
Romanian Reports in Physics, Vol. 68, No. 4, P. 1603–1620, 2016

USING GEOGEBRA AND VPYTHON SOFTWARE FOR

TEACHING MOTION IN A UNIFORM GRAVITATIONAL FIELD

DALY MARCIUC1,2, CRISTINA MIRON1*, E.S. BARNA1

1University of Bucharest, Faculty of Physics, Bucharest-Măgurele, Romania
2“Mihai Eminecu” National College of Satu Mare, Satu Mare, Romania

*Corresponding author: cmiron_2001@yahoo.com

Received July 6, 2015

Abstract. This article presents an interdisciplinary approach of teaching at high-school

level some topics related to the movement in a uniform gravitational field. Our

approach is based on the methodology of learning Physics by modelling. We create

the computer models of the studied phenomena, using free but very versatile software,

like GeoGebra for analytical modelling, respectively the VPython programming

language, for numerical modelling. The built models are related to themes with a

major role in the history of Physics: projectile motion and gravitational pendulum.

Firstly, we construct and interpret the mathematical models for the studied systems,

and then based on these we achieve the models on the computer. The equation of the

safety parabola for the motion of a projectile is inferred and is plotted, both in the case

when only the gravitational force is acting on the projectile, and also in the case of an

additional horizontal force. An application of the model of the gravitational pendulum

is the construction of the mathematical and computer models of the transversal wave

generated by a set of uncoupled pendulums of different lengths. In GeoGebra we

realized a two-dimensional model of this wave, and by using the VPython

programming language we built a three-dimensional model of the system, based on

the method of numerical modelling. The activities described in this article are the

result of a research project of the authors in the field of Physics Education and this

result was applied to lessons of students of the interdisciplinary study group focused

on mathematical and computational modelling in County Centre of Excellence of Satu

Mare.

Key words: Physics Education, computational models, projectile motion, gravitational

pendulum, interdisciplinary learning, GeoGebra, VPython.

1. INTRODUCTION

Modeling based learning is a relatively new approach in Physics education,

which is proving effective. D. Hestenes founded this innovative method in teaching

Physics, proposing the organization of learning contents and activities around the

mailto:cmiron_2001@yahoo.com

1604 Daly Marciuc, Cristina Miron, E.S. Barna 2

study of some fundamental physical models. Thus, learning is no longer focused on

solving problems, but on the construction and use of models. In fact, the

construction of mathematical models includes solving problems but the

applicability of the obtained models is broader: one and the same model can be

used to solve a wide range of problems [1].

The affordable technologies of nowadays allow interweaving mathematical

modeling activities with the computer modeling activities. Mathematical softwares,

like Mathematica and GeoGebra, allow dynamic graphical representations and

support in-depth understanding of abstract mathematical concepts [2–3]. The

VPython programming language is increasingly used in Physics education,

especially for numerical modeling of physical phenomena [4–5]. In this article we

present some ways in which high school students can implement on the computer

two significant mathematical models used in Physics: the projectile and the

gravitational pendulum.

2. COMPUTER MODELS FOR PROJECTILE MOTION

2.1. AN INTERACTIVE MODEL IN GEOGEBRA FOR THE SIMPLE PROJECTILE

Involving students in building models supports the understanding of how

complex physical phenomena can be studied using simple models. We begin with

the construction of a model for the projectile which is acted only by the gravitional

force. We consider a projectile thrown with an initial velocity v, forming the angle

α with the horizontal. Choosing a reference system with the origin at the point of

launch, the coordinates of the projectile at time t are:

 . (1)

With the GeoGebra software we can visualise the projectile’s motion

resulting from the composition of the uniform motion with constant velocity

 along the x-axis, and uniformly accelerated motion with acceleration g and

initial velocity , in the direction of the y-axis. From the condition we

obtain the range of time t until landing:

 . (2)

Based on relations (1) and (2) we build the model of the projectile, by typing

in the input bar of GeoGebra the command presented in Table 1.

