Using Fundamental Gates Lab

Overview:

In this lab you will learn how to model simple gates using Verilog HDL and use them to
create a more complex design. You will use fundamental gates using language supported
primitive gates. After building the basic models you will create a hierarchical design.

Outcome:

You will understand how to use Verilog primitive gates. You will learn how to create a
model using ISE Create Project wizard. You will instantiate lower-level models to create
a bigger model. You will use ISE simulator to simulate the design. You will add user
constraint file (ucf) to assign pins so the design can be targeted to National Instruments
(NI) Digital Electronics FPGA Board. You will implement the design and create a
bitstream file using ISE’s implementation tools. Once bitstream is created, you will
download using ISE’s iMPACT program and verify the design functionality.

Background:

Verilog HDL is a hardware description language that can be used to model a digital
system at many levels of abstraction ranging from algorithmic- to the gate- to the switch-
level. The complexity of the digital system being modeled could vary from a simple gate
to a complete system. Various levels of abstractions can be used in modeling the digital
system based on its functionality and complexity. The language supports constructs and
means to model the digital system in a hierarchical fashion. It also allows designer to
describe timing explicitly. The richness of the language constructs is exploited by using
same language constructs to test the system.

A system- from a simple gate to a complex circuit- typically will have some input signals
and some output signals to interact with either other digital devices or external board, and
will have some functionality for which it has been designed. The basic unit of
description in Verilog is the module. A module describes the functionality of a design
and also describes the ports through which it communicates. The basic syntax of the
module is:
module module_name (port_list);

Declarations

Statements
endmodule

The Verilog language is case sensitive. In the above example module and endmodule
are keywords describing beginning of a module definition and ending of the module
definition. You can not have nested module definitions, i.e. you can not have another
module keyword within a module-endmodule pair. In the language, a statement is
delimited by a semicolon. You can have multiple statements on a given line. The
declarations in the above example can be definition of data types such as wire and reg,
can be parameter definition, ports direction, functions, and tasks to name few. The
Statements can be initial, always, and continuous assignment statements as well as
module, gate, UDP (User Defined Primitives) instantiations. The Statements describe the

actual functionality of the module. The identifiers must be defined using Declarations
before they ca be used.

The language defines three fundamental modeling styles. In a given module all or subset
of these styles can be used. The three modeling styles are: Structural, Dataflow, and
Behavioral. This lab exercise uses Structural style modeling. Structure can be described
in Verilog using Built-in gate primitives, Switch-level primitives, User-Defined
Primitives (UDP), and module instances. The Switch-level primitives are used to model
fundamental gate functionality or a system built with switches or transistors. The UDP
are used to define a unit as a black-box with providing functionality in truth-table form
and explicit timing relationships between input and output ports. In this lab exercise you
will use gate primitives and module instantiations. The language defines the following
gates:

Gate Types Component
(Gates Allows and, nand, or,
strensths nor,Xor, Xnor
buf, not
Three State Allows buifo,bufifl
Drivers strengths notifd, notifl
MOS No strengths Omos , puos, Cnos,
Switches romos, rpmos, romos
Bi-directional | No strengths, tran, tranifo,
switches non resistive tranifl
No strengths, rtran, rtranifo,
resistive rtranifl
Allows pullup
strengths pulldown

[Verilog Quick Reference]

Here is an example of instantiating a nor gate:

nor X1 (S1, A, B);
where X1 is the instance name. It is optional for the gate- or switch-level instantiation.
The instance name is required for a module instantiation. S1 is output, and A and B are
input.

