
Using GNU Octave for Numerical Methods

by Dennis Pence∗

September 2015

Contents

1 What are the alternatives to Matlab? 1
1.1 What is GNU Octave? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What is Scilab? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Other Alternatives? . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Operations with GNU Octave 5
2.1 Launching GNU Octave . . . . . . . . . . . . . . . . . . . . . 5
2.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Creating and Running Files . . . . . . . . . . . . . . . . . . . 14
2.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Creating Your Own Functions . . . . . . . . . . . . . . . . . . 20
2.9 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 More Loops and Conditionals . . . . . . . . . . . . . . . . . . 22
2.11 Clearing Variables . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Logging Your Session . . . . . . . . . . . . . . . . . . . . . . . 23
2.13 More Advanced Commands . . . . . . . . . . . . . . . . . . . 23

∗If you have comments on or corrections to this documentation, please send them to
dennis.pence@wmich.edu

i



3 Monte Carlo Methods 25

4 Solution of a Single Nonlinear Equation in One Unknown 26
4.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



1 What are the alternatives to Matlab?

The textbook we now use here at Western Michigan University, Numerical
Methods: Design, Analysis, and Computer Implementation of Algorithms,
by Anne Greenbaum & Timothy P. Chartier, mostly assumes that you have
access to MATLAB. It frequently gives actual MATLAB code for algorithms
and sometimes asks in the exercises for you to explore something specific to
MATLAB. Since we have a license for MATLAB in the Rood Hall Computer
Lab and the Parkview Campus Computer Lab, you can have such access.
However many students find it more convenient to work on their own personal
computers. The student edition of MATLAB costs about $100, and many
of our graduate students in the Applied and Computational Mathematics
Program find it a very reasonable expense, given that they can it use in
many later courses. However if you plan to only take one course, this might
be more than you want to pay. Thus this document explores alternatives,
particularly free alternatives!

1.1 What is GNU Octave?

Octave was originally conceived by John W. Eaton as a numerical supplement
for a chemical engineering textbook. Instead, it has become a more general
numerical mathematical application that is now distributed by GNU Free
Software Foundation. To avoid confusion with the musical term “octave”, it
is best to always search for the term “GNU Octave”, and most people now
use this full name. Octave is the other most popular open-source alternative
to the commercial product MATLAB. Much more than Scilab (described
next), Octave strives to be a virtual clone of MATLAB. The syntax is almost
identical, and this is possible because of the 1996 U. S. Supreme Court Case,
Lotus v. Borland, which said that software copyrights do not extend to the
text or menu layout (hence the syntax) of a program.
While the developers of GNU Octave attempt to have this program do the
same operations as will be done by the same Matlab commands, there is no
guarantee that the code underneath used to accomplish these operations will
be the same. There may be situations where both developers use some of the
same open-source code, but we cannot know when this happens. I recently
read an article somewhere about the computer programming language “Ju-
lia”, and I went to the website http://julialang.org/ to learn more. The
claim for this new computer programming language is that it is as easy to
code as high-level languages such as Python or as mathematical application

1

http://julialang.org/


packages such as Matlab or GNU Octave, but that it compiles to run nearly
as fast as low-level languages such as C. The Home page of this website had
a nice comparison of how long it took for certain computationally intensive
tasks on various platforms, and Matlab and Octave are in the table. Of
course, “Julia” comes out very well in this comparison. My surprise was how
poorly Octave performed in this table compared to Matlab. Thus we will
probably need to consider GNU Octave as mostly an educational tool for
reasonably small problems. I will note below when I notice the very slow
performance of Octave compared to Scilab (which, unfortunately was not
included in the comparison table). The article I was reading predicted that
more and more numerical linear algebra tasks will be coded in Julia in the
future.
You can download a free copy of the latest version of GNU Octave at https:
//gnu.org/software/octave/, with the product available on many plat-
forms. Beginning with version 4.0.0 (May 29, 2015), the default interface is
a GUI, which makes it work on the various platforms in a much more user-
friendly manner (as Scilab and MATLAB have done for some time). The
older more “command line” interface is still available, but you will probably
not want to use it. With the download, you will get documentation in many
formats. I generally open the PDF version (currently 966 pages long) to
view whenever I am working with Octave. Chapter 1 (A Brief Introduction
to Octave) and Chapter 2 (Getting Started) of the Octave Documentation
constitute an very nice tutorial.
This document will attempt to point out significant differences needed for
GNU Octave code compared to the MATLAB code of the text Numerical
Methods: Design, Analysis, and Computer Implementation of Algorithms,
by Anne Greenbaum & Timothy P. Chartier.