3 Using GeoGebra and VPYTHON software for teaching motion 1605

Table 1

Commands for building a projectile model in GeoGebra

Command Result

v = 2; α = 30o; t = 0; g = 9.8 Defining variables

M_1 = (v cos(α) t,0) Projectile projection on x axis

M_2 = (0, v sin(α) t–1/2 g t^2) Projectile projection on y axis

M = (v cos(α) t, v sin(α) t–1/2 g t^2) The position of the projectile at time t

T_{fin} = 2 v sin(α)/g Defining landing time

In the Properties dialog box associated with the variable t, we set its extreme

values to 0, respectively Tfin, as defined by condition (2). By starting the animation

of the variable t is simulated the movement of the projectile, represented by the

point M, and the movement of its projections on the axes, represented by the points

M1 and M2. The values of the parameters v and α can be adjusted using the sliders

that are displayed on the graphical Panel (Fig. 1).

GeoGebra allows drawing traces of the points in motion, option that helps us

highlighting the types of motion of the projectile’s projections along the two axes.

Students can see that the projection of the projectile on x-axis runs equal distances

in equal periods of time. At the same time, the projection of the projectile on y-axis

runs on smaller and smaller distances in equal periods of time, until achieving the

maximum height. After this moment, the projection of the projectile on y-axis runs

on bigger and bigger distances in equal periods of time. In this way, the students

can visualise the composition of the two types of motion along the axes, uniform

and respectively uniformly accelerated, resulting the projectile's movement on a

parabola (Fig. 1).

Fig. 1 – Decomposition of projectile motion.

The colored versions can be accessed at http://www.infim.ro/rrp/.

http://www.infim.ro/rrp/

1606 Daly Marciuc, Cristina Miron, E.S. Barna 4

By eliminating the variable t between the relationships (1), we find the

equation of the projectile trajectory:

 . (3)

Fig. 2 – The velocity of the projectile and its components with GeoGebra.

The colored versions can be accessed at http://www.infim.ro/rrp/.

To draw in GeoGebra the projectile trajectory we can use the parametric

equations (1) or we can define a function, according to the equation (3). To

represent velocity and its components on axes, we use the following relations:

 . (4)

Table 2 presents the main commands typed in GeoGebra to obtain the

dynamic representation captured in Fig. 2.

Table 2

The GeoGebra commands used for a dynamical representation

of projectile velocity

Command Result

vx = v cos(α);

vy = v sin(α)–gt
Velocity components according to relation (4)

ux = (vx,0); uy = (0,vy);

u = (vx,vy)
Representing the velocity and its projections on axes

c = Curve[v cos(α) t, v sin(α) t – 1/2

g t², t, 0, T_{fin}]

Representation of trajectory through parametric equations,

according to relations (1) and (2)

f(x) = (–1) / 2 g / v² (1 + tan(α)²)

 x² + tan(α) x
Define trajectory based on relationship (3)

http://www.infim.ro/rrp/

5 Using GeoGebra and VPYTHON software for teaching motion 1607

Changing the angle α by using the associated cursor allows us to visualise

various possible trajectories of the projectile (Fig. 3). To determine which positions

can be attained by the projectile for a fixed speed v when the α angle is changing,

we rewrite equation (3) as an equation of second degree in tan(α). By imposing the

condition that the discriminant of this equation must be positive we obtain:

 . (5)

Fig. 3 – Trajectories obtained by modification of the launch angle.

The colored versions can be accessed at

http://www.infim.ro/rrp/.

