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For a few years, I worked on the Service Frameworks team at Amazon. Our team wrote tools that 
helped the owners of AWS services such as Amazon Route 53 and Elastic Load Balancing build their 
services more quickly, and service clients call those services more easily. Other Amazon teams 
provided service owners with functionality such as metering, authentication, monitoring, client 
library generation, and documentation generation. Instead of each service team having to integrate 
those features into their services manually, the Service Frameworks team did that integration once 
and exposed the functionality to each service through configuration.  

One challenge we faced was in determining how to provide sensible defaults, especially for features 
that were performance or availability related. For example, we couldn’t set a default client-side 
timeout easily, because our framework had no idea what the latency characteristics of an API call 
might be. This wouldn’t have been any easier for service owners or clients to figure out themselves, 
so we kept trying, and gained some useful insights along the way. 

One common question we struggled with was determining the default number of connections the 
server would allow to be open to clients at the same time. This setting was designed to prevent a 
server from taking on too much work and becoming overloaded. More specifically, we wanted to 
configure the maximum connections settings for the server in proportion to the maximum 
connections for the load balancer. This was before the days of Elastic Load Balancing, so hardware 
load balancers were in widespread use.  

We set out to help Amazon service owners and service clients figure out the ideal value for maximum 
connections to set on the load balancer, and the corresponding value to set in the frameworks we 
provided. We decided that if we could figure out how to use human judgment to make a choice, we 
could then write software to emulate that judgment.  

Determining the ideal value ended up being very challenging. When maximum connections were set 
too low, the load balancer might cut off increases in the number of requests, even when the service 
had plenty of capacity. When maximum connections were set too high, servers would become slow 
and unresponsive. When maximum connections were set just right for a workload, the workload 
would shift or dependency performance would change. Then the values would be wrong again, 
resulting in unnecessary outages or overloads. 

In the end, we found that the maximum connections concept was too imprecise to provide the 
complete answer to the puzzle. In this article, we’ll describe other approaches such as load shedding 
that we found worked well.  

The anatomy of overload 
At Amazon we avoid overload by designing our systems to scale proactively, before they encounter 
overload situations. However, protecting systems involves protection in layers. This begins with 
automatic scaling, but also includes mechanisms to shed excess load gracefully, the ability to monitor 
those mechanisms, and most importantly, continuous testing. 

When we load-test our services, we find that the latency of a server at low utilization is lower than 
its latency at high utilization. Under heavy load, thread contention, context switching, garbage 
collection, and I/O contention become more pronounced. Eventually, services reach an inflection 
point where their performance starts degrading even more rapidly.  
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The theory behind this observation is known as the Universal Scalability Law, which is a derivation of 
Amdahl’s law. This theory specifies that while a system’s throughput can be increased by using 
parallelization, it is ultimately limited by the throughput of the points of serialization (that is, by the 
tasks that can’t be parallelized).  

Unfortunately, not only is throughput bounded by a system’s resources, throughput typically 
degrades when the system is overloaded. When a system is given more work than its resources 
support, it becomes slow. Computers take on work even when they’re overloaded, but they spend 
increasing amounts of their time context switching and become too slow to be useful. 

In a distributed system where a client is talking to a server, the client typically becomes impatient 
and stops waiting for the server to respond after some time. This duration is known as a timeout. 
When a server gets so overloaded that its latency exceeds its client’s timeout, requests start to fail. 
The following graph shows how server response time increases as offered throughput (in transactions 
per second) increases, and response time eventually reaches an inflection point where things 
deteriorate quickly.  