1.2 What is Scilab?

Scilab is a numerical mathematical application originally created by INRIA
and École nationale des ponts et chaussées (ENPC) in France. It is one of the
most popular open-source alternatives to the commercial product MATLAB.
Scilab is now supported by a company called Scilab Enterprises that also sells
services to help other companies conduct their business computations using
Scilab and related products.
You can download a free copy of the latest version of Scilab at http://www.
scilab.org/, with the product available on many platforms. The download
can even take advantage of the processors available on your computer to do

2

https://gnu.org/software/octave/
https://gnu.org/software/octave/
http://www.scilab.org/
http://www.scilab.org/


faster matrix and vector computations. The “documentation” that comes
with the download is unfortunately little more than a list of commands in
Scilab. There is also a “help” file giving the conversion of many common
MATLAB commands into slightly different Scilab commands. Thus it is rec-
ommended that you begin with some Scilab tutorials such as those found at
http://www.scilab.org/resources/documentation/tutorials, particu-
larly the ones titled Scilab for very beginners and Introduction to Scilab.
The internal “help” files will be more useful after you get some experience
working through the tutorials.
There will be a similar document that will attempt to point out significant
differences needed for Scilab code compared to the MATLAB code of the
text Numerical Methods: Design, Analysis, and Computer Implementation
of Algorithms, by Anne Greenbaum & Timothy P. Chartier.

1.3 Other Alternatives?

While I do not recommend that you use anything else, it is certainly possible
to use other mathematical applications for the project tasks of the course,
particularly if you are already very familiar with one of these products. I will
make no attempt to include code in this document for all of these possible
alternatives, but I will list some of them here.
Since we are a Maple campus, we have the computer algebra system (CAS)
Maple in most of the open labs, and we use Maple in many courses, you may
already have experience using Maple (and may have purchased a student edi-
tion for your personal computer). The “trick” for doing numerical projects
in Maple is to make sure that you are forcing floating-point computations
rather than the exact symbolic computations that a CAS will attempting by
default. There are also special commands to direct Maple to skip a sym-
bolic calculation and go directly to a numerical approximation, particularly
with vector and matrix computations. When it switches to floating-point
numerical work, Maple now does very well by using highly-regarded NAG
algorithms rather than its own algorithms designed for symbolic work. Since
some of the methods we study are also mentioned in typical calculus courses
(like Newton’s method), you may find some of the things we study in the
“clickable” categories of Maple.
It is certainly possible to do many of the things we study on a programmable
graphing calculator. It would be best to use something more than a high-
school level tool (TI-84 Plus) to get more programming (including the passing

