
Using Graph Template Language and R for High-
Quality Publication Plots

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

EPOSTERBOARDS TEMPLATE
Huei-Ling Chen, Jeff Cheng

Merck & Co., Inc.

ABSTRACT GRAPH TEMPLATE LANGUAGE (cont.)

GRAPH TEMPLATE LANGUAGE

• Block A, the first level
LAYOUT LATTICE
statement, creates two
rows by setting rows=2.
The rows are then
represented by nested
LAYOUT LATTICE
statements as indicated
in Block B and C. Each
statement will then
contain pie charts and
bar plots, respectively.

• Block B sets columns=4
to create four columns
for four pie charts.

• Block C sets columns=4
to create four columns
for four bar charts.

• The rowdatarange =
union option assures
that the data ranges of
all plots in the row cell
share a common axis
range.

• The border=false
specifies no border is
drawn around the
layout.

GRAPH TEMPLATE LANGUAGE (cont.)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

The Graph Template Language (GTL) is a powerful SAS® tool to create
sophisticated plots. There are many features in GTL that one can use to build
plots with high-quality visual effects. Besides SAS, R is also a frequently used
tool. This paper explores some GTL techniques for generating a publication-
quality graph by creating and combining a pie chart and a bar chart, fine-tuning
axis and plot position, and embedding texts for clarifications. Step-by-step
instructions for making this graph are shown in both GTL and R to demonstrate
how certain graphics elements and effects can be accomplished using
either. There are numerous software applications for plotting scientific
graphs. Some people use SAS to prepare the data set and rely on other software
for plotting the graph. This approach involves converting the SAS data set to
other data formats to facilitate use with different software. Companies
sometimes contract outside vendors for plotting scientific graphs. However, by
taking advantage of the capabilities of SAS and R for generating high-quality
publication plots, many of these tasks can be done in-house, which makes a
good business case for time and cost savings, and for data protection.

PIE CHART

BAR PLOT

DISPLAY MULTIPLE-CELL GRAPH WITH NESTED LAYOUT LATTICE

FINE TUNING AXIS AND PLOT POSITION

• PAD Statement
• COLUMNGUTTER Statement
• ROWWEIGHTS / COLUMNWEIGHTS STATEMENT
• YAXISOPTS Statement

Figure 1: Sample Pie Chart (SAS output)

Figure 2: Sample Bar Chart (SAS output)

EMBED TEXTS IN THE PLOT
Figure 3: Pie Bar Chart without Texts in the Plot (SAS output)

SIDEBAR ENTRY Statement
• align=
• rotate=

CELLHEADER ENTRY Statement

DRAWTEXT Statement
• drawspace=
• x=, y=
• anchor=

B

C
A

EPOSTERBOARDS TEMPLATE
RESULTS CONTINUED (CLICK TO EDIT)

CONCLUSIONS

R Code
 R Code Example
Pie Chart floating.pie(xpos, ypos, x, edges=200,

radius=1,col=NULL,startpos=0,
shadow=FALSE,shadow.col=c("#ffffff","#ccc
ccc"),...)

floating.pie(1.7,2.5,c(90,10),radius=0.5,col=c("co
rnflowerblue", "coral"))

Bar Plot barplot(height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL,
beside = FALSE, horiz = FALSE, density =
NULL, angle = 45, col = NULL, border =
par("fg"), main = NULL, sub = NULL, xlab =
NULL, ylab = NULL, xlim = NULL, ylim =
NULL, xpd = TRUE, log = "", axes = TRUE,
axisnames = TRUE, cex.axis =
par("cex.axis"), cex.names =
par("cex.axis"), inside = TRUE, plot =
TRUE, axis.lty = 0, offset = 0, add =
FALSE, args.legend = NULL, …)

barplot(as.matrix(data), main=" ", ylab = "WWW",
beside=TRUE, col=colours, ylim=c(0,100),
names.arg = c("YYY Signature XXXs", "ZZZ
class XXX", "YYY Signature XXX", "ZZZ class
XXX"), cex.lab = 1 , cex.main = 1.2,
cex.names=0.9)

Multiple-Cell Graph par(mfrow=(A,B)) par(mfrow = c(2, 1))

Fine Tuning Axis
and Plot Position

mar() for margin.
oma() for outer margin area

#margins for pie chart
par(mar=c(0,0,0,0))