References:

1. National Instruments’ Digital Electronics FPGA Board user manual

2. Verilog HDL books
Stephen Brown, Zvonko G. Vranesic, “Fundamentals of Digital Logic with Verilog Design”, 2002
Zainalabedin Navabi, “Verilog Digital Systems Design: RT Level Synthesis, Testbench, and
Verification”, 2005
Samir Paltinkar, “Verilog HDL: A Guide to Digital Design and Synthesis”, 2003
Joseph Cavanagh, “Verilog HDL: Digital Design and Modeling”, 2007
Michael D. Ciletti, “Modeling, Synthesis, and Rapid Prototyping with Verilog HDL”, 2003
Douglas J. Smith, “HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simulating
ASICs and FPGAs using VHDL or Verilog”, 1996

3. On-line references:
Verilog HDL Reference Card: http://www.stanford.edu/class/ee183/
handoutswin2003/VerilogQuickRef.pdf
Verilog Quick Reference: http://frank.harvard.edu/~howard/pulsenet/docs/
verilog_quikref.pdf
Tutorial on Verilog: http://faculty.kfupm.edu.sa/COE/abouh/
COE%20202%20Verilog%20Guidelines.pdf

Problem Statement:

Design a minority gate that has three inputs and one output. The output is logic 1
whenever the numbers of inputs which are logic 1 are zero or less than half of the input
(i.e. 1 in this case).

Implementation:

The circuit to be designed consists of three inputs and one output. Typically such circuit
can be implemented using a combinational network. A truth table is created and then
some Boolean minimization technique (e.g. K-Map) may be used to reduce the number of
logic gates used. The truth table for the design at hand is shown next along with K-Map
and minimized Boolean expression.

Inputs | Output
ABC F
000

|t | e | | OO O
— OO = | O = [D =
OO O = | OO = | = |

0
1
1
0
0
1
1

AB
00 01 11 10

0 1 110 1

1 1 010 0

F =K6+§6+K§
F = (A+C) * (B+C) * (A+B)

The two expressions are equivalent. We will use the 2™ expression in this design.

Procedure:
1. Create a ISE project

Launch ISE: Select Start — Programs — Xilinx ISE Design Suite 10.1 —
ISE — Project Navigator

In the Project Navigator, select File — New Project. The New Project Wizard
opens

For Project Location, use the “..” button to browse to C:\\NI\Verilog_labs, and
then click OK

For Project Name, type minoritygate_lab

Click Next

Select the following options and click Next

Device Family: Spartan3E

Device: xc3s500E

Package: ft256

Speed Grade: -5

Synthesis Tool: XST (VHDL/Verilog)
Simulator: ISE Simulator (VHDL/Verilog)
Preferred Language: Verilog

AN NE VA NA N NN

E Hewr Eroject Wizard - Device Froperties

Select the device and design flow far the project

Property Hame W alue

Product Categary Al w
Farmnily Spartan3E L
Device #C3ISE00E A4
Package FT25E w
Speed Bl w
Top-Level Source Type HOL

Sunthesiz Tool #5T WHDLAernilog) w
Sirmulator ISE Simmulator [YHD LA AYenilog) w
Preferred Language Yerilog w
Enable Enhanced Dezsign Summary

Enable Mezzage Filtering Fi

Dizplay Incremental Mezzages Fi

< Back] I Mext > l [Cancel

* The Create New Source dialog will appear. You can use this dialog to create
a new HDL source file by defining the module name and ports. You will do
this once to get experience. Subsequent files creation will be done using a
text file rather than using the dialog. Click New Source button

* A new source wizard will appear. Select Verilog Module as a source type and
enter my_2or in the File name field and click Next

E Hew Source Wizard - Select Source Type

] IP [CORE Generatar & Architecture ‘Wizard)
|2+] Schematic

File name:
4] Werilog Test Fisture
i) WHDL Madule my_2orv |
I wHOL Library Location:
|P]%HDL Package ; .
] VHDL Test Banch |E:HNIWer|I|:ug_LaI:us'xmmu:unt_l,lgate_lal:u | E
| Embedded Processor

Add ta project

¢ Back [Mexst » l [Cancel

* A Define Module form will appear. Enter inl, in2 as the input in Port Name
field and outl as the output. Change the input Direction to output by clicking
and drop-down button and selection output as the direction. Click Next and
then OK to create the file

E Hew Source Wizard - Define Hodule

Module name |m_|,|_2u:|r ‘
Fort Marne Direction Bus | MSE L5E S
ind input]
in2 irpLt]
ErT—
input]
inpiLt]
inpiLt]
ifpLt +[]
input]
inpiLt]
ifpLt +[]
input] u
. M W
[< Back] [Mext = l [Cancel