 

 

In the previous graph, when the response time exceeds the client timeout, it’s clear that things are 
bad, but the graph doesn’t show just how bad. To illustrate this, we can plot the client-perceived 
availability alongside latency. Instead of using a generic response time measurement, we can switch 
to using the median response time. Median response time means that 50 percent of requests were 
faster than the median value. If the service's median latency is equal to the client timeout, half of the 
requests are timing out, so the availability is 50 percent. This is where a latency increase transforms 
a latency problem into an availability problem. Here is a graph of that happening: 

http://www.perfdynamics.com/Manifesto/USLscalability.html
https://en.wikipedia.org/wiki/Amdahl%27s_law
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Unfortunately, this graph is tricky to read. A simpler way to describe the availability problem is to 
distinguish goodput from throughput. Throughput is the total number of requests per second that is 
being sent to the server. Goodput is the subset of the throughput that is handled without errors and 
with low enough latency for the client to make use of the response.  

 

Positive feedback loops 
The insidious part of an overload situation is how it amplifies itself in a feedback loop. When a client 
times out, it’s bad enough that the client got an error. What’s even worse is that all the progress that 
the server made so far on that request goes to waste. And the last thing a system should do in an 
overload situation, where capacity is constrained, is waste work.  

Making matters even worse is that clients often retry their request. This multiplies the offered load 
on the system. And if there’s a deep enough call graph in a service-oriented architecture (that is, a 
client calls a service, which calls other services, which call other services), and if each layer performs 
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a number of retries, an overload in the bottom layer causes cascading retries that amplify the offered 
load exponentially. 

When these factors are combined, an overload creates its own feedback loop that results in overload 
as a steady state. 

Preventing work from going to waste 
On the surface, load shedding is simple. When a server approaches overload, it should start rejecting 
excess requests so that it can focus on the requests it decides to let in. The goal of load shedding is 
to keep latency low for the requests that the server decides to accept so that the service replies 
before the client times out. With this approach, the server maintains high availability for the requests 
it accepts, and only the excess traffic’s availability is affected. 

 

Keeping latency in check by shedding excess load makes the system more available. But the benefits 
of this approach are hard to visualize in the previous graph. The overall availability line still drifts 
downward, which looks bad. The key is that the requests that the server decided to accept remain 
available because they were served quickly. 

Load shedding lets a server maintain its goodput and complete as many requests as it can, even as 
offered throughput increases. However, the act of shedding load isn’t free, so eventually the server 
falls prey to Amdahl’s law and goodput drops. 
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Testing 
When I talk to other engineers about load shedding, I like to point out that if they haven’t load tested 
their service to the point where it breaks, and far beyond the point where it breaks, they should 
assume that the service will fail in the least desirable way possible. At Amazon we spend a great deal 
of time load testing our services. Generating graphs like the ones earlier in this article helps us 
baseline overload performance and track how we do over time as we make changes to our services. 

There are multiple types of load tests. Some load tests ensure that a fleet automatically scales as 
load increases whereas others use a fixed fleet size. If, in an overload test, a service’s availability 
degrades rapidly to zero as throughput increases, that’s a good sign that the service is in need of 
additional load shedding mechanisms. The ideal load test result is for goodput to plateau when the 
service is close to being fully utilized, and to remain flat even when more throughput is applied. 

Tools like Chaos Monkey help perform chaos engineering tests on services. For example, they can 
overburden the CPU or introduce packet loss to simulate conditions that happen during an overload. 
Another testing technique we use is to take an existing load generation test or canary, drive sustained 
load (instead of increasing load) toward a test environment, but begin removing servers from that 
test environment. This increases the offered throughput per instance, so it can test instance 
throughput. This technique of artificially increasing load by decreasing fleet sizes is useful for testing 
a service in isolation, but it isn’t a complete substitute for full load tests. A full, end-to-end load test 
will also increase load to that service’s dependencies, which could uncover other bottlenecks. 

During tests, we make sure to measure client-perceived availability and latency in addition to server-
side availability and latency. When client-side availability begins to decrease, we push the load far 
beyond that point. If load shedding is working, goodput will remain steady even as offered 
throughput increases well beyond the scaled capabilities of the service. 