#margins for bar plot
par(mar=c(5,4,1,2),xpd=TRUE)

par(oma = c(1, 0, 0, 0))

Embed Texts in the
Plot

text(x, y = NULL, labels = seq_along(x$x),
adj = NULL, pos = NULL, offset = 0.5, vfont
= NULL, cex = 1, col = NULL, font = NULL,
...)

text(c(1.6,2.8,4.0,5.2) , c(2.8), c("No
XXX:\n61/68\n(90%)","No
XXX:\n54/68\n(79%)","No
XXX:\n59/68\n(87%)","No XXX:\n47/68\n(69%)"),
cex=0.9, font=4)

Conclusion R Code (continued)
Standard data analysis procedures often involve data format manipulation, QC,
analysis, analysis summaries and result visualizations. Sometimes people use
SAS for all but the last of the aforementioned steps. Instead of using SAS, they
send their data to other software applications, such as PRISM, Origin, Sigmaplot
etc.,an extra step that creates opportunity for introducing errors. Some
companies, if budget allows, even hire outside vendors to create plots for them.
In addition to the extra cost, this approach also means that the company has to
share their data with other entities.
This paper demonstrates that SAS and R can create publication quality plots,
which facilitates production of these plots in-house. This has many benefits
including: creating and retaining reusable codes, minimizing error by minimizing
analysis steps, cost savings and data protection.
Our group already has the capabilities of integrating SAS and R as part of an
analysis and reporting package. SAS can create some reports by passing the data
from SAS to R, calling R script in SAS, automatically generating the graph using R.
Integrating SAS and R and taking advantages of the strengths of both can
become a powerful tool for analysis and reporting. It is a very feasible direction
with lots of potentials for SAS/R users.

R Reference:
floating.pie function in rdocumentation.org:
https://www.rdocumentation.org/packages/plotrix/versions/3.7/topics/floating.
pie
barplot function in rdocumentation.org:
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/barp
lot
plot function in rdocumentation.org:
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/plot

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

RESULT

Figure 5: Pie Bar Chart (R output)

Figure 4: Pie Bar Chart with Texts in the Plot (SAS output)
SIDEBAR ENTRY statement

align=bottom

SIDEBAR ENTRY
statement
align=left

CELLHEADER ENTRY
statement

DRAWTEXT statement
anchor=topleft

SIDEBAR ENTRY statement
align=top

PIE CHART
Part of the R ‘plotrix’ package, the floating.pie function creates a pie chart with
the first and second parameter xpos ypos specifying the x and y position of the
center of the pie chart.
BAR PLOT
The barplot function creates a bar plot with vertical or horizontal bars. The
names.arg= is a vector of names to be plotted below each bar or group of bars.
DISPLAY MULTIPLE CELL GRAPH
R uses par() function to combine multiple plots into one overall graph. The
mfrow=c(A, B) option in the par() function creates a matrix of AxB plot.
EMBED TEXTS IN THE PLOT
The function text() draws the text with two positional parameters: the first one for
the x coordinate position and the second one for the y coordinate position.

https://www.rdocumentation.org/packages/plotrix/versions/3.7/topics/floating.pie
https://www.rdocumentation.org/packages/plotrix/versions/3.7/topics/floating.pie
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/barplot
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/barplot
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/plot

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Paper 2493-2018

Using Graph Template Language and R for High-Quality Publication Plots
Huei-Ling Chen, Jeff Cheng, Merck & Co., Inc.

ABSTRACT
The Graph Template Language (GTL) is a powerful SAS® tool to create sophisticated plots. There are
many features in GTL that one can use to build plots with high-quality visual effects. Besides SAS, R is
also a frequently used tool. This paper explores some GTL techniques for generating a publication-quality
graph by creating and combining a pie chart and a bar chart, fine-tuning axis and plot position, and
embedding texts for clarifications. Step-by-step instructions for making this graph are shown in both GTL
and R to demonstrate how certain graphics elements and effects can be accomplished using
either. There are numerous software applications for plotting scientific graphs. Some people use SAS to
prepare the data set and rely on other software for plotting the graph. This approach involves converting
the SAS data set to other data formats to facilitate use with different software. Companies sometimes
contract outside vendors for plotting scientific graphs. However, by taking advantage of the capabilities of
SAS and R for generating high-quality publication plots, many of these tasks can be done in-house, which
makes a good business case for time and cost savings, and for data protection.