3

http://www.scilab.org/resources/documentation/tutorials


of parameters to a program). I often use a TI-89 or Voyage 200 to demon-
strate small things. The newer TI-nspire has more limited programming
(unless you do Lua programming on a computer and move it to the hand-
held), and since we do not really need CAS, either version of the TI-nspire
will work. Unfortunately it is more difficult to get your work into a report
generated in some computer word processing program from the calculators.
Thus you might find it appropriate to use a graphing calculator for some
small homework tasks, and you might include what happened using a calcu-
lator in a report primarily done using one of the more complete tools.
If you are already familiar with the statistical computing application R, that
can also do most of what we need to do. This is also free, it is nicely available
if you want to try it. It can be downloaded at https://www.r-project.
org/. Since R is designed to do advanced things in statistics, most people
don’t think to use it for other things. But many statistical computations
reduce to matrix computations, and so R has very good matrix computations
built in.
It is not unusual for Wikipedia to have excellent information on computer
science and computational mathematics topics. Thus you can find a brief
description of everything above (Scilab, GNU Octave, Maple, R) in that
resource. Also very nice is the Wikipedia page giving a “Comparison of nu-
merical analysis software” https://en.wikipedia.org/wiki/Comparison_
of_numerical_analysis_software. Certainly many of the products in this
extensive list can do the tasks we desire. Our textbook mentions Sage in
the Preface as a possible alternative. Sage (included in the Wikipedia com-
parison above) is a massive open-source project that essentially uses almost
anything else open-source that might be helpful. In particular, R is included
in Sage, and the numerical packages SciPy and NumPy for the Python pro-
gramming language are included into Sage for numerical work as well as many
other sources. I have even had one student program directly in Python (an
open-source programming language) frequently using things in the SciPy and
NumPy packages. Since Sage is mostly programmed in Python, these rela-
tionships are easily understood.
While it is not unreasonable for you to briefly explore some of these alterna-
tives, it is best for a student in a numerical analysis course to quickly settle
on learning one tool to use for the semester. No matter which tool you select,
you will get more and more comfortable with the tool as you use it repeat-
edly. It is best to pick something either you already know or something you
know others in the class will be using. Thus I repeat again that I recommend
Scilab and GNU Octave as the best alternatives to the commercial product
MATLAB. Of course if you are willing to spend the money for it, MATLAB

4

https://www.r-project.org/
https://www.r-project.org/
https://en.wikipedia.org/wiki/Comparison_of_numerical_analysis_software
https://en.wikipedia.org/wiki/Comparison_of_numerical_analysis_software


is certainly the standard product for research in numerical analysis.

2 Basic Operations with GNU Octave

I will try in each section to give Octave code that corresponds to the MAT-
LAB code of that chapter in the textbook. Since I am most familiar with
using this product in Windows, the work will mostly follow that platform.
But this application operates in a similar manor on the Macintosh or Linux
computer platform.

2.1 Launching GNU Octave

When you click on the Octave (CLI) icon, you get a screen that looks like
this.

This old-fashioned command line interface (CLI) is somewhat crude to use.
It is even hard to “copy-and-paste” out of it and into it. Much nicer now is
the Octave (GUI) version.

5



You perform your immediate work in the command window, typing where
there is the prompt >�>. You can use Octave like a calculator. For instance,
if you type at the prompt

>> 1+2*3

then Octave returns with the answer

ans = 7

Since you did not give a name to your result, Octave stores the result in a
variable called ans. You can do further arithmetic using the result in ans.

>> ans/4

and Octave will return with the result

ans = 1.7500

2.2 Vectors

Octave can store row and column vectors. The commands

6



>> v = [1;2;3;4]
v =

1
2
3
4

>> w = [5, 6, 7, 8]
w =

5 6 7 8

create a column vector v of length 4 and a row vector w of length 4. In general,
when defining a matrix or vector, semicolons are used to separate rows, while
commas or spaces are used to separate entries within a row. Space nearly
anywhere have no effect, and so you can use them the make the work more
readable. You can refer to an entry in a vector by giving its index.

>> v(2)
ans = 2
>> w(3)
ans = 7

Octave can add two vectors of the exact same dimension, but when you add
two vectors with different dimensions, it now does something called “broad-
casting” with the following result.

>> v+w
ans =

6 7 8 9
7 8 9 10
8 9 10 11
9 10 11 12

Here is a section from the Octave Documentation describing this feature
(which was new with version 3.6.0, and apparently is also in Matlab now).