Overload testing is crucial before exploring mechanisms to avoid overload. Each mechanism 
introduces complexity. For example, consider all the configuration options in the service frameworks 

https://github.com/Netflix/SimianArmy/wiki/The-Chaos-Monkey-Army
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I mentioned at the beginning of the article, and how difficult defaults were to get right. Each 
mechanism for avoiding overload adds different protections and has limited effectiveness. Through 
testing, a team can detect their system’s bottlenecks and determine the combination of protections 
they need to handle overload. 

Visibility 
At Amazon, regardless of which techniques we use to protect our services from overload, we think 
carefully about the metrics and visibility we need when these overload countermeasures take effect.  

When brownout protection rejects a request, that rejection reduces the availability of a service. When 
the service gets it wrong and rejects a request although it has capacity (for example, when the 
maximum number of connections is set too low), it generates a false positive. We strive to keep a 
service’s false positive rate at zero. If a team finds that their service’s false positive rate is non-zero 
on a regular basis, the service is either tuned too sensitively, or individual hosts are being constantly 
and legitimately overloaded, and there may be a scaling or load balancing problem. In cases like this, 
we might have some application performance tuning to do, or we may switch to larger instance types 
that they can handle load imbalances more gracefully. 

In terms of visibility, when load shedding rejects requests, we make sure that we have proper 
instrumentation to know who the client was, which operation they were calling, and any other 
information that will help us tune our protection measures. We also use alarms to detect whether 
the countermeasures are rejecting any significant volume of traffic. When there is a brownout, our 
priority is to add capacity and to address the current bottleneck. 

There’s another subtle but important consideration around visibility in load shedding. We’ve found 
that it’s important not to pollute our services’ latency metrics with failed request latency. After all, 
the latency of load shedding a request should be extremely low compared with other requests. For 
example, if a service is load shedding 60 percent of its traffic, the service's median latency might look 
pretty amazing even if its successful request latency is terrible, because it’s being under-reported as 
a result of fast-failing requests. 

Load shedding effects on automatic scaling and Availability Zone failure 
If misconfigured, load shedding can disable reactive automatic scaling. Consider the following 
example: a service is configured for CPU-based reactive scaling and also has load shedding configured 
to reject requests at a similar CPU target. In this case, the load shedding system will reduce the 
number of requests to keep the CPU load low, and reactive scaling will never receive or get a delayed 
signal to launch new instances. 

We are also careful to consider load shedding logic when we set automatic scaling limits for handling 
Availability Zone failures. Services are scaled to a point where an Availability Zone's worth of their 
capacity can become unavailable while preserving our latency goals. Amazon teams often look at 
system metrics like CPU to approximate how close a service is to reaching its capacity limit. However, 
with load shedding, a fleet might run much closer to the point at which requests would be rejected 
than system metrics indicate, and might not have the excess capacity provisioned to handle an 
Availability Zone failure. With load shedding, we need to be extra sure to test our services to breakage 
to understand our fleet's capacity and headroom at any point in time. 

In fact, we can use load shedding to save costs by shaping off-peak, non-critical traffic. For example, 
if a fleet handles website traffic for amazon.com, it might decide that search crawler traffic is not 
worth the expense of being scaled for full Availability Zone redundancy. However, we are very careful 
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with this approach. Not all requests cost the same, and proving that a service should provide 
Availability Zone redundancy for human traffic and for shedding excess crawler traffic at the same 
time requires careful design, continuous testing, and buy-in from the business. And if a service’s 
clients don't know that a service is configured this way, its behavior during an Availability Zone failure 
might look like a massive critical availability drop instead of non-critical load shedding. For this 
reason, in a service-oriented architecture, we try to push this kind of shaping as early as possible 
(such as in the service that receives the initial request from the client) instead of trying to make global 
prioritization decisions throughout the stack. 