INTRODUCTION
With step by step instructions, this paper will demonstrate how to make a multiple-cell graph consisted of
pie charts and bar charts using SAS or R. The first three sections cover GTL syntax for single pie chart,
single bar chart, and multiple-cell graph, respectively. The last section introduces corresponding R code
for generating the same plots. The plots generated by the GTL and R codes in this paper are also
presented.

PIE CHART
LAYOUT REGION and PIECHART statements are used to create a percent pie chart that is shown in
figure 1.

- CATEGORY specifies the variable to be analyzed. The category is a discrete variable.

- option STAT=PCT calculates the percentage of the CATEGORY variable

proc template;
 define statgraph pieplot;

 begingraph ;
 layout region ;
 piechart category=x1
 /stat=pct
 dataskin=gloss
 DATALABELLOCATION=inside
 DATALABELCONTENT=(category percent)
 labelfitpolicy=drop;
 endlayout;
 endgraph;

 end;
run;

Figure 1: SAS percent pie chart with
gloss effect and labels for each
category

1

BAR CHART
LAYOUT OVERLAY and BARCHARTPARM statements are used to create the bar chart which is shown
in figure 2. Both BARCHART and BARCHARTPARM statements in GTL can be used to create bar chart.
The difference between the two is that BARTCHARTPARM does not perform calculation to summarize
the data. The data has to be pre-summarized before feeding it to the BARTCHARTPARM statement.
Whereas raw data can be fed directly into the BARDCHART statement.

- Option ORIENT layouts the bar chart to be vertical or horizontal.

- With ORIENT=VERTICAL, Y specifies the summarized result of the data to be displayed. X
specifies the category variable.

proc template;
 define statgraph onebarplot;
 begingraph ;
 layout overlay / yaxisopts = (. . .)
 xaxisopts = (. . .);
 barchartparm x=rava y=percenta
 / group=rava
 barwidth=0.8
 orient = vertical
 groupdisplay=cluster
 dataskin=gloss;
 endlayout;
 endgraph;
 end;
 run;

Figure 2: SAS percent bar chart with
gloss effect

DISPLAY MULTIPLE-CELL GRAPH WITH NESTED LAYOUT LATTICE
Multiple-cell graph such as the one depicted in figure 3, can be created by nesting multiple LAYOUT
LATTICE statements. As demonstrated in the example GTL code of this section, a graph can first be
divided into sub-graphs of different scopes, each associated with a LAYOUT LATTICE statement. These
statements can then be used to manipulate attributes such as number of charts to be included in the
associated sub-graphs.

KEY SYNTAX OF NESTED LAYOUT LATTICE
The LAYOUT LATTICE statement creates multiple-cell graphs with great flexibility to adjust the position of
the plots, the size of rows and columns, internal or external axis, internal or external labeling, external
sidebars.

Below code demonstrates the structure of the LAYOUT LATTICE statements for the plot in figure 3.
Block A, the first level LAYOUT LATTICE statement, creates two rows by setting rows=2. The rows are
then represented by nested LAYOUT LATTICE statements as indicated in Block B and C. Each
statement will then contain pie charts and bar charts, respectively. Block B sets columns=4 to create
four columns for four pie charts. Block C sets columns=4 to create four columns for four bar charts.

The rowdatarange=union option assures that the data ranges of all plots in the row cell share a common
axis range. The border=false specifies no border is drawn around the layout.

2

 proc template;
 define statgraph piebarplot_notext;
 begingraph ;
 layout lattice / rows=2 rowweights=(0.5 0.5);
 layout lattice / columns=4 rowdatarange=union;
 layout region / pad=10
 piechart . . .
 endlayout;
 layout region / pad=10
 piechart . . .
 endlayout;
 layout region / pad=10
 piechart . . .
 endlayout;
 layout region / pad=10
 piechart . . .
 endlayout;
 endlayout;

 layout lattice / columns=4 rowdatarange=union
 columndatarange=union border=false
 columngutter=0
 columnweights= (0.31 0.23 0.23 0.23);
 layout overlay / yaxisopts=(display=(label
 line ticks tickvalues)
 label='WWW')...
 barchartparm . . .
 endlayout;
 layout overlay /yaxisopts=(display=none)...
 barchartparm . . .
 endlayout;
 layout overlay / yaxisopts =(display=none)...
 barchartparm . . .
 endlayout;
 layout overlay / yaxisopts =(display=none)...
 barchartparm . . .
 endlayout;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

FINE TUNING AXIS AND PLOT POSITION

PAD Statement
The pad=10 statement specifies the amount of extra space that is added inside the layout border. The
default unit is pixels.