Broadly speaking, smaller arrays are “broadcast” across the
larger one, until they have a compatible shape. The rule is that
corresponding array dimensions must either

1. be equal, or
2. one of them must be 1.

7



In case all dimensions are equal, no broadcasting occurs and
ordinary element-by-element arithmetic takes place. For arrays
of higher dimensions, if the number of dimensions isn’t the same,
then missing trailing dimensions are treated as 1. When one of
the dimensions is 1, the array with that singleton dimension gets
copied along that dimension until it matches the dimension of the
other array.

Thus in our example above, since v had dimension 4×1 and w had dimension
1×4, each needed to be “expanded” so that the addition can take place. What
we got above was the following.

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

+


5 6 7 8
5 6 7 8
5 6 7 8
5 6 7 8


I have no idea why someone would desire this new feature. There is a compli-
cated way to instead turn on a warning when this happens, but, apparently,
when you do it also warns about traditional multiplication by a scalar. Here
is one more example of “broadcasting.”

>> w + 2
ans =

7 8 9 10

The transpose of w is denoted w’:

>> w’
ans =v

5
6
7

You can add v and w’ using ordinary vector addition (i.e. no broadcasting
is needed):

>> v+w’
ans =

6
8
10
12

8



Suppose you wish to compute the sum of entries in v. One way to do this is
as follows:

>> v(1)+v(2)+v(3)+v(4)
ans = 10

Another way is to use a for loop:

>> sumv = 0;
>> for i=1:4, sumv = sumv + v(i); end
>> sumv
sumv = 10

This code initializes the variable sumv to 0. It then loops through each value
i = 1, 2, 3, 4 and replaces the current value of sumv with that value plus
v(i). The line with the for statement actually contains three separate Scilab
commands. It could have been written in the following form. (Notice how
you do not get another “prompt” after you begin a for structure until you
complete the structure with an end.)

>> sumv=0;
>> for i = 1:4

sumv = sumv + v(i);
end

>> sumv
sumv = 10

Octave follows all of the conventions mentioned in the textbook on p. 22.
In particular, putting a semicolon at the end of a line suppresses output,
but the computation is still completed. For example, within the for loop
above, we really do not need to see every step printed out. There is not much
editing that you can do directly in the Console. Of course, before you press
Enter, you can change things on the line where you are typing. If you make
a mistake, you can press the “Up Arrow” to have the last command line
brought back so that you can edit it. Repeatedly pressing the “Up Arrow”
scrolls back (and the “Down Arrow” scrolls forward later) through the history
of commands until you get to the one you want to edit and complete again.

9



2.3 Getting Help

The entries in a vector in Octave are most easily summed using a built-
in Octave function called sum. If you are unsure of how to use an Octave
function or command, you can always type help followed by the command
name, and an explanation will be provided.

>> help sum
’sum’ is a built-in function from the file libinterp/corefcn/data.cc

-- Built-in Function: sum (X)
-- Built-in Function: sum (X, DIM)
-- Built-in Function: sum (..., "native")
-- Built-in Function: sum (..., "double")
-- Built-in Function: sum (..., "extra")
Sum of elements along dimension DIM.

If DIM is omitted, it defaults to the first non-singleton dimension.

The optional "type" input determines the class of the variable used for
calculations. If the argument "native" is given, then the operation
is performed in the same type as the original argument, rather
than the default double type.

For example:
sum ([true, true])

=> 2
sum ([true, true], "native")

=> true
On the contrary, if "double" is given, the sum is performed in
double precision even for single precision inputs.
For double precision inputs, the "extra" option will use a more
accurate algorithm than straightforward summation.
For single precision inputs, "extra" is the same as "double".
Otherwise, "extra" has no effect.

See also: cumsum, sumsq, prod.

Additional help for built-in functions and operators is available
in the online version of the manual. Use the command
’doc <topic>’ to search the manual index.

