
Using Fundamental Gates Lab

Overview:

In this lab you will learn how to model simple gates using Verilog HDL and use them to

create a more complex design. You will use fundamental gates using language supported

primitive gates. After building the basic models you will create a hierarchical design.

Outcome:

You will understand how to use Verilog primitive gates. You will learn how to create a

model using ISE Create Project wizard. You will instantiate lower-level models to create

a bigger model. You will use ISE simulator to simulate the design. You will add user

constraint file (ucf) to assign pins so the design can be targeted to National Instruments

(NI) Digital Electronics FPGA Board. You will implement the design and create a

bitstream file using ISE’s implementation tools. Once bitstream is created, you will

download using ISE’s iMPACT program and verify the design functionality.

Background:

Verilog HDL is a hardware description language that can be used to model a digital

system at many levels of abstraction ranging from algorithmic- to the gate- to the switch-

level. The complexity of the digital system being modeled could vary from a simple gate

to a complete system. Various levels of abstractions can be used in modeling the digital

system based on its functionality and complexity. The language supports constructs and

means to model the digital system in a hierarchical fashion. It also allows designer to

describe timing explicitly. The richness of the language constructs is exploited by using

same language constructs to test the system.

A system- from a simple gate to a complex circuit- typically will have some input signals

and some output signals to interact with either other digital devices or external board, and

will have some functionality for which it has been designed. The basic unit of

description in Verilog is the module. A module describes the functionality of a design

and also describes the ports through which it communicates. The basic syntax of the

module is:

module module_name (port_list);

 Declarations

 Statements

endmodule

The Verilog language is case sensitive. In the above example module and endmodule

are keywords describing beginning of a module definition and ending of the module

definition. You can not have nested module definitions, i.e. you can not have another

module keyword within a module-endmodule pair. In the language, a statement is

delimited by a semicolon. You can have multiple statements on a given line. The

declarations in the above example can be definition of data types such as wire and reg,

can be parameter definition, ports direction, functions, and tasks to name few. The

Statements can be initial, always, and continuous assignment statements as well as

module, gate, UDP (User Defined Primitives) instantiations. The Statements describe the

actual functionality of the module. The identifiers must be defined using Declarations

before they ca be used.

The language defines three fundamental modeling styles. In a given module all or subset

of these styles can be used. The three modeling styles are: Structural, Dataflow, and

Behavioral. This lab exercise uses Structural style modeling. Structure can be described

in Verilog using Built-in gate primitives, Switch-level primitives, User-Defined

Primitives (UDP), and module instances. The Switch-level primitives are used to model

fundamental gate functionality or a system built with switches or transistors. The UDP

are used to define a unit as a black-box with providing functionality in truth-table form

and explicit timing relationships between input and output ports. In this lab exercise you

will use gate primitives and module instantiations. The language defines the following

gates:

[Verilog Quick Reference]

Here is an example of instantiating a nor gate:

 nor X1 (S1, A, B);

where X1 is the instance name. It is optional for the gate- or switch-level instantiation.

The instance name is required for a module instantiation. S1 is output, and A and B are

input.

References:

1. National Instruments’ Digital Electronics FPGA Board user manual

2. Verilog HDL books
Stephen Brown, Zvonko G. Vranesic, “Fundamentals of Digital Logic with Verilog Design”, 2002

Zainalabedin Navabi, “Verilog Digital Systems Design: RT Level Synthesis, Testbench, and

Verification”, 2005

Samir Paltinkar, “Verilog HDL: A Guide to Digital Design and Synthesis”, 2003

Joseph Cavanagh, “Verilog HDL: Digital Design and Modeling”, 2007

Michael D. Ciletti, “Modeling, Synthesis, and Rapid Prototyping with Verilog HDL”, 2003

Douglas J. Smith, “HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simulating

ASICs and FPGAs using VHDL or Verilog”, 1996
3. On-line references:

Verilog HDL Reference Card: http://www.stanford.edu/class/ee183/

handouts_win2003/VerilogQuickRef.pdf

Verilog Quick Reference: http://frank.harvard.edu/~howard/pulsenet/docs/

verilog_quikref.pdf

Tutorial on Verilog: http://faculty.kfupm.edu.sa/COE/abouh/

COE%20202%20Verilog%20Guidelines.pdf

Problem Statement:

Design a minority gate that has three inputs and one output. The output is logic 1

whenever the numbers of inputs which are logic 1 are zero or less than half of the input

(i.e. 1 in this case).

Implementation:
The circuit to be designed consists of three inputs and one output. Typically such circuit

can be implemented using a combinational network. A truth table is created and then

some Boolean minimization technique (e.g. K-Map) may be used to reduce the number of

logic gates used. The truth table for the design at hand is shown next along with K-Map

and minimized Boolean expression.

Inputs

A B C

Output

F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

1 1 0 1

1 0 0 0

00 01 11 10

0

1

AB
C

F = A C + B C + A B

F = (A+C) * (B+C) * (A+B)

The two expressions are equivalent. We will use the 2
nd

 expression in this design.

