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Abstract

Fresh water is an essential, highly limited, and vulnerable resource that is increasingly
under pressure. Most of the fresh water is held below ground or in glaciers and polar
caps and is therefore difficult to access for monitoring. Strategies to assess threats due
to for instance social processes and climate change, involve monitoring of streams and
rivers. In remote locations, it is difficult to obtain streamflow information because of the
difficulty making sufficient discharge measurements. This thesis investigates the
feasibility to constrain a fluid mechanics-based flow model for defining rating curves
with remotely sensed topographic data from airborne LiDAR scanning. A near infrared
LiDAR scan was carried out for an 8-m wide channel in northern Sweden. The
topographic information from this LiDAR scan along the 90-m surveyed reach was used
to define channel geometry above the water surface. To fill in the channel bed
topography below the water surface we used a detailed ground survey to create a hybrid
model for comparison to a simple assumption of a flat bottom channel. Based on the
boundaries of confidence intervals calculated from the direct measurements, we show
that for the channel considered the simple flat bottom assumption performs just as well
as the hybrid model with regards to estimating direct discharge measurements. The
mismatch between the two models was greatest at low flows and may be associated
with unresolved submerged bed topography. This deficiency, while rather small, could
potentially be remedied by scanning during periods of low flow, or use other techniques
such as multi-frequency bathymetric LiDAR or passive optical remote sensing that offer
alternative ways for generating the necessary topographic information. The cost of
monitoring is expensive, leading to reduced effort while the need for monitoring is
increasing. The use of LiDAR-based techniques for modeling rating curves may offer
alternative ways for monitoring streamflow, which can open possibilities to overcome
this problem.
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Introduction

Monitoring stream water

Fresh water is an essential resource. In today’s society, this limited resource is subjected
to many stresses (e.g., population growth, industrialization, urbanization, and climate
change). As such, there is clearly a need for strategies to assess the environmental and
societal threats to fresh water (e.g., Hossain et al., 2011) that capture the key factors that
influence water quality and quantity. A first step to such strategies is often monitoring of

fresh water resources to gain insight to availability.

This can be problematic, however, as most fresh water is held below ground in aquifers
and difficult to monitor. The fresh water held in glaciers and polar ice caps (the majority
of the global surface fresh water) is also difficult to monitor due to limitations in
accessibility. Therefore, a large part of our current fresh water resource monitoring
effort is put towards measuring flows in streams and rivers since these flowing waters

are visible and accessible to monitor.

As streams and rivers transfer water from the landscape back to the oceans (Mosley and
McKerchar, 1992), they integrate water from across the landscape. Streamflow (or
discharge) therefore has relevance across many disciplines and processes including, for
example, the terrestrial export of compounds (Dawson etal,, 2008; Destouni, et al,,
2008; Schlacheretal, 2009), water chemistry (Lohseetal,2009), carbon fluxes
(Agren et al., 2007; Lohse etal, 2009), and the riverine export of nutrients to the sea
(Laznik et al., 1999; Reigstad et al.,, 1999; Schlacher et al., 2009). Monitoring discharge
and its variability across the landscape is key to our understanding and estimation of,
not only biogeochemical export (Temnerud et al., 2007; Lyon et al., 2010), but also of

aquatic ecosystem health (Laudon and Buffam, 2008), flood amounts and frequency



(Wilson et al., 2010), and water resource management (Koutsouris et al., 2010). So, even
though streams and rivers represent a small part of the total global fresh water supply
(0.7% (Shiklomanov, 1993)) streamflow itself can be considered a strong candidate for
the most important observation in hydrology and plays a key part in developing

strategies to aid in the assessment of environmental and societal threats to fresh waters.

At a global scale, however, many streams and rivers are currently not monitored
(Bishop et al., 2008). In particular, little is known about stream headwaters and scaling-
up the role of small catchments (Temnerud and Bishop, 2005). This makes it difficult to
estimate current discharge let alone future changes from these smaller systems
(Baggaley et al., 2009). While the unawareness about the status (environmental and
chemical) in most running waters and the effects of human activities and climate change
calls for extended monitoring of smaller catchments, the current trend in streamflow
monitoring worldwide is for decreased observations and fewer locations of direct
monitoring of streamflow (e.g., Bring and Destouni, 2009; Brown, 2002; Fekete and
Vorosmarty, 2002). To counteract this trend, there is clearly a need for more cost-
effective methods for monitoring of stream discharge that involve fewer direct

observations.

How can we monitor stream discharge?

Discharge is typically calculated from flow measurements. Flow in open channels
correlates with water surface elevation (or the ‘stage’) in the stream. A common
approach for monitoring streamflow is to transform measured stage heights into
streamflow using a rating curve (e.g. Herschy, 1993a). The rating curve describes the

relationship between measured stage and discharge. Rating curves can be developed for



open channels with controlled cross-sections or for open channels with natural cross-

sections.

For open channels with constructed hydraulic structures (e.g. V-notch weirs or flumes)
that control the cross-section, rating curves are quite simple to develop and model as
these structures restrict flow conditions and impose stable stream cross-sections
allowing for definable physical relationships between stage and discharge. Since
constructing hydraulic structures is often quite an investment, rating curves in smaller
streams are more commonly developed for natural cross-sections. Rating curves in open
channels with natural cross-sections are often estimated using field-based observations
of discharge. One common technique to measure discharge in the field is the velocity-
area method (e.g. Herschy, 1993b) where water velocity is measured using a current
meter over a stream’s cross-sectional area. Repeating this measurement over different
flow rates and, thus, different stages allows for construction of a rating curve. Tracer
injection methods like the commonly applied salt slug injection method (e.g. Moore,

2005) offer alternatives to the velocity-area method for measuring discharge in the field.

Regardless of how discharge is measured, the traditional procedures for developing a
rating curve in natural cross-section channels remain the same. The field-based
measurements of flow are correlated with stage allowing for empirical modeling of
rating curves. Traditional approaches for establishing and maintaining such empirical
rating curves, however, are often time consuming because flow has to be measured over
a range of stages. During flooding and periods of high flow, in particular, measurements

of flow in open channels are nearly impossible to carry out and can often be hazardous.



What about modeling rating curves?

As opposed to above outlined empirical methods, rating curves in natural channels can
also be modeled from theoretical calculations with flow resistance equations that allow
the discharge or the flow velocity to be related to hydraulic geometry. One well-known
and common example of such a theoretical approach is the Manning equation (Manning,
1891) and its related expressions such as the Chezy or Darcy-Weisbach equations. These
equations have been used for more than a century for modeling flow in open channels. A
common theme (and limitation) in these flow resistance equations is their reliance on
empirical roughness coefficients (e.g. Manning’s coefficient of roughness) for estimation
of discharge. In practice, these empirical roughness coefficients suffer from a high
degree of uncertainty and are fairly subjective in nature. So, defining them is
problematic and even when experts carry out the estimation, the resulting roughness
coefficient can vary considerably (Burnham and Davis, 1990). The uncertainty that
arises from estimating empirical roughness coefficients is one of the most important
sources of error in the application of traditional flow resistance equations in natural

channels (Lopez et al,, 2007).