-- less -- (f)orward, (b)ack, (q)uit

10



Using the separate Octave Documentation in PDF-format, you can find sum
in the Function Index. Then you can click on the hyperlinked page number
and jump to the same explanation more nicely typeset. (When you installed
GNU Octave you got this, and you can find this in Octave folder in the Pro-
grams Menu.) Finally, in the GUI interface, below the Command Window
are three tabs (Command Window, Editor, Documentation). Selection the
“Documentation” tab brings up another version of the Octave documenta-
tion, which is searchable (see the field near the bottom).

Notice in the above Documentation that the Introduction and Getting Started
sections constitute a short tutorial. If we search for “sum”, we get (among
other things) the same text as given above in the Command Window, but
now more hyperlinked to other topics.

11



There is also a Frequently Asked Questions (FAQ) webpage that might be
helpful. http://wiki.octave.org/FAQ In particular, where it attempts to
explain the few differences between MATLAB and Octave, it has the follow-
ing quote:

There are still a number of differences between Octave and Mat-
lab, however in general differences between the two are considered
as bugs. Octave might consider that the bug is in Matlab and do
nothing about it, but generally functionality is almost identical.
If you find an important functional difference between Octave
behavior and Matlab, then you should send a description of this
difference (with code illustrating the difference, if possible) to
http://bugs.octave.org.
Furthermore, Octave adds a few syntactical extensions to Mat-
lab that might cause some issues when exchanging files between
Matlab and Octave users.
As both Octave and Matlab are under constant development, the
information in this section is subject to change.

12

http://wiki.octave.org/FAQ


2.4 Matrices

Octave also works with matrices:

>> A = [1, 2, 3; 4, 5, 6; 7, 8, 0]
A =

1 2 3
4 5 6
7 8 0

>> b = [0;1;2]
b =

0
1
2

There are many built-in functions for solving matrix problems. For example,
to solve the linear system Ax = b, type A\b to get:

>> x = A\b
x =

6.6667e-001
-3.3333e-001
2.4672e-017

Note that the solution is printed out in scientific notation with only five
significant digits. It is actually stored in more places (see chapter 5). To see
more, use the format command. The default number of “places,” excluding
the sign of the number and the sign of the exponent, but including the decimal
point and the exponent, is 10. This is (default) format short. To see more,
switch to format long.

>> format long
>> x
x =

6.66666666666667e-001
-3.33333333333333e-001
2.46716227694479e-017

Other options include format short e and format long e to display num-
bers always in scientific notation. The command format with nothing else
restores to the default.

13



We can check the answer in Octave to see the true precision (and also to
compare with the textbook MATLAB result).

>> format
>> b - A*x
ans =

3.7007e-017
3.3307e-016
4.4409e-016

You will notice that this result does not have exactly the same digits as
printed in our textbook. The compatibility between GNU Octave and Matlab
means that the similar commands try to do the same operations. It does not
extend to exactly the same code underneath and exactly the same numerical
results.

2.5 Creating and Running Files

Octave allows you to save a collection of commands that you have typed in a
file to be executed later. Prior to version 4.0.0 (and still in the CLI-version),
you needed to find your own text editor as a separate program. Now in the
GUI-version, a text editor is included. However it is so new (April 2015)
that there is almost no documentation about how to use this editor. Still the
editing commands and options are fairly obvious.
To open the editor from the Octave console, click on the Editor toggle at
the bottom of the GUI screen. The editor opens with a default file named “
*<unnaved> “.

14



Any file can be saved under the File - Save and the files will be given the
extension “.m” so that they can be associated with Octave (and probably
be usable in Matlab). Back in the Octave Command Window, you must
remember to change the working directory of Octave to the directory in
which that file resides. From the editor, you can also have the commands
executed. (The Run and Save asks you automatically if you want to change
the working directory.)