COLUMNGUTTER Statement
The columngutter= defined a vertical gap between all cells. Block C columngutter=0 means no gap
between bar charts.

ROWWEIGHTS / COLUMNWEIGHTS Statement
Block A rowweights= (0.5 0.5) setting specifies that the first row gets 50% of available row space, and
the second row gets 50%.

4 Pie Charts on Top
Row

4 Bar Charts on
Bottom Row

A

B

C

3

Block C columnweights= (0.31 0.23 0.23 0.23) setting specifies that the first column gets 31% of
available column space and the other three columns gets 23% each.

YAXISOPTS Statement
The first bar chart has yaxisopts= options with label, axis line, tick, and tick value specified. The other
three bar charts, on the other hand, has yaxisopts =(display=none). This is why the first bar chart gets
bigger column space (31%) than the other three bar charts (23%)

Figure 3: Pie Bar Chart without Texts in the Plot (SAS output)

Figure 3 is the SAS output created by the aforementioned techniques. Title, header, and the legend are
not generated yet at this point.

EMBED TEXTS IN THE PLOT

GTL has varieties of ways to add texts in the plot. This paper will introduce three statements: SIDEBAR
ENTRY, CELLHEADER ENTRY, and DRAWTEXT.

4

 layout lattice / columns=4 rowdatarange=union ;

 sidebar / align=top;
 entry " ";
 endsidebar;

 sidebar / align=top ;
 entry " Population Sequencing Next Generation Sequencing"
 / TEXTATTRS = (weight=bold SIZE=10) ;
 endsidebar;

 sidebar / align=left;
 entry "PREVALENCE" / rotate=90;
 endsidebar;

 cell;
 cellheader;
 entry "YYY Signature XXX”
 /border=false TEXTATTRS=(weight=bold SIZE=8);
 endcellheader;

 layout region / . . . ;
 piechart . . . ;
 endlayout;
 endcell;

 …

 < other cell blocks for the other pie charts >
 endlayout;

SIDEBAR ENTRY Statement
A SIDEBAR ENTRY statement supports the display of a string of texts spans across columns or rows. It
is useful for displaying information that applies to all of the columns or all of the rows. This paper utilizes
SIDEBAR for Y axis labeling, header across columns on the top of the four pie charts. The align= option
places the text on top, bottom, left, or right. The rotate= option specifies the angle of text rotation
measured in degrees. Here the text ‘PREVALENCE’ on the left is rotated 90 degree clockwise.

CELLHEADER ENTRY Statement
To add cell headers to each individual plot, there need to be a CELL block that contains a nested
CELLHEADER block. The CELLHEADER block can contain one or more ENTRY statements.

DRAWTEXT Statement
 proc template;
 define statgraph piebarplot_notext;
 begingraph ;
 layout lattice / rows=2 … ;
 layout lattice / columns=4 … ;
 …
 endlayout;

 layout lattice / columns=4 … ;
 …
 endlayout;

SIDEBAR
ENTRY

Statement

CELLHEADER
ENTRY

Statement

5

 drawtext textattrs=(size=7pt) "No XXX 61/68 (90%)"
 / x=10 y=80 drawspace=graphpercent
 width=10 widthunit=percent
 anchor=topleft
 border=false ;

 drawtext … ;

 drawtext … ;

 endlayout;
 endgraph;
 end;
 run;

In the pie chart, though DATALABEL is specified to show category labeling, the label has too many
characters to be fully displayed in the plot. The solution is to utilize DRAWTEXT statement to
accommodate the long label. A drawtext statement puts text box in the graph area. The text box can
contain one or more lines of formatted text. The drawspace= option specifies the drawing space. User
can choose GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, LAYOUTPIXEL, WALLPERCENT,
WALLPIXEL, DATAPERCENT, DATAPIXEL, or DATAVALUE. The x= and y= options specifies the
anchor point’s X and Y coordinate. The anchor= option specifies an anchor point for the text box on
CENTER, TOPLEFT, TOP, TOPRIGHT, LEFT, RIGHT, BOTTOMLEFT, BOTTOM, BOTTOMRIGHT.