Condition (5) allows defining the safety parabola for a given value of the

projectile speed. The consistency between relations (1) and (5) was verifyed by

plotting a class of trajectories, exploiting the facility of GeoGebra to work with

lists of geometric objects. With a single command, Sequence[Curve[v cos(q) t,

v sin(q) t – g t² / 2, t, 0, 2v sin(q) / g], q, 1°, 90°, 5°], we display all the trajectories

seen in Fig. 4. By representing the function given by the right side of relationship

(5) we can view that this curve represents the envelope of the possible trajectories

(Fig. 4).

http://www.infim.ro/rrp/

1608 Daly Marciuc, Cristina Miron, E.S. Barna 6

Fig. 4 – Trajectories represented in GeoGebra and their envelope.

The colored versions can be accessed at http://www.infim.ro/rrp/.

2.2. THE PROJECTILE’S MOTION UNDER THE ACTION

OF AN ADDITIONAL HORIZONTAL FORCE

The next model refers to the motion of a projectile upon which acts a

constant force parallel to the ground, in addition to gravity . Denoting by k the

ratio between the magnitunes of the two forces, so that , the motion

equations of the projectile are:

 . (6)

A first sketch of the trajectory is obtained after comparing the values of the

variable t in three particular situations: at landing, at reaching the x maximum and

at reaching the maximum height y. From relations (6) we deduce:

 . (7)

By imposing the condition y = 0, from the relation (6) we deduce the value of

time t at landing:

 . (8)

Since it is obvious that , three situations are possible:

http://www.infim.ro/rrp/

7 Using GeoGebra and VPYTHON software for teaching motion 1609

a) ,

b) ,

c) .

In Fig. 5 the projectile trajectories are sketched in the three cases.

a) b) c)

Fig. 5 – Three categories of possible trajectories.

By eliminating the variable t from equations (6) we find the trajectory

equation:

 . (9)

By calculating the invariants of this conic, we can verify that equation (9)

represents a parabola. We distinguish two limit cases, illustrated by Fig. 6: the case

when the trajectory is straight and the projectile comes back to the launch point

(Fig. 6a)), and the case when the tangent to the parabola at the point of landing is

vertical (Fig. 6b)).

a)

b)

Fig. 6 – Limit cases of the trajectories.

Actually, we can justify based on physical considerations that the trajectory

of the projectile is in all cases a parabola whose axis of symmetry forms the angle

1610 Daly Marciuc, Cristina Miron, E.S. Barna 8

r = atan(k) with the y-axis. Indeed, the resultant force forms

with the y-axis the angle r and has the magnitude . Therefore, in the

system of axes x'Oy' resulted by the rotation with angle –r of the original system

xOy (Fig. 7), the trajectory equation is obtained from equation (3), by replacing the

acceleration g with , and by replacing the launch angle α with α + r:

 . (10)

Starting from equation (10) we will find again equation (9), by applying the

rotation of centre O and angle r, i.e. through the transformation:

 . (11)

Fig. 7 – Changing the reference system.

The colored versions can be accessed at http://www.infim.ro/rrp/.

http://www.infim.ro/rrp/

9 Using GeoGebra and VPYTHON software for teaching motion 1611

By applying transformation (11) to condition (5), we deduce relation (12)

that corresponds to the equation of the parabola safety.

 . (12)

Fig. 8 – The envelope of the projectile trajectories.

The colored versions can be accessed at http://www.infim.ro/rrp/.

In Fig. 8 we captured the GeoGebra representation of the safety parabola

together with a set of possible trajectories.

2.3. NUMERICAL MODELING OF THE PROJECTILE’S MOTION

USING VPYTHON PROGRAMMING

Numerical modeling of the projectile’s motion, achieved using the VPython

programming language, is based on the cyclical determination of the position and

speed of the object at a given moment, knowing both the position and velocity at a

previous time and also the forces acting on the object. Thus, if at time t the position

vector is r = (x, y, z), and the velocity is v = (vx,vy,vz), at a later time t + Δt, the

position vector r' and the velocity v' are evaluated based on the relations:

 , (13)

where a is the acceleration vector, obtained by dividing the resultant force by the

mass of the object.

The VPython program presented below simulates the motion of the projectile

in six distinct cases, applying iteratively the relations (13).