2.6 Comments

Octave allows “comments”, and these are particularly important to embed
in code that you type in a file so that you explain the code. Such comments

15



have no effect on the code to be executed. You can either make an entire line
a comment or you can append a comment to the end of a line of commands.
Octave generally prefers to use a sharp sign character (#) to denote a com-
ment. But for MATLAB compatibility, it also allows the percent sign (%).

>> % Solve Ax = b
>> x = A\b; #This solves Ax = b and stores the result in x.

Anything following either sign is ignored in the rest of the line. Comments
are particularly important in text files that you are going to save, so that
you can later understand what is intended and so that others who might use
them can understand.

2.7 Plotting

Here we show the commands and the results to reproduce the plots in Figure
2.2 and Figure 2.3 in the textbook in Octave.
In Octave we do the following:

>> x = 0:0.1:1; #Form the (row) vector of x values.
>> y = cos(50*x); #Evaluate cos(50*x) at each of the x values.
>> plot(x,y) #Plot the results.

16



The graphic window that appears (above) contains the plot. There are then
many interactive actions that you can make with the figure. While the above
figure was simply obtained by a screen capture in Window and some slight
editing in Paint, we will explore the options for saving plots under the File
menu in the further plots below.
Obviously, this is a very poor plotting of this function, with only 11 points
sampled. Notice that by default, straight lines connect the plotted pairs
(xi, yi) passed to the plot command. Next we increase the size of the plot
vectors, and we add a title and labels for the axes.

>> x = 0:0.01:1; #Create a vector of 101 x values.
>> plot(x,cos(50*x)) #Plot x versus cos(50*x)
>> title(’Plot of x versus cos(50*x)’)
>> ylabel(’cos(50*x)’)
>> xlabel(’x’)

If you watched the graphics window when you executed these new commands,
you found that the new plot command replaced the previous plot that was
there, and then the further details (title, labels) each appear one-at-a-time.
The default format for saving the plot is as a PDF. I have done that, and
then imported the resulting file into my TEX editor (LYX) below.

17



co
s(

50
*x

)

x

1

0.5

0

-0.5

-1
10.80.60.40.20

Plot of x versus cos(50*x)

The result has excessive “white space” surrounding the desired plot. Here
are the commands to get Figure 2.3 for the textbook.

>> plot(x,cos(50*x),x,x)
>> legend(’cos(50*x)’,’x’)

Instead of saving as a PDF, here the Copy command under the Edit menu
was used. This was then Pasted into Paint, and saved as a PNG file (but
there are many other graphic file options in Paint). This is the result, with
not so much wasted “white-space” all around.

18



You can get the animation suggested in the textbook with the Octave com-
mands below (but it seems to occur much more slowly, and so I have used
a smaller x-vector below compared to the textbook or what I could use in
Scilab). Unfortunately, this seems to indicate that more elaborate plotting
might take longer to be generated in Octave.
>�> x = 0:0.01:10;

>�> comet(x,cos(3*x))

Perhaps there are other ways to save and manipulate the resulting plots, but
here, at least, are the ways to get the figures from the textbook on the screen.
For all of the typing above, it makes more sense to work in the editor, where
you can easily save your work and change it. You can use the mouse to
select a section of code to be executed (and there is even a Save and Execute
command and a Run Selection).

19



2.8 Creating Your Own Functions

You can create your own functions in Octave. The simplest way is demon-
strated here.

>> function y = f(x)
y = x.^2 + 2*x;

endfunction
>>

Notice in the above that the section of code defining a function begins with
the command function and ends with the command endfunction, and you
do not get another prompt (>�>) until after the endfunction command. The
variable y signifies the output and the variable x will be the input. The name
of the function created is the variable name f. All functions expect the input
to be a vector or matrix. Thus if you typed only x^2 in the above function
formula, it would attempt to find the square of the matrix x (or otherwise
to multiply the vector by itself, resulting in an error). Instead we desire the
square of individual elements in the variable x, and that is what is indicated
by the “dot carrot” notation. Thus not only can we evaluate f(1.5), but we
can evaluate a whole vector. Notice also that we have suppressed output at
the end of the function formula with a semicolon.