Load shedding mechanisms 
When discussing load shedding and unpredictable scenarios, it’s also important to focus on the many 
predictable conditions that lead to brownout. At Amazon, services maintain enough excess capacity 
to handle Availability Zone failures without having to add more capacity. They use throttling to 
ensure fairness among clients. 

However, despite these protections and operational practices, a service has a certain amount of 
capacity at any point in time, and can therefore become overloaded for a variety of reasons. These 
reasons include unexpected surges in traffic, sudden loss of fleet capacity (from bad deployments or 
otherwise), clients shifting from making cheap requests (like cached reads) to expensive requests (like 
cache misses or writes). When a service becomes overloaded, it has to finish the requests that it has 
taken on; that is, services have to protect themselves from brownout. In the rest of this section, we’ll 
discuss some of the considerations and techniques we’ve used over the years to manage overload. 

Understanding the cost of dropping requests 
We make sure to load test our services far beyond the point where goodput plateaus. One of the key 
reasons for this approach is to ensure that when we drop requests during load shedding, the cost of 
dropping the request is as small as possible. We’ve seen that it’s easy to miss an accidental log 
statement or a socket setting, which might make dropping a request far more expensive than it needs 
to be. 

In rare cases, quickly dropping a request can be more expensive than holding on to the request. In 
these cases, we slow down rejected requests to match (at the minimum) the latency of successful 
responses. However, it’s important to do this when the cost of holding on to requests is as low as 
possible; for example, when they’re not tying up an application thread. 

Prioritizing requests 
When a server is overloaded, it has an opportunity to triage incoming requests to decide which ones 
to accept and which ones to turn away. The most important request that a server will receive is a 
ping request from a load balancer. If the server doesn't respond to ping requests in time, the load 
balancer will stop sending new requests to that server for a period of time, and the server will sit idle. 
And in a brownout scenario, the last thing we want to do is to reduce the size of our fleets. Beyond 
ping requests, request prioritization options vary from service to service.  

Consider a web service that provides data to render amazon.com. A service call that supports web 
page rendering for a search index crawler is likely to be less critical to serve than a request that 
originates from a human. Crawler requests are important to serve, but ideally they can be shifted to 
an off-peak time. However, in a complex environment like amazon.com where a large number of 
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services cooperate, if services use conflicting prioritization heuristics, systemwide availability could 
be affected and work could be wasted. 

Prioritization and throttling can be used together to avoid strict throttling ceilings while still 
protecting a service from overload. At Amazon, in cases where we allow clients to burst above their 
configured throttle limits, the excess requests from these clients might be prioritized lower than 
within-quota requests from other clients. We spend a lot of time focusing on placement algorithms 
to minimize the probability of burst capacity becoming unavailable, but given the tradeoffs, we favor 
the predictable provisioned workload over the unpredictable workload. 

Keeping an eye on the clock 
If a service has gotten partway through serving a request and notices that the client has timed out, 
it can skip doing the rest of the work and fail the request at that point. Otherwise, the server keeps 
working on the request, and its late reply is like a tree falling in the forest. From the server’s 
perspective, it has returned a successful response. But from the perspective of the client that timed 
out, it was an error. 

One way to avoid this wasted work is for clients to include timeout hints in each request, which tell 
the server how long they’re willing to wait. The server can evaluate these hints and drop doomed 
requests at little cost. 

This timeout hint can be expressed either as an absolute time or as a duration. Unfortunately, servers 
in distributed systems are notoriously bad at agreeing what the exact current time is. The Amazon 
Time Sync Service compensates by synchronizing your Amazon Elastic Compute Cloud (Amazon EC2) 
instances’ clocks with a fleet of redundant satellite-controlled and atomic clocks in each AWS Region. 
Well-synchronized clocks are important at Amazon for logging purposes as well. Comparing two log 
files on servers that have out-of-sync clocks makes troubleshooting even harder than it is to begin 
with. 