Figure 9 captures the landing of the projectile in our simulations, the

velocities being represented by arrows. The last two lines of the program trigger

the display, in the VPython console, of landing speed of the projectile in the six

simulated cases, that is for k = 0, k = 0.2, k = 0.5, k = 0.7, k = 1 and k = 1.2. In all

these cases, the launch angle is 45°, and the components of launch velocity are

(15, 15, 0). We mention that VPython works by default with the international

system of units, thus the speeds are expressed in m/s.

http://www.infim.ro/rrp/

1612 Daly Marciuc, Cristina Miron, E.S. Barna 10

from visual import *

dt = 0.01; g = 9.8; vscale = 0.3; k = [0,0.2,0.5,0.7,1,1.2]

d = []

for i in range(6):

 d.append(display(x=600*(i//3), y=30+200*(i % 3), width=600, height=200,

 center=(0,7,0), background=(0,0,0), title="k="+str(k[i])))

floors=[];balls=[];trails=[];varr=[]

for i in range(6):

 floors.append(box(pos=(1,0,0), length=70, height=0.5, width=20, color=color.blue,

 display=d[i]))

 balls.append(sphere(pos=(-15,1,0), color=color.red,display=d[i],a=vector(-k[i]*g,-

g,0)))

 trails.append(curve(display=d[i]))

for ball in balls:

 ball.velocity = vector(15,15,0)

for i in range(6):

 varr.append(arrow(pos=balls[i].pos, axis=vscale*balls[i].velocity,

display=d[i],color=color.yellow))

while balls[0].y > 0.9:

 rate(100)

 for i in range(6):

 balls[i].pos = balls[i].pos + balls[i].velocity*dt

 balls[i].velocity = balls[i].velocity + balls[i].a*dt

 varr[i].pos = balls[i].pos

 varr[i].axis = vscale*balls[i].velocity

 trails[i].append(pos=balls[i].pos)

for i in range(6):

 print(i, mag(balls[i].velocity))

Fig. 9 – Comparative models using VPython.

The colored versions can be accessed at http://www.infim.ro/rrp/.

http://www.infim.ro/rrp/

11 Using GeoGebra and VPYTHON software for teaching motion 1613

3. COMPUTER MODELS FOR THE PENDULUM MOTION

 Many physical phenomena can be described by analogy with the pendulum

motion, which constitutes the paradigm of the linear oscillator [6]. The

construction of computer models of the pendulum allows students to test different

hypotheses, to visualise the system evolution for different values of the parameters,

favoring a deep undersatndig of the used physical and mathematical concepts.

3.1. MODELING THE PENDULUM WITH GEOGEBRA

The equation of the motion of a pendulum with length l is a non linear second

order differential equation:

 (14)

where φ is the angle formed by the pendulum with the vertical. To model the

pendulum with GeoGebra we consider the approximation convenient

for small values of the angle . The solution of the resulted linear differential

equation is:

 , (15)

where is the amplitude of the oscillation and ω is the angular speed, given by

 . (16)

Table 3 lists the main commands for building the GeoGebra simulation.

Table 3

GeoGebra commands for building the pendulum model

Command Result

m = 2; t = 0; l = 6; g = 9.8; = 0.1 Defining the system variables

ω = sqrt(g/l) Defining the angular speed

 Defining the deviation angle at time t

M(l sin , l cos) The position of the pendulum at time t

period = 2π/ω Defining the period of the oscillation

The simulation captured in Fig. 10 allows changing the length of the

pendulum and the maximum angle of deviation , using the displayed sliders.

Our application allows the representation of the forces acting on the body and the

representation of the velocity at every moment. The animation is triggered using

variable t, for which we set in the Properties dialog box the extreme values to 0

and respectively, period, and the animation style was set to be increasing.

1614 Daly Marciuc, Cristina Miron, E.S. Barna 12

Fig. 10 – A model of the pendulum with GeoGebra.