* Click Next and Add Existing Sources form will be displayed. Click Finish as
we do not have anything to add

* Click Finish. A project will be created and my_or2.v file be created and
added to the project. The file will be opened and displayed in the editor

window. You can enter related information regarding project name, target
devices, etc. You will also see a module and endmodule statements are
created. The only thing that is needed is to add the functionality

1 “timescales 1ns f 1ps

2 FEPEES S AR SSE SRS RS RS
3 Ff Company:

4 /f Engineer:

5 /Y

6 /S Create Date: O0:26:32 0171172009

7 |ff Dezsign Name:

5 F4 Module Name: wy Zor

= ff Project Name:
10 /f Target Dewvices:
11 f4 Tool wersions:
1z /f Description:

1z | /Y
14 ;¢ Dependencies:
15 Ly

16 ;f Rewvision:
17 /7 Rewision 0.01 - File Created

13 Ff Additional Conmenta:

19/

z20 FEPEES S AR SSE SRS RS RS
21 module my Zor|

22 input inl,
23 input inZ,
24 output outl
Z5 1

26

27

28 endmodule

29

You will notice that the project hierarchy view window showing the part
information as well as my_2or as the top-level model

Sources

Sources for | Implementation W
f‘ﬂ rinarntygate_lab
= £ mc2s500e-5H256

+ Enter a gate-level instantiation statement that uses primitive gate to perform

or function on the two inputs and output the result with 2 ns delay
21 module my Zor |

22 input ini,

23 input inZ,

24 output outl

25 e

26

27 or #Z ©1 f{outl, inl, inZz):
25

29 endmodule

30 |

* Save and close the file

55&85

* Click New button (: Newl _ =) and select zext file and click OK
* Enter the module, endmodule, and gate-level instantiation statement to model

2-input and function using the port names as inl, in2, and outl
module my Zand|
input inl,
input in2,
output outl
1

and #2 A1 (outl,inl,inZ):

endmodule

Owm o -] m b M

* Save and close the file, giving my_2and.v as the filename

* Similarly, create a new model for the minority gate functionality (3 inputs
[in1, in2, and in3] and one output [outl]), instantiating my_2or and my_2and
models, and using necessary number of fundamental gates instantiations and
having 2 ns as the delay. Use named-mapped port convention. The named-
port convention requires a port name of the parent module be listed first
preceded with “.” followed by a net name that is connecting that port in the
current module. In the below figure, .inl is the port name of my_or2 mdoule
(parent module) where as inl_n is the net name connecting to that port. In
named-port mapping convention, one need not mention all the ports of the
parent module. The unlisted parent module ports are drive logic O if they
input and left unconnected if they are output.

input inz,

input ini,;

1 module minoritygate | input inl,
2
3 wire inl n, ind n, in3_n, netl, netZ, neti, netd;
4
g not #2 N1 (inl n,inl);
[not #2 HN2 (inZ n,inl);
7 not #2 N3 (in3_n,in3);
(=]
9 my Zor Ul

10 .inlfinl n

o [| e ten

12 .outlinetl)

13 1:

14

15 my_Zor U2 |

16 »inliinl nj,

17 .inZ (in3 nj,

15 .outlinets)

19 1

20

21 my Zor U3

22 Linliing nj,

23 »ing (in3 nj,

24 .outlinet3)

25 1:

26

27 wy_Zand T4

25 .inl(netl),

29 Ling (neti),

30 outlinetd)

31 1:

iz

33 y Zand U5

34 Linlinet3),

35 Jing (netd) ,

36 .outlioutl)

37 1:

35

39 endmodule

ag |

Sources for | Implementation

'C‘ﬂ rinontpgate_lab
= £ #c3s500e-56256

ny_2or [my_2or. g

g -

=" Mew Source,..

Add Copy of !grce...

@P Cpen
Set az Top Module
SmartGuide...

output outl);

Right-click on my_2or entry in the Sources window and select Add Source ...