Procedure:

1. Create a ISE project

• Launch ISE: Select Start → Programs → Xilinx ISE Design Suite 10.1 →

ISE → Project Navigator

• In the Project Navigator, select File → New Project. The New Project Wizard

opens

• For Project Location, use the “…” button to browse to C:\NI\Verilog_labs, and

then click OK

• For Project Name, type minoritygate_lab

• Click Next

• Select the following options and click Next

���� Device Family: Spartan3E

���� Device: xc3s500E

���� Package: ft256

���� Speed Grade: –5

���� Synthesis Tool: XST (VHDL/Verilog)

���� Simulator: ISE Simulator (VHDL/Verilog)

���� Preferred Language: Verilog

• The Create New Source dialog will appear. You can use this dialog to create

a new HDL source file by defining the module name and ports. You will do

this once to get experience. Subsequent files creation will be done using a

text file rather than using the dialog. Click New Source button

• A new source wizard will appear. Select Verilog Module as a source type and

enter my_2or in the File name field and click Next

• A Define Module form will appear. Enter in1, in2 as the input in Port Name

field and out1 as the output. Change the input Direction to output by clicking

and drop-down button and selection output as the direction. Click Next and

then OK to create the file

• Click Next and Add Existing Sources form will be displayed. Click Finish as

we do not have anything to add

• Click Finish. A project will be created and my_or2.v file be created and

added to the project. The file will be opened and displayed in the editor

window. You can enter related information regarding project name, target

devices, etc. You will also see a module and endmodule statements are

created. The only thing that is needed is to add the functionality

You will notice that the project hierarchy view window showing the part

information as well as my_2or as the top-level model

• Enter a gate-level instantiation statement that uses primitive gate to perform

or function on the two inputs and output the result with 2 ns delay

• Save and close the file

• Click New button () and select text file and click OK

• Enter the module, endmodule, and gate-level instantiation statement to model

2-input and function using the port names as in1, in2, and out1

• Save and close the file, giving my_2and.v as the filename

• Similarly, create a new model for the minority gate functionality (3 inputs

[in1, in2, and in3] and one output [out1]), instantiating my_2or and my_2and

models, and using necessary number of fundamental gates instantiations and

having 2 ns as the delay. Use named-mapped port convention. The named-

port convention requires a port name of the parent module be listed first

preceded with “.” followed by a net name that is connecting that port in the

current module. In the below figure, .in1 is the port name of my_or2 mdoule

(parent module) where as in1_n is the net name connecting to that port. In

named-port mapping convention, one need not mention all the ports of the

parent module. The unlisted parent module ports are drive logic 0 if they

input and left unconnected if they are output.

• Right-click on my_2or entry in the Sources window and select Add Source …

• Select minoritygate.v and my_2and.v files and click Open

• Click OK to finish the addition

2. Simulate the design using ISIM

• Right-click on the minoritygate entry in Sources window and select New

Source

• Select Test Bench Waveform as the source type and enter minoritygate_tb in

the File name field. Click Next

• Select minoritygate as the UUT to associate the testbench to the source

model and click Next followed by clicking Finish button

• Select combinatorial (internal clock) and click Finish to display the input and

output signals. Click appropriately in the waveform window to generate input

stimulus as shown below

• Save the file

• Select Sources tab and then click minoritygate in Sources window, and click

on the drop-down button of the Sources for window and select Behavioral

Simulation

• Select minoritygate_tb in Sources tab, expand its entry to see UUT. Select

Processes tab, expand Xilinx USE Simulator, and double-click on Simulate

Behavioral Model entry to run the simulator

• The source files will be compiled and the executable file

(minoritygate_tb_ism_beh.exe) be generated which is then run, displaying the

result in a waveform window

• You can view lower-level signals by selecting Sim Insulator tab in Sources

window, expanding hierarchy, selecting a particular instance, then clicking

Sim Objects in tab in Processes window, and then selecting and dragging a

desired signal(s) in the waveform window

• You can zoom-in or zoom-out the waveform window by clicking on

appropriate buttons ()

• You can restart by clicking on () button and re-run by clicking on run for

the specified time ()button

• You can change the run-time by typing in the new time field

(), clicking restart button, and then clicking on run for the

specified time button

• Close the simulator by closing the waveform window and click OK to close

the active simulator

3. Implement the design

• Select implementation in Sources for window

• Select minoritygate module in Sources window

• Expand User Constraints processes in Processes window

• Double-click on Floorplan IO Pre-Synthesis to open PACE program

• Click OK and then Yes to add ucf file

• In PACE window assign pin locations and I/O Std as shown below

• Click Save button

• A dialog box will appear. Choose XST Default: <> option and click OK as

we are using XST synthesis tools

• Close the PACE program using File → Close

• A minoritygate.ucf file will be added to the project. Open that file and see

how the constraints are written

• Close the file

• Select minoritygate in Sources window and double-click on Implement

Design process in Processes window. This will go through Synthesis, and

Implementation stages

• Expand Synthesis processes and double click on View RTL Schematic and

View Technology Schematic processes to get different views

• You can push-in to a lower-level schematic by double-clicking on the top-

level

• When the implementation is completed, expand Implement Design process to

view the Place & Route report

• Double-click on the Place & Route Report to view the report. Look at the

resource utilization and note that 1 slice is being used

• You can see similar information by clicking on Design Summary tab and

looking at the various information

4. Verify the design in hardware

• Select minoritygate in Sources window and double-click on Generate

Programming File process to generate the bit file for the design

• Expand Configure Target Device process and double-click on Manage

Configuration Project (iMPACT) process

• Connect the board with the USB-JTAG cable

• Power ON the board

• Click Finish to use the JTAG chain

• Select minoritygate.bit file to be assigned to xc3s500e device and click Open

• Click Bypass button for xcf04s and then OK to use FPGA device

programming

• Right-click on the FPGA and select Program

• This will program the FPGA and DONE light will lit on the board

• Once programmed successfully, verify the functionality by using SW0 thru

SW2 and monitoring LD0 output. Verify that when more than one switch is

turned ON, LD0 turns OFF

• Once confirmed the functionality, power down the board and close ISE saving

project changes

Conclusion:

In this lab exercise you learned how to design a hierarchical system. You also learned

how to model a circuit using gate-level as well as module-instantiations. You were able

to simulate the design at each level and then verify the complete design in hardware

board.