More recently, techniques have been developed that allow for the modeling of rating
curves in natural channels without reliance on such empirical roughness coefficients.
Kean and Smith (2005, 2010) put forward a theoretical physically-based method for
modeling rating curves. Rather than assigning an empirical roughness coefficient, the
method relies on geometric data of the stream obtained using a ground survey to
estimate channel roughness. Although the Kean and Smith (2005, 2010) flow model
offers a great alternative to other methods like Manning’s, theoretical modeling of rating
curves requires knowledge of channel geometry and roughness that can often be time

intensive or logistically difficult to obtain, especially in remote areas. This highlights the



need for new methods for establishing or estimating channel characterizations such that
they can be useful for developing rating curves capable of being used in stream and river

monitoring efforts.

A conceptual study for pathways forward

This thesis seeks to explore one such method. The thesis considers the possibility to
constrain the Kean and Smith (2010) rating-curve modeling method with remotely
sensed, airborne Light Detection And Ranging (LiDAR) data. Combining LiDAR into the
procedure of Kean and Smith (2010) has the potential to create a useful application for
estimation of rating curves and may allow for an easier and more cost effective
approach for monitoring remote streams. This thesis, thus, serves as a proof of concept
for using LiDAR to model rating curves. For this, the thesis is structured as follows. First,
a brief overview of two concepts, the Kean and Smith (2010) rating curve method and
airborne LiDAR, are given to present the theoretical background. Then a proof of
concept case study combining the two concepts is presented for the Krycklan catchment
located near Umed, Sweden. Finally, the thesis concludes by presenting potential

pathways forward to test and strengthen this proof of concept.

Theoretical Background

The Kean and Smith theoretical rating curve method
The method of Kean and Smith (2010) is a two-step physically-based approach
developed for modeling discharge as a function of stage (i.e., this model creates a rating

curve) in relatively straight streams. The model calculates velocity profiles for every



submerged grid point on a two-dimensional curvilinear grid that follows the centerline of the
channel, and is applicable for channels with (1) bed roughness elements that are small
compared to the depth of flow, (2) may contain rigid bank or floodplain vegetation, and
(3) have width to depth ratios of 10 or greater. It should be noted that all of these
conditions are satisfied at the Krycklan River outlet that will be consider later in this
thesis. Some requirements need to be solved in order to use the Kean and Smith (2010)
method. First, factors that contribute to hydraulic resistance such as channel geometry
and physical roughness must be quantified from field measurements. These
measurements are used to calculate total channel roughness (i.e. the drag on the small-
scale topographic features on the boundary, drag on the vegetation, and friction on the
bed, banks, and floodplain). Secondly, a one-dimensional flow model for calculation of
the stage-discharge relation over the full range of stages is constrained with the

quantified channel roughness features.

The Kean and Smith (2010) channel flow model differs from standard one-dimensional
flow models, for instance the Hydrologic Engineering Centers River Analysis System
(HEC-RAS), in that: (1) although it yields a three-dimensional representation of the
velocity fields, spatial flow accelerations are only resolved in the streamwise direction,
and (2) it uses a fixed roughness based on the geometry of the roughness elements
rather than using a bulk roughness coefficient (e.g. Manning’s coefficient of roughness),
which, because of the lumped effects of all roughness sources in the channel, can vary

with stage (Limerinos, 1970).



Vegetation roughness

Drag on stems and branches in the vegetated portion of the channel can contribute
substantially to total flow resistance, especially at high flow, thereby reducing the
velocity. In the Kean and Smith (2010) method, the drag force is calculated using the
method of Smith (2001, 2007). The drag force on the vegetated portions is specified
from field measurements in terms of the mean diameter and spacing of stems assuming
they are randomly distributed. However, the objective of the work in this current thesis
did not include overbank flow or any vegetated parts of the studied stream and,

therefore modeling of vegetation was not considered.

Channel geometry and physical roughness

In its original implementation, the method of Kean and Smith (2010) is constrained with
geometric information obtained from detailed cross-sectional ground survey using a
total station. From the field measurements, information about the shape of the channel,
the water surface slope, and the geometric properties of the roughness elements on the
bed, banks, and floodplains of the channel are obtained. Boundary roughness is specified
in terms of a roughness height, z,, for every point on a two-dimensional, curvilinear grid,
which conforms to the centerline of the channel. The channel bed-roughness height for
gravel channels (z,) is related to the distribution of the particle size by z, = 0.1Dg4, where
Dg4 is the 84th percentile of the grain size distribution for the protruding axis (Whiting
and Dietrich, 1990). The bed roughness height for elements in the stream can, as an
alternative, be back calculated by using a single measurement of discharge and the

corresponding water surface slope (Kean and Smith, 2005).



Flow model

At any given cross section, streamflow in the channel in the most basic sense is the
product of the average water velocity through the channel cross-sectional area.
However, along a channel reach, both the velocity and the cross-sectional area can vary.
As such, the Kean and Smith (2005, 2010) rating curve method models streamflow (Q)
in a channel reach approximately by solving a version of St. Venant equations for steady,
non-uniform flow in one-dimension for shallow water. The model calculates the water
surface profile that simultaneously satisfies both the continuity and momentum

equations:

I /ox =0 (D)

and
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where (u?)a is the square of the downstream velocity component averaged over the
cross section, E is the surface water elevation, p is water density, (t»)av is the perimeter-
averaged shear stress, and R is the hydraulic radius given by the ratio of the cross-
sectional area of the flow to its wetted perimeter (Kean and Smith, 2005). While the
first term of equation (2) describes the crosswise change of velocity, the second term
expresses how the forces change due to crosswise change of elevation. The third and last
term in the equation contributes with a mathematical expression for the resistance

factors.

As a starting point to simultaneously satisfying equations (1) and (2), the vertically

velocity (u) at any point in the stream reach is calculated as
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u=(t,/p)” x B =u,xp (3)

Here, f-is a non-dimensional roughness coefficient and u- is the shear velocity, which is
directly related to the shear stress (75). In streams with steady flow conditions the shear

stress is given by
7, = PghS; (4)

where g is acceleration of gravity, h is the local flow depth, and Sy is the friction slope.

Under such conditions (Kean and Smith, 2005), - will have the form

_In(h/z,)-0.74
- K

(5)

B

where «x is the von Karman constant equal to 0.408 (Long et al.,, 1993). By combining

equation (3), (4), and (5), the vertical velocity at any point can be calculated as

In(h/z,)-0.74
u=[ghS, x n(h/z,) (6)

K

Equation (6) is thus used to solve the flow field for the entire reach in an iterative
manner. This solution can be related to the stage in the stream reach and, repeating the

procedure for several stages or flows, a rating curve can be modeled.