The colored versions can be accessed at http://www.infim.ro/rrp/.

3.2. THE VELOCITY AND ACCELERATION HODOGRAPH OF THE PENDULUM

For an exact representation of the velocity and acceleration in the case of

large amplitudes, we determine the pendulum’s speed from the energy

conservation law. If v0 is the maximum speed of the pendulum, achieved when it

runs through the position of equilibrium, then at time t, when the deviation angle is

φ, the speed is given by the relation

 . (17)

We also know tangential and radial components of the acceleration:

 . (18)

Applying again the energy conservation law we infer the amplitude of the

oscillation:

 . (19)

Based on these relationships, the new model is constructed by entering the

GeoGebra commands shown by Table 4.

http://www.infim.ro/rrp/

13 Using GeoGebra and VPYTHON software for teaching motion 1615

Table 4

The GeoGebra commands used for the representation of pendulum velocity and acceleration

Command Result

t = 0; l = 3; g = 9.8;

 = 3
Defining the system parameters

ω = sqrt(g/l); per =

2π/ω
Defining the angular speed and period

f = v0²/(g l);

φmax = acos(1–f/2)
Defining the amplitude based on relation (19)

 Defining the deviation angle at time t

xM = l sin φ;

yM = l cos φ
The position of the pendulum at time t

v = If[t < per/2,

v0² – 2gl(1 – cos(φ)),

–v0² + 2gl(1 –

cos(φ))]

Defining the speed according to the relation (17) and considering the

movement sense

velocity = (–v cos φ,

–v sin φ)
Defining the velocity at the time t

ar = v2/l, at = g sin φ Defining the acceleration components

a = (–ar sin φ

– at cos φ,

ar cos φ – at sin φ)

Defining the acceleration vector at the time t

Using the GeoGebra facility to mark the traces of the geometric objects in

motion, we can visualise the hodograph of the velocity and of the acceleration [7].

In Fig. 11 the velocities at every point of the trajectory are represented and the

hodograph of velocity is traced for half of the period of oscillation. For the other

half of the period, the hodograph is obtained by symmetry relative to the y-axis.

Fig. 11 – The hodograph of velocity.

The colored versions can be accessed at http://www.infim.ro/rrp/.

The mathematical form of the velocity components shows that the velocity

hodograph is a Pascal limaçon curve. If the equality is hold, i.e. the

maximum deviation angle is π, this curve is even a cardioid:

http://www.infim.ro/rrp/

1616 Daly Marciuc, Cristina Miron, E.S. Barna 14

 . (20)

The acceleration hodograph is also a Pascal limaçon, which become a

cardioid when (Fig. 12). If we represent the acceleration in each point of

the trajectory, the extremity of this vector describes also a Pascal limaçon, or even

a cardioid if a convenient scaling factor is chosen [8]: , where .

Fig. 12 – The acceleration hodograph.

The colored versions can be accessed at http://www.infim.ro/rrp/.

3.3. THE SIMULATION OF THE PENDULUM’S MOTION WITH VPYTHON

The differential equation (14) describing the pendulum’s motion is equivalent

to the following two relations:

 , (21)

where θ is the angular speed. If dt is a very small interval of time in which the

angular velocity varies very little, then relations (21) lead to

 , (22)

where are the deviation and the angular speed at time t, and are the

deviation and the angular speed at time t+dt. Using iteratively relations (22), the

VPyton program presented below simulates the movement of the pendulum.