Figure 4: Pie Bar Chart with Texts in the Plot (SAS output)

CELLHEADER
ENTRY

statement

SIDEBAR ENTRY statement
align=top

SIDEBAR
ENTRY

statement
align=left

SIDEBAR ENTRY statement
align=bottom

DRAWTEXT
statement

6

R CODE
 R Code Example

Pie Chart floating.pie(xpos, ypos, x, edges=200,
radius=1,col=NULL,startpos=0,
shadow=FALSE,shadow.col=c("#ffffff","#
cccccc"),...)

floating.pie(1.7,2.5,c(90,10),radius=0.5,col=c("
cornflowerblue", "coral"))

Bar Chart barplot(height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL,
beside = FALSE, horiz = FALSE, density
= NULL, angle = 45, col = NULL, border
= par("fg"), main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, xlim = NULL,
ylim = NULL, xpd = TRUE, log = "", axes
= TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names =
par("cex.axis"), inside = TRUE, plot =
TRUE, axis.lty = 0, offset = 0, add =
FALSE, args.legend = NULL, …)

barplot(as.matrix(data), main=" ", ylab =
"WWW", beside=TRUE, col=colours,
ylim=c(0,100), names.arg = c("YYY Signature
XXXs", "ZZZ class XXX", "YYY Signature
XXX", "ZZZ class XXX"), cex.lab = 1 ,
cex.main = 1.2, cex.names=0.9)

Multiple-Cell
Graph

par(mfrow=(A,B)) par(mfrow = c(2, 1))

Fine Tuning
Axis and Plot
Position

mar() for margin.

oma() for outer margin area

#margins for pie chart
par(mar=c(0,0,0,0))

#margins for bar chart
par(mar=c(5,4,1,2),xpd=TRUE)

par(oma = c(1, 0, 0, 0))

Embed Texts in
the Plot

text(x, y = NULL, labels =
seq_along(x$x), adj = NULL, pos =
NULL, offset = 0.5, vfont = NULL, cex =
1, col = NULL, font = NULL, ...)

text(c(1.6,2.8,4.0,5.2) , c(2.8), c("No
XXX:\n61/68\n(90%)","No
XXX:\n54/68\n(79%)","No
XXX:\n59/68\n(87%)","No
XXX:\n47/68\n(69%)"), cex=0.9, font=4)

Table 1: R code

PIE CHART
Part of the R ‘plotrix’ package, the floating.pie function creates a pie chart with the first and second
parameter xpos ypos specifying the x and y position of the center of the pie chart. The third parameter x
is the numeric vector of each value in the pie chart. The keyword parameters include the radius of the
pie in user units, col the colors of the sectors. Notice that in R code very often the value is presented in a
vector format, e.g. col=c("cornflowerblue", "coral"). The c() statement allows direct entry of small vectors
in programs.

BAR CHART
The barplot function creates a bar chart with vertical or horizontal bars. The names.arg= is a vector of
names to be plotted below each bar or group of bars. The beside=TRUE makes stacks bars and FALSE
makes columns portrayed as juxtaposed bars. The main= is the overall title of the plot. Here the
individual bar chart title is omitted, hence, main=” “. The ylim= is limits, range, for the y axis.

For many bar charts in the plotting area, bar label might overlap. You can adjust the bar label font size by
controlling the cex.names= option. The cex.lab= option controls the size of x and y labels relative to cex.

7

The cex.main= option controls the size of titles relative to cex. The cex is a number indicating the
plotting text and symbols scaled relative to the default. 1 is default, 1.5 is 50% larger, 0.5 is 50% smaller.

DISPLAY MULTIPLE-CELL GRAPH
R uses par() function to combine multiple plots into one overall graph. The mfrow=c(A, B) option in the
par() function creates a matrix of AxB plot. In the example of this paper, par(mfrow = c(2,1)), 2 rows 1
column matrix is created. One row is for pie charts, the other row is for bar charts.