The other way to “watch the clock” is to measure a duration on a single machine. Servers are good 
at measuring elapsed durations locally because they do not need to gain consensus with other 
servers. Unfortunately, expressing timeouts in terms of durations has its problems, too. For one, the 
timer you use must be monotonic and not go backward when the server syncs with the Network Time 
Protocol (NTP). A far more difficult problem is that in order to measure a duration, the server has to 
know when to start a stopwatch. In some extreme overload scenarios, huge volumes of requests can 
queue up in Transmission Control Protocol (TCP) buffers, so by the time the server reads the requests 
from its buffers, the client has already timed out. 

Whenever systems at Amazon express client timeout hints, we try to apply them transitively. In places 
where a service-oriented architecture includes multiple hops, we propagate the “remaining time” 
deadline between each hop so that a downstream service at the end of a call chain can be aware of 
how much time it has for its response to be useful. 

Once a server knows the client deadline, there’s the question of where to enforce the deadline in the 
service implementation. If a service has a request queue, we use that opportunity to evaluate the 
timeout after dequeueing each request. But this is still pretty complicated, because we don’t know 
how long the request is likely to take. Some systems keep an estimate of how long API requests are 
taking, and they drop requests early if the client-reported deadline exceeds a latency estimate. 
However, things are rarely that simple. For example, cache hits are faster than cache misses, and the 
estimator doesn’t know whether it's a hit or a miss up front. Or the service’s backend resources might 

https://aws.amazon.com/blogs/aws/keeping-time-with-amazon-time-sync-service/
https://aws.amazon.com/blogs/aws/keeping-time-with-amazon-time-sync-service/
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be partitioned, and only some partitions might be slow. There's a great deal of opportunity for 
cleverness, but it's also possible for that cleverness to backfire in an unpredictable situation. 

In our experience, enforcing client timeouts on the server is still better than the alternative, despite 
the complexities and tradeoffs. Instead of requests piling up and the server possibly working on 
requests that no longer matter to anyone, we have found it helpful to enforce a “per-request time-
to-live” and throw away doomed requests. 

Finishing what was started 
We don't want any useful work to go to waste, especially in an overload. Throwing away work creates 
a positive feedback loop that increases the overload, since clients often retry a request if a service 
doesn't respond in time. When that happens, one resource-consuming request turns into many 
resource-consuming requests, multiplying the load on the service. When clients time out and retry, 
they often stop waiting for a reply on their first connection while they’re making a new request on a 
separate connection. If the server finishes the first request and replies, the client might not be  
listening, because it's now waiting for a reply from its retried request. 

This wasted work problem is why we try to design services to perform bounded work. In places where 
we expose an API that can return a large dataset (or really any list at all), we expose it as an API that 
supports pagination. These APIs return partial results and a token that the client can use to request 
more data. We have found it easier to estimate the additional load on a service when the server 
handles a request that has an upper bound to the amount of memory, CPU, and network bandwidth. 
It’s very difficult to perform admission control when a server has no idea what it will take to process 
a request. 

A more subtle opportunity to prioritize requests is around how clients use a service’s APIs. For 
example, let's say a service has two APIs: start() and end(). In order to finish their work, clients need 
to be able to call both APIs. In this case, the service should prioritize end() requests over start() 
requests. If it prioritized start(), clients wouldn’t be able to complete the work they started, resulting 
in brownouts. 

Pagination is another place to watch for wasted work. If a client has to make several sequential 
requests to paginate through the results from a service, and it sees a failure after page N-1 and 
throws away the results, it’s wasting N-2 service calls and any retries it performed along the way. 
This suggests that like end() requests, first-page requests should be prioritized behind subsequent-
page pagination requests. It also underscores why we design services to perform bounded work and 
not paginate endlessly through a service that they call during a synchronous operation. 

Watching out for queues 
It’s also helpful to look at request duration when managing internal queues. Many modern service 
architectures use in-memory queues to connect thread pools to process requests during various 
stages of work. A web service framework with an executor is likely to have a queue configured in 
front of it. With any TCP-based service, the operating system maintains a buffer for each socket, and 
those buffers can contain a huge volume of pent-up requests. 