http://www.infim.ro/rrp/

15 Using GeoGebra and VPYTHON software for teaching motion 1617

from visual import *

dt = 0.01

g=9.8

phi=0.3

l=0.7

teta=0

display(x = 600, y = 100 , width = 300, height = 400,

 center=(0,-0.6*l,0), background=(0,0,0),title="Pendulum")

ceil = box(length=1, height=0.01, width=0.5, color=color.blue)

ball = sphere(pos=(l *sin(phi),-l*cos(phi),0),

 color=color.red,radius=0.05)

rod = cylinder(pos=(0,0,0),axis=(ball.pos.x,ball.pos.y,0), radius=0.005)

while 1:

 rate(100)

 phi=phi+teta*dt

 teta=teta-g/l *sin(phi)*dt

 ball.pos = (l *sin(phi),-l*cos(phi),0)

 rod.axis = (ball.pos.x,ball.pos.y,0)

3.4. SIMULATION OF PENDULUM WAVE

An interesting application of the pendulum model is the construction of a

series of k pendulums of different lengths, so that the numbers of oscillations

performed by them in a given interval T form an arithmetic progression with the

ratio 1. If the pendulum i performs n + i oscillations in the interval T, then its

length is

 . (23)

The GeoGebra simulation was achieved using the commands listed in Table 5.

Table 5

GeoGebra commands used for a pendulum wave simulation

Command Result

T = 60; n = 8; k = 18; g = 9.8; t = 0; Defining the system parameters

d = 0.1 Distance between two pendulums

c = g T² / (4π²) Defining the system constant

L = Sequence[c / (n + i)², i, 1, k] Calculating the pendulums’ lengths

F = Sequence[sqrt(g / Element[L, i]), i, 1, k] Calculation the angular frequencies

balls = Sequence[(Element[L,i]*

sin(2*φ0*cos(t* Element[F, i])), d *i), i, 1, k]
Calculation the pendulums’ positions at a time t

rods = Sequence[Segment[Element[balls, i

+ 1], (0, d i)], i, 0, k]
Representing the pendulums’ rods

1618 Daly Marciuc, Cristina Miron, E.S. Barna 16

The sliders included in application's graphic panel shown in Fig. 13 allow

easy modification of the total period T, of the amplitude , of the number k of

pendulums, and of the number (n + i) of oscillations made by each pendulum

during the period T. The motion of the pendulum in our simulation is triggered by

turning on the animation of the time variable t, in increasing style in range [0, T].

Fig. 13 – Simulation of pendulum wave with GeoGebra.

The colored versions can be accessed at http://www.infim.ro/rrp/.

A three-dimensional simulation of the pendulum wave was achieved through

numerical modeling by the following VPython program:

from visual import *

scene=display(x = 60, y = 30 , width=500, height=500,

 center=(0.2,0,0), background=(0,0,0))

dt = 0.01; g=9.8; pi=3.14;per=60;k=15;n=45;dist=0.05

teta=[];anglspeed=[];l=[];balls=[];rods=[]

bar=cylinder(pos=(0,0,0),axis=(0,0,dist*(k-1)), radius=0.005,color=color.blue)

for i in range (k):

 l.append(g*per*per/(4*pi*pi*(n+i)*(n+i)))

 teta.append(0.3)

 anglspeed.append(0)

 balls.append(sphere(pos=(l[i] *cos(teta[i]-pi/2),l[i]*sin(teta[i]-pi/2),-i*dist),

 color=color.red,radius=0.02))

 rods.append(cylinder(pos=(0,0,i*dist),

 axis=(l[i] *cos(teta[i]-pi/2),l[i]*sin(teta[i]-pi/2),0),

 radius=0.003))

while 1:

 rate(100)

 for i in range (k):

 teta[i]=teta[i]+anglspeed[i]*dt

 anglspeed[i]=anglspeed[i]-g/l[i] *sin(teta[i])*dt

 balls[i].pos = (l[i] *cos(teta[i]-pi/2),l[i]*sin(teta[i]-pi/2),i*dist)

 rods[i].axis = (balls[i].pos.x,balls[i].pos.y,0)

http://www.infim.ro/rrp/

17 Using GeoGebra and VPYTHON software for teaching motion 1619

The graphical scene provided by programming with VPython offers the

possibility of a three-dimensional visualization of the objects. The angle under

which the objects are viewed can be changed by acting simultaneously the Ctrl key

and the mouse, and the zoom-in and zoom-out functions are provided by acting

simultaneously the Alt key and the mouse. The values of the parameters can be

modified by program in the initialization variables section. The modeling was

achieved based on relationships (22), applied to each pendulum of the system.