In practice, for a given stage, the model initially guesses a corresponding flow (Q). This
guessed Q is used to back calculate the friction slope. The calculated slope is then
compared to measured slope obtained from field observation. If calculated friction slope
differs from the measured friction slope, the model guesses another Q for a new
calculation of friction slope. The model iterates these guesses and calculations until

calculated slope approximately equals measured slope for that stage. This procedure is
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repeated to calculate flow over the whole range of defined stages to model a rating

curve.

LiDAR

LiDAR technique is based on emission of light of a certain wavelength and frequency
(laser technology) and on collection of the backscatter from an illuminated surface. The
general principle for LiDAR is measurement of the time it takes for pulses of light to
travel from emission to collection of the backscatter. Since speed of light is known the
distance to the illuminated object can be calculated. In combination with the technology
of Global Positioning System (GPS) and inertial navigation system, LiDAR allows for
accurate positioning of illuminated objects. In an early publication Collis (1956)
describes the potential of the LiDAR technology for meteorological studies and the
observation of clouds. Recently, terrestrial LiDAR scanning techniques that works with
laser pulses in the near infrared spectral range (~1064 nm) has gained popularity for
the collection of topographic data to derive digital elevation models. LiDAR data have
been used to examine patterns of depth-to-water and topographic wetness index
(Hopkinson, 2011; Murphy, 2011) as well as for studies of climate change impacts on
sea level rise (Coveney, 2011; Zhang, 2011; Zhang et al, 2011), investigations and
inventories of forested areas (Huang, 2011; Soycan, 2011), and river network studies
(Cheung 2011; Liu and Zhang, 2011a; Liu and Zhang, 2011b; Wilkins and Snyder, 2011).
The wavelength 1064 nm is important since it allows for penetration of the canopy,
which results in backscatter from both ground surface and vegetation, however, it does
not penetrate through water. This allows for the positioning of objects and for

estimation of for example vegetation density. An often-used system is the aircraft
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mounted TopEye MKII S/N 425 (Blom Swe AB), emitting laser pulse at a frequency of
50,000 Hz. This instrument is equipped with a dual channel receiver to collect the
backscatter, and an integrated differential GPS, which allows for accurate positioning of

the scanned topography relative to the position of a reference station.

Proof of Concept: the Krycklan catchment

Study area

The proof of concept and fieldwork considered in this study to combine the modeling
approach of Kean and Smith (2010) with LiDAR data was conducted as part of the
interdisciplinary Krycklan Catchment Study (KCS), located in the vicinity of Vindeln
Experimental Forests, Svartberget Research Station (64° 14" N, 19° 46" E), about 60 km

northwest of Umea in northern Sweden (Figure 1).

64°28'
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Figure 1. Showing the Krycklan River Catchment, the location of the
outlet of the Krycklan River where the study for this thesis was
conducted, and the location of the regularly monitored pond house.
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Growing from three decades of small-scale catchments studies (Bishop et al., 1990), the
67 km? KCS today is host for research integrating water quality (Agren etal, 2007;
Bjorkvald et al,, 2008; Buffam etal, 2007; Cory etal, 2006), hydrology (Grabs et al,
2009), aquatic ecology (Petrinetal, 2007; Serrano etal, 2008) and climate effects

(Lyon et al., 2010) in running water in the boreal landscape.

The landscape of the Krycklan River catchment is gently undulating, with the
topography ranging from 130 to 370 m asl. The upper part in northwest consists mainly
of coniferous-forest on glacial till with elements of wetlands, while the lower part in
southeast of the landscape is characterized by mixed forest on sand and silt. Well-
developed iron-podzol overlying the gneissic bedrock is common throughout the whole
catchment. Small agricultural fields are common features in the landscape especially in
the lower part of the catchment, where deciduous shrubs and trees characterize the
riparian zones along larger streams. The stream network in the area comprises 15 sub-
catchments, with areas ranging from 0.03 km? to 67 km?. The meandering streams are of
first order headwater streams in upper part of the catchment, to the forth order stream

at the mouth of the Krycklan River where this proof of concept study was carried out.

Short summers and long winters characterize the climate in the area. Mean annual
temperature is 1°C, and mean annual precipitation is 600 mm whereof approximately
30% falls as snow. On average, the ground is snow covered 171 days, from the end of
October to the beginning of May. Commonly, the turn of month from April to May is the
starting point for the yearly most dominant hydrologic event, the spring flood. During a
3- to 6-week period approximately half of the annually runoff (mean runoff is

approximately 325 mm) occurs due to snowmelt. During periods of low flow conditions
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in autumn discharge at the 8 m wide Krycklan River outlet is approximately 0.6 m3/s,

while measurements have shown discharge peaks exceeding 8 m3/s in springtime.

Surveys and data collection
The Krycklan River was surveyed upstream from its outlet and serves as the study site

for the work in this thesis (Figure 2).
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Figure 2. The fieldwork for this thesis was conducted downstream of the bridge and before
the Krycklan Catchment river outlet. Insert in (a) shows location of the study site. The red
box in (a) outlines the region of LiDAR details shown in (b). In (b), purple is the surveyed
reach, yellow is the extension of the channel, and green are outer areas not included in the
study. The span of the bridge is such that it does not have any influence on flow other than
at very extreme situations.

This includes fieldwork involving the collection of flow data and geometric
measurements for rating curve modeling and deskwork processing data from the field

survey, and an airborne LiDAR survey conducted in August 2008.
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Flow data

Flow data were collected over a three-year period, 2008 through to 2010, using both the
current meter method (Herschy, 1993b), and the salt dilution method (Moore, 2005).
The measurements were conducted over a wide range of stages (and thus flows) from
very low to very high water surface elevation. A rating curve for the stage-discharge
relationship at the site was established as a power relation using a standard least
squares fitting method for the measured stage and the measured flow (Figure 3). This
observed rating curve (hereafter referred to as the empirical rating curve), was
established to serve as the control or validation for the modeled rating curves prepared

in this study.
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Figure 3. The empirical rating curve with the power relation stage = 0.6 x discharge?#*serves as a control for
modeled rating curves.
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Geometric measurements

The geometric information about the stream channel necessary for modeling rating
curves with the Kean and Smith (2010) method was obtained from detailed ground
surveys conducted during the period April 2009 through to October 2009. These
surveys were performed using a robotic total station, which is an instrument for
geodetic measurements with an integrated electronic distance meter. The total station
surveys included measurements of water surface slope and channel geometry, which
were conducted as described by Kean and Smith (2005, 2010). Measurements of the
water surface slope were undertaken at both high stage (spring flood) and low stage
(autumn low flow), and revealed no difference in water surface slope between the two
stages. The channel geometry was established from cross-sectional measurements of the
streambed topography. The channel-bed roughness height was back calculated from a
single water surface slope measurement and the corresponding flow measurement. This
approach to establish the roughness height was taken since the water level along the
studied reach was too high to perform accurate pebble counts. As mentioned in the
previous section, vegetation roughness was not included in this current study since only
herbaceous vegetation is represented on the stream banks along the studied reach and

no overbank flow was modeled in this study.

