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Abstract 
In this paper, we applied the Laplace transform to obtain an exact analytic 

solution of some ordinary fractional differential equations. We used the Cauchy 

residue theorem  and the Jordan Lemma to obtain the inverse Laplace 

transform for some complicated functions and this implied to obtain an exact 

analytic solution of some ordinary fractional differential equations. The 

fractional derivatives would described in the Caputo sense which obtained by 

Riemann-Liouville fractional integral operator. We showed that the Laplace 

transform method  was a powerful and efficient techniques for obtaining an 

exact analytic solution of  some ordinary  fractional differential equations. 

 

Keywords:Fractional-order differential equations; Laplace Transform; Inverse 

Laplace Transform. 

 

 

1. INTRODUCTION 

In the past two decades, the widely investigated subject of fractional calculus has 

remark ablygained importance and popularity due to its demonstrated applications in 
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numerous diverse fields of science and engineering. These contributions to the fields of 

science and engineering are based on the mathematical analysis. It covers the widely 

known classical fields such as Abel’s integral equation and viscoelasticity. Also, 

including the analysis of feedback amplifiers, capacitor theory, generalized voltage 

dividers, fractional-order Chua-Hartley systems, electrode-electrolyte interface 

models, electric conductance of biological systems, fractional-order models of neurons, 

fitting of experimental data, and the fields of special functions [1-6]. 

Several methods have been used to solve fractional differential equations, fractional 

partial differential equations, fractional integro-differential equations and dynamic 

systems containing fractional derivatives, such as Adomian’s decomposition method 

[7–11], He’s variational iteration method [12–16], homotopy perturbation method 

[17–19], homotopy analysis method [20], spectral methods [21–24], and other methods 

[25–28]. 

This paper is organized as follows;we begin by introducing some necessary definitions 

and mathematical preliminaries of the fractional calculus theory. In section 3, the 

Laplace transform and the inverse Laplace transform for some functions is 

demonstrated. In section 4, the proposed method is applied to several examples. Also 

conclusions given in the last section. 

 

2. PRELIMINARIES AND NOTATIONS 

In this section, we give some basic definitions and properties of fractional calculus 

theory which are further used in this article. 

Definition 2.1.A real function 0> ),( xxf  is said to be in space   ,C  if there 

exists a real number >p , such that )(=)( 1 tfttf p , where )(0,)(1 Ctf , and it is 
said to be in the space nC  if and only if Cf n  , n . 

Definition 2.2.The Riemann-Liouville fractional integral operator of order 0> , of a 
function 1 ,  Cf , is defined as  

)(=)(

0>, )()(
)(
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=)(
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0
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dssfsttfJ
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(1) 

Some properties of the operator 
J , which are needed here, are as follows: 

for 0,, 1 ,  Cf and 1 :  
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Definition 2.3.The fractional derivative of )(tf in the Caputo sense is defined as  

)(=)( tfDJtfD mm                      (3) 

for mm  <1 , m , 0>t and mCf 1 . 

Caputo fractional derivative first computes an ordinary derivative followed by a 

fractional integral to achieve the desired order of fractional derivative.Similar to the 

integer-order integration, the Riemann-Liouville fractional integral operator is a linear 

operation:  

)(=))((
1=1=

tfJctfcJ ii

n

i
ii

n

i

 
                       

(4) 

where n
iic 1=}{  are constants. 

In the present paper, the fractional derivatives are considered in the Caputo sense. The 

reason for adopting the Caputo definition, as pointed by [10], is as follows: to solve 

differential equations (both classical and fractional), we need to specify additional 

conditions in order to produce a unique solution. For the case of the Caputo fractional 

differential equations, these additional conditions are just the traditional 

conditions,which are akin to those of classical differential equations, and are therefore 

familiar to us. In contrast, for the Riemann-Liouville fractional differential equations, 

these additional conditions constitute certain fractional derivatives (and/or integrals) of 

the unknown solution at the initial point 0=x , which are functions of x . These initial 

conditions are not physical; furthermore, it is not clear how such quantities are to be 

measured from experiment, say, so that they can be appropriately assigned in an 

analysis. For more details see [2]. 

 

3. LAPLACE OPERATION 

The Laplace transform is a powerful tool in applied mathematics and engineering. 

Virtually every beginning course in differential equations at the undergraduate level 

introduces this technique for solving linear differential equations. The Laplace 

transform is indispensable in certain areas of control theory. 
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3.1. Laplace Transform 

Given a function )(xf defined for <<0 x , the Laplace transform )(sF is defined as  

          
dxexfxfLsF sx



 )(=)]([=)(
0

 (5) 

at least for those s for which the integral converges. 

Let )(xf  be a continuous function on the interval )[0,  which is of exponential 

order, that is, for some c  and 0>x  

 . <
|)(|

sup cxe
xf

 

In this case the Laplace transform exists for all cs > . 

Some of the useful Laplace transforms which are applied in this paper, are as follows: 

For )(=)]([ sFxfL  and )(=)]([ sGxgL  
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Lemma 3.1.1.The Laplace transform of Riemann-Liouville fractional integral 
operator of order 0>  can be obtained in the form of:  





s
sFxfJL )(

=)]([  (7) 

Proof. The Laplace transform of Riemann-Liouville fractional integral operator of 

order 0>  is :  

 
, )()(

)(

1
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0
sGsFdttftxLxfjL
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  (8) 

where  

 


 

s
xLsG )(

=][=)( 1   (9) 
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and the lemma can be proved.     