>> f(1.5)
ans = 5.2500

20



>> f([0:5])
ans =

0 3 8 15 24 35
>>

It is possible to “pack” very simple formulas into one line, but there is no
real advantage.

>> function y=g(x), y=5*x.^3+2*x.^2-x; endfunction
>> g(2.3)
ans = 69.115

Of course you will often define functions in the editor (.m file), and it is very
appropriate to include comments explaining the definition.
Octave does have an inline command like MATLAB, but the documentation
has the following:

*Caution*: MATLAB has begun the process of deprecating
inline functions. At some point in the future support will be
dropped and eventually Octave will follow MATLAB and also
remove inline functions. Use anonymous functions in all new
code.

So here is an anonymous function example (where we have also named the
“anonymous function”, but in many uses you do not).

>> newf = @(x) (4*x.^2+5*x);
>> newf(-5.6)
ans = 97.440

2.9 Printing

To be really honest, I seldom worry much about fancy “printing” of output
in the command window. I am usually moving the data to a word proces-
sor for a more polished format anyway. [It brings back bad memories of
what I had to do when I used to program in FORTRAN!] Still Octave has
most of the printing commands of Matlab. For Octave see in the documen-
tation Chapter 14, Input and Output (where you will find display, disp,
printf, fprintf and sprintf that behave almost exactly like in Matlab).

21



>> x = 0:0.5:2;
>> display(x)

0.00000 0.50000 1.00000 1.50000 2.00000

>> disp(x)
0.00000 0.50000 1.00000 1.50000 2.00000

>> disp([’x = ’,num2str(x)])
x = 0 0.5 1 1.5 2

>> disp(’ Score 1 Score 2 Score 3’), disp(rand(5,3))
Score 1 Score 2 Score 3
0.485476 0.837004 0.160101
0.856768 0.230565 0.393887
0.930513 0.247282 0.893566
0.795853 0.012911 0.837617
0.173847 0.260161 0.108334

>> fprintf(’ x sqrt(x)\n=====================\n’),...
for i=1:5, fprintf(’%f %f\n’,i,sqrt(i)), end

x sqrt(x)
=====================
1.000000 1.000000
2.000000 1.414214
3.000000 1.732051
4.000000 2.000000
5.000000 2.236068

2.10 More Loops and Conditionals

Loops that pass though a section of code a predetermined number of time or
with some kind of conditional termination are available in every programming
environment. For Octave see in the documentation Chapter 10, Statements
(where you will find if, switch, while, do-until and for that behave
almost exactly like in Matlab).

2.11 Clearing Variables

Octave’s clear command works the same as in Matlab for clearing variables.

22



2.12 Logging Your Session

In Octave, the diary command work in the same way as in Matlab. I virtu-
ally never do this in the Windows environment, preferring to Copy and Paste
the commands and results into my word processor directly. It is more an old
UNIX procedure for saving the results of your session.

2.13 More Advanced Commands

Here is the Octave documentation (from the PDF file, p. 368) for the peaks
command (which is really a special example). The documentation actually
has the wrong function below, but this is the correct one.

peaks () [Function File]
peaks (n) [Function File]
peaks (x, y) [Function File]
z = peaks (. . . ) [Function File]
[x, y, z] = peaks (. . . ) [Function File]

Plot a function with lots of local maxima and minima. The function has the
form

f(x, y) = 3 (1− x)2 e(−x2−(y+1)2)−10
(
x

5 − x
3 − y5

)
e(−x2−y2)−1

3e
(−(x+1)2−y2)

Called without a return argument, peaks plots the surface of the above
function using surf. If n is a scalar, peaks plots the value of the above
function on an n-by-n mesh over the range [−3, 3]. The default value for n is
49. If n is a vector, then it represents the grid values over which to calculate
the function. If x and y are specified then the function value is calculated over
the specified grid of vertices. When called with output arguments, return the
data for the function evaluated over the meshgrid. This can subsequently be
plotted with surf (x, y, z). See also: [sombrero], page 351, [meshgrid],
page 316, [mesh], page 306, [surf], page 308.