Fig. 14 – Simulation of pendulum wave with VPython.

The colored versions can be accessed at http://www.infim.ro/rrp/.

4. CONCLUSIONS

This article presents some ways of using two affordable informatic tools for

modeling activities with students: the mathematical software GeoGebra and the

programming language VPython. Each of these presents specific advantages.

Models are created easily with GeoGebra, based on the analytical equations.

Modeling with GeoGebra fosters the development of students’ mathematical

competencies. The simultaneous displaying of algebraic and graphic panels of the

GeoGebra application allows clear visualization of the effect of changing the

equations of the model upon the computer simulation. On the other hand, the

VPyton programming allows numerical modeling, based on the differential

equations of the mathematical model, so that the computational and programming

skills of the students are developed. In both cases, the students have the

opportunity to understand in depth the studied physical phenomena, by

emphasizing the connections between the mathematical model and the

corresponding physical phenomenon.

In this article we focused on two physical models that played a major role in

the history of Newtonian mechanics: the projectile and the pendulum. The

proposed approach is an alternative of teaching these phenomena using computers,

in addition to others already known [9–11]. Building computer models helps

students to understand some abstract concepts, like force, speed or acceleration,

http://www.infim.ro/rrp/

1620 Daly Marciuc, Cristina Miron, E.S. Barna 18

and optimizes students’ motivation for learning [12–13]. The students are involved

into complex activities, similar to those encountered in scientific research [14–15].

The interaction between the students and the computer models that they build

favours deepening students’ knowledge and helps them discover the physical

significances of the used abstract mathematical equations.

REFERENCES

1. D. Hestenes, Modeling methodology for physics teachers, AIP Conference Proceedings, IOP

Institute of Physics Publishing LTD, 1997, 935–958.

2. J. Hohenwarter, M. Hohenwarter, Journal of Computers in Mathematics and Science Teaching

28, 2, 135–146 (2009).

3. M. Aktumen, M. Bulut, Anthropologist 16, 1–2, 167–176 (2013).

4. R. Chabay, B. Sherwood, Am. J. Phys. 76, 4, 307–313 (2008).

5. M.D. Caballero, M.A. Kohlmyer, M.F. Schatz, Phys. Rev. ST Phys. Educ. Res. 8, 2, 020106

(2012).

6. R. Newburgh, The pendulum: A paradigm for the linear oscillator, Science & Education 13,

4–5, 297–307 (2004).

7. D. Marciuc, C. Miron, Technology Integration of Geogebra Software in Interdisciplinary

Teaching, Proceedings of the 10th International Scientific Conference eLearning and Software

for Education (Bucharest), 3, 280–287 (2014).

8. M. Lieberherr, The Physics Teacher 49, 9, 576–577 (2011).

9. C.M. Ezrailson, G.D. Allen, C. Loving, Sci. & Educ. 13, 437–457 (2004).

10. M. Fowler, Sci. & Educ. 13, 791–796 (2004).

11. A. Jimoyiannis, V. Komis, Comput. Educ. 36, 2, 183–204 (2001).

12. L. Dinescu, C. Miron, E.S. Barna, Rom. Rep. Phys. 63, 2, 557–566 (2011).

13. C. Kuncser, A. Kuncser, G. Maftei, S. Antohe, Rom. Rep. Phys. 64, 4, 1119–1130 (2012).

14. C. Miron, I. Staicu, Rom. Rep. Phys. 62, 4, 906–917 (2010).

15. J.K. Gilbert, Int. J. Sci. Math. Educ. 2, 115–130 (2004).