LiDAR data

The company Blom AB on behalf of the Swedish University of Agricultural Science (SLU)
and the Swedish Defense Research Agency (FOI) conducted a LiDAR survey of the KCS
area in August 2008. Data of high resolution obtained from this survey was initially

preprocessed by SLU. This preprocessing involved computational classification routines
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that allowed for the exclusion of vegetation influence. The resulting geometric data,
considered to reflect the ground topography for the surveyed area of interest, was then

used as input data to the Kean and Smith (2010) method for modeling rating curves.

Survey and LiDAR data processing

All geometric information, consisting of topographic points from the total station survey
and the LiDAR survey required further processing prior to modeling. A first step was to
obtain a common coordinate system. This was done by transformation of the data to the

SWEREF 99 TM coordinate system using ArcGis (ESRI, Redlands, CA).
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Figure 4. Examples of estimated and surveyed streambed topography at cross sections a) 15 m, b) 35 m,

c) 60 m, and d) 90 m downstream the staff gauge.
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A second step was to estimate the cross sectional topography in the missing areas of the
streambed topography where the LiDAR was unable to penetrate the water surface. Two
approaches were considered to fill in these LiDAR blank spots (Figure 4). The first
approach was to create an elevation model from a simple assumption of a flat streambed
with its elevation corresponding to zero at the staff gauge. This model is hereafter
referred to as the LiDAR model. A second approach in step 2 was to merge the cross-
sectional topographic data from the total station survey and the LiDAR survey, to create
a combined or hybrid model (hereafter referred to as the hybrid model). This second
step of the processing work was done using software for Multi-Dimensional Surface-
Water Modeling System (MD_SWMS) by the US Geological Survey (USGS) to interpolate

between topographic points.

A third step was to implement processed data into the flow model of Kean and Smith

(2010) for quantification of resistance factors and calculation of rating curves.

—— LiDAR model

-~ Hybrid model
———— Empirical rating curve
0.4 4+, ¢ Discharge (salt injection) 04 /
7 + Discharge (current meter) 7
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95 % Confidence bounds

4
Discharge (m3/s)

6

0 1 1 1
0 2 4 6

Discharge (m3/s)

Figure 5a (left), the modeled rating curves and the empirical rating curve have equally good fit to
measured flow. Figure 5b (right), shows the modeled rating curves fit within the 99% confidence bounds
calculated for the empirical rating curve.
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The two modeled rating curves were compared to both the flow measurements (Figure
5a) and to the calculated 95% and 99% confidence bounds for the empirical rating curve
(Figure 5b). Also, both modeled rating curves and the empirical rating curves were

assessed using the root mean square error (RMSE) relative to flow measurements

(Table 1).

Discussion of the proof of concept

The aim of this thesis was to explore the following question: is data from high-resolution
LiDAR scans suitable information to constrain a flow model for calculation of rating
curves? A general answer to that would be: yes, so it seems. The modeled LiDAR curve
and the modeled hybrid curve have good fit to measured flow (Figure 5a). At higher
stages the modeled rating curves have better fit to measured flow than the empirical

rating curve.

Table 1. Summary of the agreement between
predicted discharges and measured flow calculated as
root mean square error (RMSE).

Root Mean Square Error (m3/s)

LiDAR model Hybrid model Empirical
predicted predicted rating curve

0.63 0.47 0.74

The difference in the rating curves relative to flow measurements is seen by the RMSE
(Table 1), where the rating curve from the hybrid model has the lowest RMSE and the
empirical rating curve has the highest. A probable explanation is that there are only a
few measurements at high flow represented when calculating the empirical rating and
that no weighting was considered when the calculation was done. At lower stages, all

rating curves show reasonably good fit to measured flow; however, the curves diverge
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when at stages below the lowest flow measurement. This difference between the LiDAR
curve and the hybrid curve (Figure 5a), at medium to higher stages, is due to the
difference in the resolution of the streambed topography (Figure 4). Both modeled
curves were constrained with high-resolution LiDAR data reflecting the topography
above the water surface (i.e. stream banks and the part of the streambed that was not
covered with water during the LiDAR scan). The LiDAR curve was assumed to have a flat
streambed, which results in shorter roughness length and thereby less resistance to
flow. This is true for all stages relevant in this study, but with limited impact on flow at
higher stages. The hybrid curve on the other hand, reflects a more realistic situation,
thereby resulting in a higher roughness length, which gives this curve a fit closer to the

empirical rating curve.

Although the modeled rating curves vary in their agreement to each other, they both
clearly fall within the confidence bounds calculated for the empirical rating curve
(Figure 5b). From a statistical point of view, both modeled curves are equally good at
representing the empirical rating curve and, therefore, it cannot be determined which
one is most accurate. As such, in spite of potential limitations and drawbacks, LiDAR
data appear to provide sufficient information to run the physically-based Kean and

Smith (2010) method for modeling rating curves.

Future perspectives

This study demonstrates a possibility to constrain the Kean and Smith (2010) method
for modeling rating curves with topographic information obtained by airborne LiDAR

scans. However, there are drawbacks to overcome and questions to be addressed with
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future research. For example, are water-penetrating LiDAR techniques or bathymetric
LiDAR, operating at blue-green wavelengths, a more attractive alternative to
conventional LiDAR that operates in the near infrared region of light? And, what is an
optimal data resolution during the LiDAR scan such that the data can be used in flow
modeling? Taking up some of these questions and outlining future potential research

concludes this thesis.

First, other scanning methods can be considered. For example, preliminary results
(Figure 6) demonstrate that the LMS111 Laser Measurement System sensor from SICK,
Inc,, USA, is capable of scanning the entire pelvic geometry and channel bed in small
river systems. This equipment is working in the spectral range around 905 nm, operates
at close range, and requires a temporary installation above the investigated surface. The
results (Figure 6) derived from a survey in a small creek within the KCS (named Pond
House in Figure 1), suggest that filtering parameters of this camera system can be
optimized so that high resolution topographical information from the entire streambed,
including the portion of the streambed below the water, can be obtained. This opens an
exciting realm for exploration of the viability of the Kean and Smith (2010) method to

manage high-resolution LiDAR data derived onsite to model rating curves.