* Select minoritygate.v and my_2and.v files and click Open

Add Existing Sources

Loak in: |Eﬂ minaritygate_lab j =k B
3 B_xmsgs
i [E:]minl:-ritygate_lal:-_xdb
iy Recent S rninoritygate ar
Documents
rr E’] riny_Zorw
Dezktop

&

by Documents

al

ty Compuiter

Pl M et File name:]"m_l,l_Eanu:I.v" ""minoritpgate. v 5 Open
Flaces
Files of type:]Su:uuru:es[bt " ovhd " ovhdl *w " oabl ¥ aby " ueo vj Cancel

* (Click OK to finish the addition

2. Simulate the design using ISIM

* Right-click on the minoritygate entry in Sources window and select New
Source

Sources

Sources for: | Implementation w
'l'fﬂ minaritygate_lab ‘

= £75 we32h00e-50t 256

ninoritygate [minaritygate. .
L|1 - my_2or [my_Zor.v] @
2 - my_2ar [rmy_2or.v]
13-y _2ar [rmy_2arv]
U4 - my_2and [my_2and. [Z] Open

U5 - my_2and [my_2and. Set az Top Module
SrnartGuide. ..

Add Source...
Add Copy of Saurce..,

+ Select Test Bench Waveform as the source type and enter minoritygate_tb in
the File name field. Click Next

E Hew Source Wizard - Select Source Type

[F] BMM File

@-_"- ChipScope Definition and Connection File
R [CORE Generator & Architecture Wizard)

ﬂ YWHOL Package
) WHOL Test Bernch
¥ | Embedded Processor

File name:

X

|minu:urit_l,lgate_t|:{

Location:

||:: SN erlog_Labshminantygate_lab

Add to project

¢ Back [Mext »

Cancel

| |

Select minoritygate as the UUT to associate the testbench to the source
model and click Next followed by clicking Finish button
Select combinatorial (internal clock) and click Finish to display the input and
output signals. Click appropriately in the waveform window to generate input

stimulus as shown below

50,0
End Time: e
1000 ns
AR in1 1
Alinz 1
ARin3 1 |
A outt 0

Save the file

Select Sources tab and then click minoritygate in Sources window, and click
on the drop-down button of the Sources for window and select Behavioral

Simulation

Sources

Sources far: | Implementation

'C'ﬁ minof Implementatian

= u:ust-Fh:ut Siulatiu:u _

-y Zor [my_2orv)
- my_2or [my_2orv]
- _2ar [y _2or.v]
- my_Zand [ry_Z2and.v]
-my_2and [ry_2and. v

* Select minoritygate_tb in Sources tab, expand its entry to see UUT. Select
Processes tab, expand Xilinx USE Simulator, and double-click on Simulate
Behavioral Model entry to run the simulator

Sources for: | Behavioral Sinmulation A

'I:E-'j rainaritygate_lab
= f xc3s500e-5t256
EI minaritpgate_th [rinoribygate_th tbw)
+ UUT - minaritygate [minartygate v

F‘[ﬁ Sources ‘-._IL Files | ey Snapst |E Librarie: | [53] Simn Irstar

Proceszses for: minaritygate_tb
™ AddExisting Source
[Create Mew Source
View Generated Test Bench Az HDL
[AddTest Bench To Project

[E]3F i ISE Simulator

+ D Simulate Behavioral pdodel

Ft Proceszes D Sim Objects D Hierarchy - minori

+ The source files will be compiled and the executable file
(minoritygate_tb_ism_beh.exe) be generated which is then run, displaying the
result in a waveform window

400 ns 500 ns 600 ns 700 ns 00 ns 900 ns 1000 ng

* You can view lower-level signals by selecting Sim Insulator tab in Sources
window, expanding hierarchy, selecting a particular instance, then clicking
Sim Objects in tab in Processes window, and then selecting and dragging a
desired signal(s) in the waveform window

Instance Dezign Lnit Tupe

Bt glb

= ‘ rinoritpaat. . minartpgate_th

riraritygate

=g Source: | [Files | peg Snapst|| [Librarie: [Sim Instar

Tupe: | All w
M arme Type W alue
a_n inl Input Part 5t0
il in2 Irpat Prart St
a,n outl Output Part Sto
E{ Processes [5]Sim Objects [Hierarchy - mirori