FINE TUNING AXIS AND PLOT POSITION

R can adjust the margins for each plot by setting up mar() and oma() right before the plotting function.
The mar() function has a numeric vector of 4 elements which sets the margin sizes in the following order:
bottom, left, top, and right. There is no extra spaces needed for pie charts, the margins for pie charts are
set to 0 for each side, par(mar=c(0,0,0,0)). Bar charts need some space at the bottom to put the legend
and on the left the y axis ticks, ticks value, line, and label. The margins for bar charts hence is
par(mar=c(5,4,1,2),xpd=TRUE). The function par(xpd=TRUE) enables things to be drawn outside the
plot region. Extra outer margin space can be extended by function oma().

EMBED TEXTS IN THE PLOT

The function text() draws the text with two positional parameters: the first one for the x coordinate
position and the second one for the y coordinate position. The keyword parameter labels specifies one
or more strings of texts to be written in the plot.

Figure 5: Pie Bar Chart (R output)

8

CONCLUSION
Standard data analysis procedures often involve data format manipulation, QC, analysis, analysis
summaries and result visualizations. Sometimes people use SAS for all but the last of the
aforementioned steps. Instead of using SAS, they send their data to other software applications, such as
PRISM, Origin, Sigmaplot etc.,an extra step that creates opportunity for introducing errors. Some
companies, if budget allows, even hire outside vendors to create plots for them. In addition to the extra
cost, this approach also means that the company has to share their data with other entities.

This paper demonstrates that SAS and R can create publication quality plots, which facilitates production
of these plots in-house. This has many benefits including: creating and retaining reusable codes,
minimizing error by minimizing analysis steps, cost savings and data protection.

Our group already has the capabilities of integrating SAS and R as part of an analysis and reporting
package. SAS can create some reports by passing the data from SAS to R, calling R script in SAS,
automatically generating the graph using R. Integrating SAS and R and taking advantages of the
strengths of both can become a powerful tool for analysis and reporting. It is a very feasible direction
with lots of potentials for SAS/R users.

REFERENCES
R Reference:

• floating.pie function in rdocumentation.org:
https://www.rdocumentation.org/packages/plotrix/versions/3.7/topics/floating.pie

• barplot function in rdocumentation.org:

https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/barplot

• plot function in rdocumentation.org:

https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/plot

ACKNOWLEDGMENTS
The authors would like to thank the Merck management teams for their inputs on this paper.

CONTACT INFORMATION
Huei-Ling Chen
c/o Merck & Co., Inc.
126 Lincoln Avenue
P.O. Box 2000
Rahway, NJ 07065
Phone: 732-594-2287
e-mail: Huei-Ling_Chen@merck.com

Jeff Cheng
c/o Merck & Co., Inc.
126 Lincoln Avenue
P.O. Box 2000
Rahway, NJ 07065
Phone: 732-594-0109
e-mail: jeff.cheng@merck.com

9

https://www.rdocumentation.org/packages/plotrix/versions/3.7/topics/floating.pie
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/barplot
https://www.rdocumentation.org/packages/graphics/versions/3.4.3/topics/plot

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

	2493-2018-eposter.pdf
	Using Graph Template Language and R for High-Quality Publication Plots
	Slide Number 2
	Slide Number 3
	Slide Number 4

	2493-2018.pdf
	Abstract
	Introduction
	pie chart
	BAR chart
	DISPLAY multiple-CELL GRAPH with nested layout lattice
	Key Syntax of Nested Layout Lattice
	fine tuning axis and plot position
	PAD Statement
	COLUMNGUTTER Statement
	ROWWEIGHTS / COLUMNWEIGHTS Statement
	YAXISOPTS Statement
	Figure 3 is the SAS output created by the aforementioned techniques. Title, header, and the legend are not generated yet at this point.

	embed texts in the plot
	GTL has varieties of ways to add texts in the plot. This paper will introduce three statements: SIDEBAR ENTRY, CELLHEADER ENTRY, and DRAWTEXT.
	SIDEBAR ENTRY Statement
	CELLHEADER ENTRY Statement
	DRAWTEXT Statement

	R code
	pie chart
	Bar chart
	display multiple-cell graph
	fine tuning axis and plot position
	R can adjust the margins for each plot by setting up mar() and oma() right before the plotting function. The mar() function has a numeric vector of 4 elements which sets the margin sizes in the following order: bottom, left, top, and right. There is...
	embed texts in the plot

	Conclusion
	References
	Acknowledgments
	Contact Information