In addition to such onsite techniques, there is good potential for the use of bathymetric
LiDAR to obtain data. This technique has been shown to be useful in the study of marine
ecology (Chust et al,, 2010; Valle et al,, 2011), and bathymetric elevation (Monfort and
Lippmann, 2011). By working in the blue-green wavelengths, this technique may offer
chances to map the streambed geometry in a truly remote sense. Of course, there are
potential limitations associated with the turbidity of the water and the resolution at

which the bathymetric LiDAR can be collected.
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Figure 6. Top, a submerged boulder scanned with the LMS111 camera system. All
scales shown in the image are relative, where blue is deeper regions and red is
shallower. Bottom, a 6-meter section of a small stream in the Krycklan River
scanned with the LMS111 camera system. The scales shown in the image is
relative, blue is deeper parts of the streambed, and red are shallower parts. The
brown areas at the beginning and end of the scanned area show fallen tree logs,
which is just across the brook
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One key issue associated with using LiDAR information in stream-discharge modeling is
identifying the optimal resolution of the topographic data required to adequately
represent the channel geometry. The density of the LiDAR data used in this study was
approximately 5-10 points/m?. In the next phase of this research, a systematic filtering
will be conducted to synthetically reduce the LiDAR and hybrid data to identify the
relationship between data resolution and the performance of the rating curve model.
This may allow for scaling of coarse LiDAR data (such as that collected in the ongoing
national scan of Sweden, which is conducted at the resolution of 0.5 points/m?) to a

resolution relevant for modeling streamflow.

Based on the results presented in this thesis, it was possible to establish relevant stream
channel geometric information via LiDAR scans to constrain the Kean and Smith (2010)
method for modeling theoretical rating curves at the outlet of the 67 km? Krycklan
catchment. Moving upstream to smaller catchments, however, implies more narrow
streams of lower order. These low order streams represent the overwhelming majority
of the running water in streams worldwide. These small streams, which are seldom
monitored, form a blank space on the map creating a region of aqua incognita (Bishop et
al., 2008). Therefore, more work is needed to determine the limiting spatial scales and
stream sizes for which the Kean and Smith (2010) method can use LiDAR information.
Currently, LiDAR data (explicitly near infrared LiDAR) exists covering the entire
Krycklan catchment. Furthermore, the Krycklan catchment consists of 18 sub
catchments ranging from 0.03 to 67km? with continuously monitored stream gauges.
Direct flow measurements at various flow conditions have been made at each of these
sites over several years. This provides data of the stream-discharge relationship for all
sites within the catchment and makes the Krycklan Catchment a good test bed for

investigating many of the questions outlined in this section.
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Abstract: Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often
difficult to obtain stream flow information because of the difficulty making the discharge measurements necessary to define stage-discharge
relationships (rating curves). This study investigates the feasibility of defining rating curves using a fluid mechanics-based model
constrained with topographic data from airborne LiDAR scanning. The study was carried out for an 8-m wide channel in the boreal
landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed
reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the
modeled reach was back calculated from a single measurement of discharge. The topographic and roughness information was then used to
model a rating curve. To isolate the potential influence of the flat bed assumption, a “hybrid-model” rating curve was developed based on
data combined from the LiDAR scan and a detailed ground survey. While this hybrid-model rating curve was in agreement with the direct
measurements of discharge, the LIDAR-model rating curve was equally in agreement with the medium and high flow measurements based
on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR-model rating curve and low flow
measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low
flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multi-frequency LiDAR
scans that see “below” the water surface (bathymetric LIDAR) could be useful in generating data needed to run such a fluid mechanics-based
model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.

1. Introduction coefficient) of roughness, which can vary with stage (e.g.
Comiti et al., 2007; Lopez et al., 2007). More recent
techniques allow for modeling rating curves without such
halleneine. Flow i h Lis a functi £ th empirical estimates of roughness. For instance, the two—
chalienging. Fiow in an open channel 15 a iunction of the stepped, physically based Kean and Smith (2005, 2010)
water surface elevation (stage) in the stream and the . . . .
.o . theoretical rating curve method uses basic geometric
usual approach for monitoring stream flow is to . . .
transf d st height . tage-disch measurements to establish flow resistance. In the first
ranstorm measured stage NCIghts Using stage-cischarge step, contributing factors such as the shape of the

relgtions (ie. rating curves) (Herschy, 1993a). Such channel, physical roughness of the streambed, banks and
rating curves can often be physically based equations floodplain, and vegetation density on the banks and
when controlled sections, e.g. V-notch weirs or flumes, floodplain are quantified. Secondly, the quantified

arf' usiedd. In.natur.agl sectlon?, ﬂ:)W 1S morteh c(;)némgnlz roughness is embedded into a flow model for calculation
estimaied ‘using erther a velocity-area method derive of the stage-discharge relation. Regardless of how

from field measurements of water velocity (e.g. using a : . . .
. . roughness is treated, modeling rating curves requires
mechanical or acoustic current meter) over a cross .
. knowledge of channel geometry that can often be time
sectional area of the stream (Herschy, 1993b) or a tracer ; . L - e R
iecti thod like th 1 lied salt sI intensive or logistically difficult to obtain in remote
tjection Method ke the commonty appled sait siug areas. This highlights the need for new ways for

injection  method  (Moore, 2,005),' These .ﬂow measuring channel bed topography and roughness.
measurements allow for the estimation of empirical

rating curves. Establishing such rating curves, however,
can be time consuming because flow has to be measured
over a range of stages and especially high stages do not
occur frequently. Furthermore, obtaining measurements
at high flows can often be hazardous. In environments
where stream morphology changes over time, additional
uncertainty is included because rating curve parameters
change over time (Westerberg et al., 2011).

Stream flow is one of the most important hydrological
variables, but monitoring continuous flow remains

Recently, LiDAR scanning techniques have gained
popularity for the collection of topographic data and for
remote sensing of river channels (Snyder, 2009; Wobus
et al., 2006), landslide detection (McKean and Roering,
2004), and investigation of forest age as well as
ecological surveying in rivers and coastal zones (Brock et
al., 2002; Kinzel, 2009; Kinzel et al., 2007; McKean et
al., 2008). The objective of this study was to test the use
of LiDAR-derived topographic information for modeling
rating curves in a boreal stream. Terrestrial geometric
information from an airborne LiDAR-scan was used in
the physically based Kean and Smith (2010) theoretical
rating curve method for modeling rating curves. As
LiDAR, specifically near infrared (NIR) LiDAR like that

Rating curves can also be modeled from theoretical
calculations. The Manning equation (Manning, 1891) or
other similar expressions have been used for more than a
century for modeling open channel flow. One often-
identified drawback of such approaches is their reliance
on an empirical coefficient (here the Manning
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Figure 1. (a) Map of the Krycklan River Catchment (illustration by Anneli Agren); (b) aerial photo over the study site at the outlet of Krycklan River; and ¢) map

of the study reach including location of bridge and staff gauge.

considered in this study, cannot detect the submerged
portions of the channel bed due to strong absorption of
the laser pulses by the water, a simple linear stream
bottom assumption was made to represent the streambed
geometry. To test the influence of this assumption, the
LiDAR data were also combined with topographic data
derived from a conventional ground survey of the
streambed. Both modeled rating curves were compared
with direct measurements of discharge to estimate their
ability to predict the empirical rating curve. This study
serves as a proof-of-concept for the utility of LiDAR
derived channel geometry in a physically based rating
curve model.