* You can zoom-in or zoom-out the waveform window by clicking on
appropriate buttons (éé P PHX)
* You can restart by clicking on (%) button and re-run by clicking on run for

the specified time (vE)button
* You can change the run-time by typing in the new time field
(1000 v e

bt |), clicking restart button, and then clicking on run for the
specified time button

Close the simulator by closing the waveform window and click OK to close
the active simulator

3. Implement the design

Select implementation in Sources for window

Select minoritygate module in Sources window

Expand User Constraints processes in Processes window
Double-click on Floorplan I0 Pre-Synthesis to open PACE program

Processzes far minoritygate
[AddExisting Source
[Create Mew Source
Wiew Design Surmmary

E
% Design Utiities

&

Ilzer Constraints
@ Create Timing Constraintz
BE Floorplan 10 - F'[E'E;*I'IH'IEE:iE:
Floorplan Area A 10 Mogic - Post-Synthesis
P2 Swnthesize - ®ST
P2 Implement Design
P2 Generate Pragramming File
2 Configure Target Device
¥ Update Bitstream with Processor Data
&% Analyze Design Using Chipzcope

Click OK and then Yes to add ucf file
In PACE window assign pin locations and 1/0 Std as shown below

| |170 Name|1/0 Direction| Loc |Bank| 170 Std. | Vref| Veo
i Irput m BANK LYCMO533 N/& 3,30
Irput 2 BANK LYCMO533 N/& [3.30
H1E BANK LYCMOS33
Cutput [A

Click Save button
A dialog box will appear. Choose XST Default: <> option and click OK as
we are using XST synthesis tools

X)

Bus Delimiter

Select 10 Bus Delirniter

(v #5T Default: < »

" ST Optional {}

" Synplify Yerlog Default; []

(" Synplifv WHOL # Exemplar Default: []

[Dan't shaow thiz dialog again
[zan be zet through preferences dialag)

k. | Cancel Help

* Close the PACE program using File — Close

* A minoritygate.ucf file will be added to the project. Open that file and see
how the constraints are written

* Close the file

¢+ Select minoritygate in Sources window and double-click on Implement
Design process in Processes window. This will go through Synthesis, and
Implementation stages

* Expand Synthesis processes and double click on View RTL Schematic and
View Technology Schematic processes to get different views

Proceszes far: minoritygate
[AddEwsting Source
[Create Mew Source

o Wiew Design Surmmary
% Desion Utiities
ﬁ‘ Izer Constraints
= P21 Synthesize - X5T
@O"Jiew Synthesis Aeport
[# View RTL Schematic
@ Wiew Technology Schematic
fd Check Syntax
0 Generate Post-Spnthegiz Simulation Model

* You can push-in to a lower-level schematic by double-clicking on the top-
level

When the implementation is completed, expand Implement Design process to
view the Place & Route report

Proceszses for: minoritygate ~

Add Existing Source

Create Mew Source
“Wiews Design Summary
Deszign Utilities

RERE 1 O

I1zer Constraintz
P21\ Synthesize - 5T
=¥ 31\ Implement Design

-0) Translate

2@ Map

=2 1\ Place & Route
OF‘Iace % Foute Report
Clock Region Repaort
Azunchronous Delay Repart

OF‘ad Report

Guide Fesultz Report
Double-click on the Place & Route Report to view the report. Look at the
resource utilization and note that 1 slice is being used
You can see similar information by clicking on Design Summary tab and
looking at the various information

+
+
+

@ Map Messages MU PiuLiun muimnduUuun was 1uun.