23



Here is a summary of the elementary commands. (See Chapter 8 in the doc-
umentation.) First here are the elementary mathematical operators. Com-
mands on the left below operate on matrices. Commands on the right below
are element-wise.

Operator Action Operator Action
+ addition .+ element-wise addition
- subtraction .- element-wise subtraction
* multiplication .* element-wise multiplication
/ right division, i.e. xy−1 ./ element-wise right division
\ left division, i.e. x−1y .\ element-wise left division
^ power, i.e xy .^ element-wise power
** power (same as ^) .** element-wise power
’ conjugate transpose .’ transpose

ctranspose() conjugate transpose transpose() transpose
Most of the trigonometric functions are element-wise. (See Chapter 17 in the
documentation.) The standard trigonometric functions assume the argument
is in radians.
sin, cos, tan, cot, sec, csc

24



If you want the argument to be understood in degrees instead, the command
ends in a “d”.
sind, cosd, tand, cotd, secd, cscd

The inverse (or arc) trigonometric functions add the letter “a” to the be-
ginning of the command (with the result normally in radians, unless the
command ends in a “d” to get degrees).
asin, acos, atan, acot, asec, acsc
asind, acosd, atand, acotd, asecd, acscd

The hyperbolic trigonometric functions and their inverses (again arc), end
with the letter “h”.
sinh, cosh, tanh, coth, sech, csch
asinh, acosh, atanh, acoth, asech, acsch

The element-wise exponential, logarithmic, square root, and cub root func-
tions are the following. (Note that log is the natural logarithm, log10 is
the common logarithm with base 10, and log2 is the base 2 logarithm. Also
note the the cbrt function will give correct negative results for a negative x,
unlike x^(1/3) which may give another complex result.)
exp, log, log10, log2, sqrt, cbrt

There is an extension of some of these functions for square matrices that is
not given element-wise, and these end with the letter “m”.
expm, logm, sqrtm

Here are some of the predefined mathematical constants. (See Chapter 17 in
the documentation.) The Euler number (the base of the natural exponential,
i.e. exp(1)) is e. However, if you desire the natural exponential function,
you get more accuracy using exp(x) rather than (e).^x so please use the
given operation. The geometric constant we usually call π, is given by pi
and the complex imaginary

√
−1 is given by I or i although it will output

as 0 + 1i in the console.

3 Monte Carlo Methods

We do not cover this chapter, and so I might do this later. I would point out
that you can get the Matlab codes for the textbook examples (including the
card game simulations) at one of the authors websites.
http://academics.davidson.edu/math/chartier/Numerical/

25

http://academics.davidson.edu/math/chartier/Numerical/


4 Solution of a Single Nonlinear Equation in
One Unknown

4.1 Bisection

26


	Contents
	1 What are the alternatives to Matlab?
	1.1 What is GNU Octave?
	1.2 What is Scilab?
	1.3 Other Alternatives?

	2 Basic Operations with GNU Octave
	2.1 Launching GNU Octave
	2.2 Vectors
	2.3 Getting Help
	2.4 Matrices
	2.5 Creating and Running Files
	2.6 Comments
	2.7 Plotting
	2.8 Creating Your Own Functions
	2.9 Printing
	2.10 More Loops and Conditionals
	2.11 Clearing Variables
	2.12 Logging Your Session
	2.13 More Advanced Commands

	3 Monte Carlo Methods
	4 Solution of a Single Nonlinear Equation in One Unknown
	4.1 Bisection