2. Site description, flow measurements and empirical
rating curve

The Krycklan Catchment Study (KCS) is a 67 km? area
located within the Vindeln Experimental Forests,
Svartberget Research Station (64°14°'N, 19°46°E),
approximately 60 km northwest of Umed in northern
Sweden (Figure 1 a). The KCS has grown from three
decades of small-scale catchments studies (Bishop et al.,
1990) to a multi-scale project including catchments
spanning close to 2000 times in scale (Laudon et al.
2011). In the area a number of multidisciplinary research
projects have been conducted, including topics such as
integrating water quality (Agren et al., 2007; Bjorkvald et
al., 2008; Buffam et al., 2007; Cory et al., 2006),
hydrology (Grabs et al., 2009), aquatic ecology (Petrin et
al., 2007; Serrano et al., 2008) and climate effects (Lyon
et al., 2010) in streams in the boreal landscape.

The gently undulating landscape of the KCS ranges from
369 to 130 m above sea level, where the upper part
mainly consists of a boreal-forested landscape on glacial
till with elements of wetlands. Forests on sand and silt
characterize the lower part of the landscape. Well-
developed iron-podzol overlying the gneissic bedrock is
common throughout the whole catchment. Small
agricultural fields are dispersed throughout this boreal
landscape and are common features in the lower part of
the catchment. Complete descriptions of the KCS
landscape and settings can be found in Buffam et al.
(2007) and Cory et al. (2006).

The work in this study was performed at the main outlet
of the KCS (Figure 1 b). This site is the largest of the 15

sub-catchments considered in Laudon et al. (2007) and
Lyon et al. (2010), where it has been referred to as
catchment 16. The topography along the west side of the
stream at the site is steep while the area to the east is
relatively flat. The floodplain on both sides is
approximately 1.5 m above low-flow water level with
dense deciduous shrubs and small trees close to the
stream.

A 90-m long area stretching downstream from a staff
gauge (installed in a stilling well) was chosen for the
study (Figure 1 c¢). The wetted width of the stream along
the studied reach is approximately 6.5 m at low flow and
8 m at high flow. The streambed consists of sand and
sand ripples and the along-channel profile is regular with
some pools between sand dunes. The average water
surface drop of the surveyed reach is 0.004 m/m. This
drop was measured at both high flow and low flow.
During low flow the discharge is approximately 0.6 m*/s.
Salt slug-injection measurements have shown peak
discharge exceeding 8 m*/s during spring flood.

Flow measurements were conducted during 26 occasions
covering a range of flow conditions including spring
flood and base flow from April 2008 to May 2010. These
measurements were made using both velocity-area
method (Herschy, 1993b) and salt slug injection method
(Moore, 2005). No measurements were carried out during
winter when the river was ice covered because
measurements during such conditions are difficult to
make and can be fairly uncertain. Water levels were
measured automatically during flow measurements using
a staff gauge at the stilling well. From these flow
measurements and stage recordings, a rating curve was
determined for the site as a power relation using a
standard least squares fitting method. For the remainder
of this study, this will be referred to as the empirical
rating curve.

3. Physically based modeling of rating curves

This study used the method proposed by Kean and
Smith (2010) to model rating curves for the study site.
This was done using measurements from both airborne
LiDAR scanning and a detailed ground survey to
represent channel geometry. The following sections
provide a brief overview of the method to model rating
curves and the required information (section 3.1),
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information on how LiDAR data were gathered (section
3.2), description of how the detailed ground survey was
carried out (section 3.3), and an overview of the data
processing requirements to bring these data into the
modeling environment (section 3.4).

3.1 Model overview

The fluid mechanics-based flow model of Kean and
Smith (2010) has been developed for calculating rating
curves for relatively straight reaches having: (1) gravel
bed roughness elements that are small compared to the
depth of flow, (2) rigid bank or floodplain vegetation,
and (3) width to depth ratios of 10 or greater (see Kean
and Smith (2005) for a model appropriate for narrow
channels). The rating curve is generated by computing
discharge over the full range of stage at a given site using
the flow model. The model is constructed for a reach of
channel approximately 10 times longer than the width.
Velocity profiles are computed for every submerged grid
point on a two-dimensional curvilinear grid that follows
the centerline of the channel (an even grid spacing of 30
cm in the cross-stream and streamwise directions was
used in the current study). Although the model yields a
three-dimensional representation of the velocity field,
spatial flow accelerations are only resolved in the
streamwise direction as in one-dimensional step-
backwater models (e.g. Hydrologic Engineering Centers
River Analysis System, HEC-RAS).

The main difference between the approach of Kean and
Smith (2005, 2010) and standard one-dimensional flow
models used for rating curve estimation (e.g. HEC-RAS)
is the way in which channel roughness is specified.
Channel roughness in the Kean and Smith (2005, 2010)
model is specified directly from field measurements of
the geometry of the roughness elements on the bed,
banks, and floodplain of the channel - specifically, the
grain size of the bed material, the size and spacing of the
stems of woody vegetation, and the size and spacing of
small-scale topographic features on the banks and
floodplains. In contrast, channel roughness in standard
one-dimensional models is specified through a bulk
roughness coefficient (e.g. the Manning coefficient),
which lumps the effects of all sources of roughness into a
single parameter. A difficulty with using bulk roughness
coefficients for rating curve estimation is that the
roughness coefficient (unlike roughness element
geometry) typically varies with stage, especially over low
to moderate flow heights (e.g. Limerinos, 1970; see also
Kean and Smith, 2005, 2010). Accurate determination of
this variation is difficult without multiple discharge
calibration points, which can be difficult to obtain at
remote sites.

In this study, the stage range of interest is below the
vegetated floodplain, so the bed roughness is the
dominant source of flow resistance controlling the rating
curve. The flow resistance of the grass-covered banks is
neglected, because the flexible grass stems offer little
flow resistance, and the channel is sufficiently wide that
the lateral flow resistance of the banks is small compared
to the resistance of the channel bed. The roughness of the
bed is specified in terms of a roughness height, z,, which

for a gravel bed is related to the particle size distribution
by z,=0.1 Dy,, where Dy, is the 84™ percentile of the
grain size distribution for the nominal axis (Whiting and
Dietrich, 1990). In both Kean and Smith (2010) and this
study, the bed roughness is sufficiently uniform that a
single value of z, is used for the entire reach; however,
the model can accommodate spatial non-uniformity in
roughness by permitting z, to vary throughout the
computational grid. At our study site, the flow depth at
the time of the field survey was too deep to permit
accurate grain size determination, so z, was determined
empirically using the model and a measured low-flow
discharge measurement and water surface profile made at
the time of the field survey. It is important to note that
this single value of z, is used for the calculation of
discharge over the entire stage range.