[E] Place and Route Messages

[Z] Timing Messages Device Utilization Summary I-1
[Bitgen Messages Logic Utilization Uszed Available Utilization HNotel[s)
[21 &0 Curent Messages Mumber of 4 input LT 9312 1%

[=)- Detailed Reports

Logic Distribution
@ Synthesis Report g

. Mumber of occupied Slices 1 4 E5E 1%
[2) Translation Report
[2) Map Rrepart Mumber of Slices containing only related logic 1 1 100%
Place and Route Report Murnber of Slices containing unrelated logic o 1 0%
B p a g
[Z] Static Timing Report Total Humber of 4 input LUTs 1 9z 1%
[Bitaen Aeport 1| [Nurber of bondzd 1083 @ 190 2%
Project Properties
Enable Enhanced Desigh Summary:
[0 Enable Message Filtering (PETIETES STIE) Ll
i Final Timing Score: o Pinout D ata: Finout Report
O Display Incremental Messages] Finout Bepart
Enhanced Design Summary Contents Routing Results: All Signals Completely Fouted Clock Data: Clock Report
Show Partition D ata Timing Constraints:
[Show Emrars g -
O Show Wamnings
O Show Failing Constraints Detailed Reports 1
[Show Clock Report Report Mame Status Generated Emorz Warnings Infos
Senthesis Report Current Sundan 11 08:56:502009 |0 5% aming: 1]
Translation Beport Current Sundan11 0257042003 |0 o 0
tap Report Current Sundan11 0857222003 |0 o 2Infos
Place and Route Report | Current Sundan 11 08:57:422003 | 0 1% aming 1lnfa
Static Timing Report Current Sundan11 0257472003 |0 o 3nrfos

Ww'hat's Mew in [SE Design Suite 10.1 D Place and Route Report

4. Verify the design in hardware
¢+ Select minoritygate in Sources window and double-click on Generate
Programming File process to generate the bit file for the design

Froceszses for: minoritygate

[AddEsisting Source
[Create Mew Source
5 Wiew Design Summary
% Design Utiities

‘g I1ser Constraints
2.1\ Synthesize - X5T
#2_1\ Implement Design

e Programming File

#5185

2 Configure Target Device
¥ Update Bitstream with Processor Data

* Expand Configure Target Device process and double-click on Manage
Configuration Project (iMPACT) process

Proceszses for: minoritygate

[AddEsisting Source

[Create Mew Source

5 Wiew Design Summary
% Design Utiities
‘ﬁ‘ Uzer Constraints
P21\ Synthesize - K5 T
2.1\ Implernent Design
2D Generate Programming File
=-f2 Configure Target Device

Pd Generate Target PROMACE File

5 Manage Configuration Project [iMPACT])
® Update Bitstream with Processor Data
* Connect the board with the USB-JTAG cable
* Power ON the board
* Click Finish to use the JTAG chain
+ Select minoritygate.bit file to be assigned to xc3s500e device and click Open

oI Exiume 37

wc3ss00e wflds
- file ¥ - - file ¥ -

Fave

TDD

E #ssign Hew Configuration File

Lok i |aI::.-"NI.-"'-.-"erilu:ug_LaI:us.-"min-:urit_lrlgate_lal:u.-" V| = 55

.
I3 _ngo
[T _smsgs
[izim
:igmt-l I minoritygate_lab_xdb

[ﬁ wat

EI minoritygate. bit

File name: |min|:|rit_l,lgate.l:uit |
File type: | All Desigr Files [* bit *rbt * rky *isc " bisd] v|

Cancel Al] ’ Bypasz]

{(*) Mone
{3 Enable Pragramming of SPI Flazh Device Attached to thiz FPGA
{3 Enable Pragramming of BPI Flazh Device Attached to thiz FPGA

* Click Bypass button for xcfO4s and then OK to use FPGA device
programming
* Right-click on the FPGA and select Program

(|

Gat Devicg

Get Device SignatureUsercade

T

o3
minorit Add SPI Flash,.,

T — | Assign Mew Configuration File,,,

Set Prograrmming Properties ...
Set Eraze Properties..,
Set Target Device

* This will program the FPGA and DONE light will lit on the board

* Once programmed successfully, verify the functionality by using SWO thru
SW2 and monitoring LDO output. Verify that when more than one switch is
turned ON, LDO turns OFF

* Once confirmed the functionality, power down the board and close ISE saving
project changes

Conclusion:
In this lab exercise you learned how to design a hierarchical system. You also learned

how to model a circuit using gate-level as well as module-instantiations. You were able
to simulate the design at each level and then verify the complete design in hardware
board.

