbitrary

vs.

Notes:

● Resulting matrices are just permutations of each other

● Both sparse, but some algorithms care

Ω

0
1

2 3 4

5

6

7
8 Ω

0

1

2

3

4

5

6

7

8

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-2

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_2.html

Then play with the program:
cd examples/step-2
cmake -DDEAL_II_DIR=/a/b/c . ; make run

This will run the program and generate output files:
ls -l

Then run gnuplot as described in the documentation
gnuplot

Next step: Play by following the suggestions in the results
section. This is the best way to learn!

http://www.dealii.org/
http://www.dealii.org/7.1.0/doxygen/deal.II/step_2.html

http://www.dealii.org/ Wolfgang Bangerth

Lecture 6:

A third example:

The step-3 tutorial program
–

A first Laplace solver

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Step-3 shows:

● How to set up a linear system

● How to assemble the linear system from the bilinear
form:
- The loop over all cells
- The FEValues class

● Solving linear systems

● Visualizing the solution

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Recall:

● For the Laplace equation, the bilinear form is written as
a sum over all cells:

A ij = (∇ φi ,∇φ j)

 = ∑K∫K
∇ φi(x)⋅∇ φ j(x)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Recall:

● For the Laplace equation, the bilinear form is written as
a sum over all cells:

● But on each cell, only few shape functions are nonzero!

● For Q
1
, only 16=42 matrix entries are nonzero per cell

● Only compute this (dense) sub-matrix, then “distribute”
it to the global A

● Similar for the right hand side vector.

A ij = (∇ φi ,∇φ j)

 = ∑K∫K
∇ φi(x)⋅∇ φ j(x)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Example:

● On cell 4, only shape functions 1, 3, 5 are nonzero.

● We get a dense sub-matrix composed of rows and
columns 1,3,5 of A.

Ω

0
1

2 3 4

5

6

7
8

4

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Recall:

● We use quadrature

● We really only have to evaluate shape functions,
Jacobians, etc., at quadrature points – not as functions

● All evaluations happen on the reference cell

A ij
K = ∫K

∇ φ̂i(x)⋅∇ φ̂ j dx

 ≈ ∑q=1

Q
J K

−1
(x̂q) ∇̂ φ̂i (x̂q) ⋅ JK

−1
(x̂q)∇̂ φ̂ j(x̂q) ∣det J (x̂q)∣ wq⏟

=: JxW

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

step-3

Read through the commented program at
http://www.dealii.org/7.1.0/doxygen/deal.II/step_3.html

Then play with the program:
cd examples/step-3
cmake -DDEAL_II_DIR=/a/b/c . ; make run

This will run the program and generate output files:
ls -l

Then run visit to visualize the output
visit

Next step: Play by following the suggestions in the results
section. This is the best way to learn!

http://www.dealii.org/
http://www.dealii.org/7.1.0/doxygen/deal.II/step_3.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