3.2 LiDAR data for defining channel geometry

Airborne LiDAR scanning over the study area was
carried out during low-flow conditions on 5 August 2008
and 6 August 2008 by Blom Swe AB, Gothenburg,
Sweden (formerly TopEye AB, Sweden,
http://www blomasa.com) on behalf of the Swedish
Defense Research Agency (FOI) using a helicopter
mounted TopEye MKII S/N 425 system (Blom, 2008).
The TopEye MKII system uses a Laser Range Finder
emitting laser pulses (infrared light (IR) spectrum range
is 1064 nm) at a frequency of 50,000 Hz and a Dual
Channel Receiver to collect the backscatter. An
integrated differential global positioning system (GPS)
enables positioning of the scanned surface topography.
The system is also equipped to compensate for flight
deviations in yaw, pitch, roll, slide slip, speed and
altitude. The spectrum range 1064 nm is important
because it allows for penetration of the canopy to detect
the ground topography, but not through water, which for
this study led to loss of information about the streambed
topography.

The main flight altitude was 500 m and the crosswise
direction flight altitude was 250 m. This procedure was
taken to ensure that the accuracy of the topographic
information did not differ too much between the two
flight directions. As reference point during the scanning
the SWEPOS reference station in Vindeln was used. The
distance between the helicopter and the reference station
never exceeded 15 km during the scanning. The software
Applanix POSGNNS was used for calculations of GPS
coordinates in the RT90 2.5 gon West 0:-15/RH70
coordinate system.

Raw LiDAR data were collected with a density of
approximately  5-10 points/m”>. Researchers at the
Swedish University of Agricultural Sciences (SLU)
initially processed and classified the collected data. A
routine to evaluate the intensities and numbers of echoes
from each emitted laser pulse was used for classification.
This process allowed for filtering backscatter caused by
vegetation from that caused by ground topography. It
should be noted here that this is a somewhat rough
method, meaning that it can be difficult to distinguish
small trees from rocks (or boulders). Fortunately the
ground surface topography along the surveyed reach is
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smooth, which facilitated the process of separating
ground topography from vegetation. After classification
the set of LiDAR-derived data consisted of 472,000
topographic ground points, which gives approximately
30-cm average point spacing in the plane of the
160 m by 160 m area that was used in this study. ArcGis
(ESRI, Redlands, CA) was used to identify and select the
LiDAR-based topographic information for the same
reach of the stream that was surveyed in the detailed
ground survey (see following section). The selected data
consisted of more than 31,000 topographic points
covering the 90 m reach (Figure 1 c) that was modeled in
this study. The general accuracy of the LIDAR data was
assessed relative to detailed ground survey transects for
overlapping locations. The average absolute difference
between the two sets of data was 0.35 m over the entire
study reach with a standard deviation of 0.23 m.

3.3 A detailed ground survey for defining channel
geometry

A detailed ground survey was conducted on 7 August
2009. At the time of the survey, the stage was 0.5 m at
the gauge and the discharge was 0.6 m’/s established
using the velocity-area method. The ground survey
consisted of 617 topographic measurements of the wetted
perimeters of 29 cross sections along a 90 m long reach
of the stream extending downstream from the staff gauge
(Figure 1). The survey was made at an average density of
3.2 points per meter along each cross section, using a
Trimble S6 DR robotic total station and an adjustable
prism rod. This equipment combination has an angular
precision of 0.1 milligrad and a distance measurement
precision of +3 mm + 2 ppm root mean square (RMS).
Given a maximum distance of <50 m in the survey the
maximum error in the plane is +3 mm and +0.5 mm in
height. Reference points were set using a high resolution
Trimble R8 Global Navigation Satellite System receiver
with an accuracy horizontal of +10 mm + 1 ppm (RMS)
and vertical of +20 mm + 1 ppm RMS. Topographic data
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were collected with a handheld field computer (Trimble
CU Controller or Trimble TSC2 Controller) as points in
the SWEREF 99 (zone 20 15) coordinate system to
facilitate their import to a geographical information
system for preprocessing.

3.4 Data preprocessing

Data from both the LiDAR scan (>31,000 topographic
points) and the detailed ground survey (617 topographic
points) required some preprocessing to be used in the
model of Kean and Smith (2010). To obtain a common
coordinate system data were transformed to the
SWEREF 99 TM coordinate system using ArcGis (ESRI,
Redlands, CA).

Because the LiDAR technique (TopEye MKII) used in
this study was unable to penetrate through the water
surface, some method must be used to fill in for the
missing streambed topography. This was treated in two
different ways in this current study. The first was to
create a model with estimated streambed topography
(hereafter referred to as the LiDAR model). This was
done using the simple assumption of a flat streambed
with the lowest elevation corresponding to zero (0 m) at
the staff gauge (Figure 2). The water level over the
period of the LiDAR scan was 0.3 m at the staff gauge
but discharge was not measured at this time. The second
approach to represent the streambed topography was to
merge the LiIDAR data and detailed ground survey data
to create a model with a combined topographic
representation (hereafter referred to as the hybrid model).
Data from both approaches were then interpolated using
curvilinear regression onto a common computational grid
that could be imported into the flow model. Once both
sets of data were preprocessed, the model of Kean and
Smith (2010) was used to calculate flow rates at different
stages and, thus, to generate rating curves.

In this current study, the roughness of the streambed was
the primary source of flow resistance. The low-flow
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Figure 2. Cross sections showing topography from the LiDAR scan (solid line), measured streambed from the detailed ground survey (dashed line), and the

estimated “flat” streambed (dotted line).
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discharge and the water surface slope used to estimate the
roughness height in each model were 0.6 m*/s (current
meter measurement) and 0.004 m/m (measured with a
total station), respectively, and were performed on same
day as the detailed ground survey. Once specified, the
roughness height was held fixed during the computation
of the rating curves. Separate bed roughness heights were
determined for the modeled reaches in the LiDAR model
(z,=0.027 m) and the hybrid model (z, =0.023 m). The
minor differences between these two values reflect
differences in the bed topography in the two models: the
unmeasured bed surface (in the LiDAR model) was
assumed to be flat, whereas the hybrid model (from the
detailed ground survey) contained measurements of the
bed surface. The calibrated bed roughness height for the
LiDAR model was slightly larger than for the hybrid
model, because the LiDAR survey does not account for
the additional roughness provided by the gradually
varying bed topography.