 

Lemma 3.1.2.The Laplace transform of Caputo fractional derivative for 
mm  <1 , m , can be obtained in the form of: 

 . 
(0)(0))(

=)]([
1)(21
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m'mmm

s
fsfssFsxfDL  (10) 

Proof. The Laplace transform of Caputo fractional derivative of order 0>  is :  

 . 
)]([

=)]([=)]([
)(

)(





m

m
mm

s
xfLxfJLxfDL  (11) 

Using Eq.(6), the lemma can be proved.     

 

Now, we can transform fractional differential equations into algebraic equations and 

then by solving this algebraic equations, we can obtain the unknown Laplace function 

)(sF . 

 

3.2.Inverse Laplace Transform 

The function )(xf  in ((5)) is called the inverse Laplace transform of )(sF  and will 

be denoted by )]([=)( 1 sFLxf   in the paper. In practice when one uses the Laplace 

transform to, for example, solve a differential equation, one has to at some point invert 

the Laplace transform by finding the function )(xf which corresponds to some 

specified )(sF .The Inverse Laplace Transform of )(sF  is defined as:  

 , )(lim 
2

1
=)]([=)( 1 dssFe

i
sFLxf sxiT

iTT 








 (12) 

where is large enough that )(sF is defined for the real part of s . surprisingly, this 

formula isn't really useful. Therefore, in this section some useful function )(xf  is 

obtained from their Laplace Transform. In the first we define the most important 

special functions used in fractional calculus the Mittag-Leffler functions and the 

generalized Mittag-Leffler functions 

For 0>,  and z  
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Now, we prove some Lemmas which are useful for finding the function )(xf from its 

Laplace transform. 

Lemma 3.2.1.For 0>, , a  and |>| as  we have the following inverse 
Laplace transform formula 
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Proof.  
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So the inverse Laplace Transform of above function is  

 . )(,

1 


 axEx 
 (16) 

 

The following two lemmas are known see [29], but we include the proof for 

convenience of the reader. 

 

Lemma 3.2.2.For 0>  , a  and |>| as   we have 
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Proof. Using the series expansion of 1)(1  nx  of the from  
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we have:  

 
kkn

k
k

n
n

nn s
a

s
s

asass
))(( 

)(

1
=

)(1

1
 

)(

1
=

)(

1
 

0=
1

1
11 



 
















  (19) 

Giving the inverse Laplace Transform of above function can prove the Lemma. 

Lemma 3.2.3.For  > , , a , |>| as   and ||>|| bass    we have  
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Proof. )/( basss    by using the series expansion can be rewritten as  
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Now by using Lemma 3.2.2 the Lemma3.2.3 can be proved. 

 

Titchmarsh Theorem [28]:Let  F p  be an analytic function having no singularities 

in the cut plane l . Assuming that    F p F p  and the limiting values  

     lim , ( )iF t F t e F t F t   


 


. Exist for almost all  

(i)    1F p o  for p  and    1F p o p 
 for 0p  uniformly in any 

sector  arg , 0,p    

(ii) There exists 0  such that for every  

1 , , ,
1

i
i

F re
L F re a rr  

Where  a r  doesn't depend on   and 1
ra r e L for any 0  . Then 
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4. ILLUSTRATIVE EXAMPLES 

This section is applied the method presented in the paper and give an exact solution of 

some linerar fractional differential equations.  

 

Example 4.1. Consider the composite fractional oscillation equation  

 
   

0.=(0)=(0)

1<0, 8=)(2

'yy
xbyxyaDxyD  

 (22) 

Hence, we have two cases for 
2

1
0  and 1

2

1
   

For case one using the Laplace transform, )(sF is obtained as follows  
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Using the Lemma 3.2.3, the exact solution of this problem can be obtained as:  
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For case two, alpplying the Laplace transform, one has  
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Which the solution is similar to case 
2

1
0  when 0=(0)=(0) 'yy  

Example 4.2. Consider the following system of fractional algebraic-differential 

equations  
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subject to the initial conditions 0.=(0),  1=(0) yx  (26) 

Using the Laplace transform, )]([=)( tyLsF  and )]([=)( txLsG  is obtained as 

follows  

222
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If we multiplying the above equation by 1s  then we have  
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Now applying the inverse Laplace transform, one has  
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Therefore  tx can be obtained as follows 

          dxxExExxtttEtx
t
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exact solution for 1=  is tetttx sin=)( .   (28) 

 

Example 4.3.Consider the following Volterra sigular integral equation   

           10,0,00,2exp 0  


 afdttftxJaxxfD
x

x  

Solution:Taking the Laplace transform to the above integral equation leads to 
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 sF1  has a branch point at 0s . Since  sF1  has no poles on the real negative semi 

axis, we can use the well-known Tichmarch theorem.  sF2  has a branch point at 

0s and has a simple pole at as  too, so that it depends on a sign of a . 
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Since the sign of a is negative, 
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Infact the complete integral are evaluated with the help of Cauchy residue theorem and 

the Jordan lemma, so that according to the Jordan lemma see Fig. 1, we have 
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Figure 1. 

 

5. CONCLUSIONS 

The Laplace transform is a powerful tool in applied mathematics and engineering and 

have been applied for solving linear differential equations. In this paper, the application 

of Laplace transform is investigated to obtain an exact solution of some linerar 

fractional differential equations. The fractional derivatives are described in the Caputo 

sense which obtained by Riemann-Liouville fractional integral operator. Solving some 
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problems show that the Laplace transform is a powerful and efficient techniques for 

obtaining analytic solution of linerar fractional differential equations. 
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