4. Results
4.1 Empirical rating curve

Observations from 26 flow measurements in 2008-2010
were used to estimate an empirical rating curve
(Figure 3). The empirical rating curve is a fitted power
function (y=0.6x"%1r*=091) that shows the
relationship between stage and discharge. There was
good agreement between the empirical rating curve and
measured flow (Table 1). This is particularly true at low
to medium stages whereas the rating curve deviates
somewhat at higher stages.

Table 1: Agreement between model-predicted and measured flow
calculated as root mean square error.

Root Mean Square Error (m%/s)

LiDAR model
rating curve

Hybrid model Empirical
rating curve rating curve

0.63 0.47 0.74

4.2 Modeled rating curves

In general, the modeled rating curves were in agreement
with measured flow (Figure 3). The LIDAR-model rating
curve (solid line in Figure 3) was in agreement with
measured flow at most stages; however, it seems to
slightly overestimate flow at the lowest stages. This
overestimation is not seen as much in the hybrid-model
rating curve, which included data from a detailed ground
survey (dotted line in Figure 3).

4.3 Rating curve comparisons

General statistical characterizations (Figure 4) were used
to compare each modeled rating curve to both the
measured stream flow data and the empirical rating
curve.
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3
m
T
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=== Hybrid model

- Empirical rating curve
04 4, <©  Discharge (salt injection)
7 + Discharge (current meter)

0 1 1 1
0 2 4 6
Discharge (m3/s)

Figure 3. Measured discharge from salt measurements (white diamonds),
from current meter measurements (black cross), and the empirical (fitted)
rating curve (dotted line). Modeled rating curves using the LIDAR model
(solid line) and the hybrid model (dotted line) are also shown.

Confidence bounds for the empirical rating curve were
calculated for this comparison (Figure 4). Most of the
LiDAR-model rating curve is within the 95 % confidence
bounds except for a small portion at stages between
approximately 08m and 1m (where Qis
approximately 2-3 m*/s). The hybrid-model rating curve
is within the calculated 95 % confidence bounds at all
stages. The LiDAR-model rating curve, however, seems
to track better with the three highest flow observations
(Figure 3).

—— LIDAR model
- Hybrid model

99 % Confidence

04 | y 95 % Confidence

0 1 1 1
0 2 4 6

Discharge (m3/s)

Figure 4. LIDAR model rating curve (solid line) and hybrid model rating
curve (dotted line) in relation to the 95 % (light gray area) and the 99 %
(dark gray) confidence bounds of the empirical rating curve.

5. Discussion and concluding remarks

Both modeled rating curves showed relatively good
agreement with measured discharge (Figure 3; Table 1).
In addition, both modeled rating curves matched the
empirical rating curve. That is, for the most part, both
modeled rating curves are within the 95 % confidence
bounds calculated for the empirical rating curve
(Figure 4). This indicates that the modeled rating curves
(independent of assumptions regarding the representation
of the streambed) accurately estimate the stage-discharge
relationship for this site assuming the empirical rating
curve can be thought of as the ‘true’ rating curve. The
empirical rating curve was fit using a standard least
squares approach to measured discharge without any
weighting of discharge measurements. Thus, there is a
potential over-representation of the more frequent low
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discharge measurements made at the site. A fitted
weighting applying more value to the high discharge
measurements could potentially offset this and would
lead to a better agreement between the empirical rating
curve and the modeled rating curves. However, since
physical flow measurements are subject to uncertainties
(Herschy, 2002) and weighted rating curves are not
necessarily commonplace in hydrological practice, such
weighting was not considered in this study.

The LiDAR-model rating curve (solid line in Figure 3)
shows good fit to measured flow at stages where water
level is exceeding approximately 0.5 m. This curve seems
to slightly overestimate flow at the lowest stages,
probably due to unresolved streambed topography. The
assumption of a flat streambed produces a relatively
lower bed roughness that will have greater impact at
lower flows and less influence at higher flows. This
effect is not seen in the hybrid-model approach where the
data from the detailed ground survey better reflect the
actual roughness of the streambed topography.

While based on only one location, the results obtained in
this study indicate that the Kean and Smith (2010)
method can use the LiDAR derived data to model rating
curves that are as likely as rating curves modeled using
data from discharge measurements (Figure 4) or rating
curves developed using topographic data from
conventional ground survey methods (Figure 3). Of
course, this may not be true in regions or reaches with
more complex geometries or flow conditions. This
warrants further investigation into using LiDAR to run
the Kean and Smith (2010) method at different positions
in a stream network to find potential limitations.

The TopEye technique used for the LiDAR scan in this
study could not penetrate the water surface. It was
therefore unable to obtain data regarding the streambed
topography necessary for running the Kean and
Smith (2010) method to generate rating curves. This was
compensated for in this study by an assumption of the
actual streambed topography. Fortunately, there are other
new techniques that can potentially overcome this
problem. For instance, the HawkEye technique
(bathymetric LiDAR) uses a combination of NIR and
green light that can provide both terrestrial and
bathymetric topographic information (Bailly et al., 2010);
however, this technique has a coarser resolution, which
may limit potential usefulness, especially in small
streams. Flow depth or water surface elevation can also
be determined using object-based classification of
topographic data (Hofle et al., 2009) obtained from
airborne LiDAR scanning. This technique, or workflow,
allows for separation of water and non-water points in the
LiDAR data point cloud, thereby giving the possibility to
map river bathymetry with higher accuracy. Yet another
approach for mapping accurate river bathymetry,
especially in shallow river channels, is to apply the
algorithm of Optimal Band Ratio Analysis (Legleiter et
al., 2009) on data retrieved from passive optical remote
sensing. Nevertheless, the hybrid-model rating curve
presented in this study, for example, could provide an
approximation of the potential rating curves available

using such bathymetric LiDAR techniques. Since this
hybrid approach is completely within the 95 %
confidence bounds of the empirical rating curve and fits
well with the discharge measurements, there appears to
be some potential for development of rating curves from
bathymetric LiDAR-derived data.

The use of LiDAR-derived data as input for modeling
theoretical rating curves opens a realm of possibility to
remotely sense and monitor stream discharge in channels
in remote locations. This approach might also be
beneficial in cases where stream morphology is changing
over time and, thus, frequent updates of the rating curve
are necessary. However, airborne LiDAR scanning today
is still quite expensive. The high cost might be partially
compensated by the ease with which rating curves and
stream monitoring could be performed even at remote
locations using the methodology outlined in this study.
Future studies will be needed to investigate limitations
linked to the resolution of the LIDAR information. How
much information is needed from the LiDAR scan to
modeled rating curves accurately? In particular, can low-
resolution scans (similar to those currently being carried
out at the national scale in Sweden (i.e. 0.5 points/m?)) be
used to estimate stage-discharge relationships?
Regardless, the potential of LiDAR-based techniques for
obtaining geometric measurements for use in modeling
rating curves opens an exciting realm of potential for
monitoring and measuring discharge in the multitude of
ungauged streams sometimes called Aqua Incognita
(Bishop et al., 2008).
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