When we pull work off queues, we use that opportunity to examine how long the work was sitting 
on the queue. At a minimum, we try to record that duration in our service metrics. In addition to 
bounding the size of queues, we’ve found it’s extremely important to place an upper bound on the 
amount of time that an incoming request sits on a queue, and we throw it out if it's too old. This frees 
up the server to work on newer requests that have a greater chance of succeeding. As an extreme 
version of this approach, we look for ways to use a last in, first out (LIFO) queue instead, if the 
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protocol supports it. (HTTP/1.1 pipelining of requests on a given TCP connection doesn’t support 
LIFO queues, but HTTP/2 generally does). 

Load balancers might also queue incoming requests or connections when services are overloaded, 
using a feature called surge queues. These queues can lead to brownout, because when a server finally 
gets a request, it has no idea how long the request was in the queue. A generally safe default is to 
use a spillover configuration, which fast-fails instead of queueing excess requests. At Amazon, this 
learning was baked into the next generation of the Elastic Load Balancing (ELB) service. The Classic 
Load Balancer used a surge queue, but the Application Load Balancer rejects excess traffic. Regardless 
of configuration, teams at Amazon monitor the relevant load balancer metrics, like surge queue 
depth or spillover count, for their services. 

In our experience, the importance of watching out for queues can’t be overstated. I’m often surprised 
to find in-memory queues where I didn’t intuitively think to look for them, in systems and libraries I 
depend on. When I’m digging into systems, I find that it’s helpful to assume there are queues 
somewhere that I don’t know about yet. Of course, overload testing provides more useful information 
than digging into code, as long as I can come up with the right realistic test cases. 

Protecting against overload in lower layers 
Services are made up of several layers─from load balancers, to operating systems with netfilter and 
iptables capabilities, to service frameworks, to the code—and each layer provides some capability to 
protect the service.  

HTTP proxies like NGINX often support a maximum connections feature (max_conns) to limit the 
number of active requests or connections it will pass to the backend server. This can be a helpful 
mechanism, but we learned to use it as a last resort instead of the default protection option. With 
proxies, it’s difficult to prioritize important traffic, and raw in-flight request count tracking 
sometimes provides inaccurate information about whether a service is actually overloaded. 

In the beginning of this article, I described a challenge from my time on the Service Frameworks 
team. We were trying to provide Amazon teams with a recommended default for maximum 
connections to configure on their load balancers. In the end, we suggested that teams set maximum 
connections for their load balancer and proxy high, and let the server implement more accurate load 
shedding algorithms with local information. However, it was also important for the maximum 
connections value to not exceed the number of listener threads, listener processes, or file descriptors 
on a server, so the server had the resources to handle critical health check requests from the load 
balancer. 

Operating system features for limiting server resource usage are powerful and can be helpful to use 
in emergencies. And because we know that overload can happen, we make sure to prepare for it by 
using the right runbooks with specific commands at the ready. The iptables utility can put an upper 
bound on the number of connections that the server will accept, and can reject excess connections 
far more cheaply than any server process. It can also be configured with more sophisticated controls, 
like allowing new connections at a bounded rate, or even allowing a limited connection rate or count 
per source IP address. Source IP filters are powerful, but do not apply with traditional load balancers. 
However, an ELB Network Load Balancer preserves the source IP of the caller even at the operating 
system layer through network virtualization, making iptables rules like source IP filters work as 
expected. 

https://youtu.be/qy7zNaDTYGQ?t=2506
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Protecting in layers 
In some cases, a server runs out of resources to even reject requests without slowing down. With this 
reality in mind, we look at all the hops between a server and its clients to see how they can cooperate 
and help shed excess load. For example, several AWS services include load shedding options by 
default. When we front a service with Amazon API Gateway, we can configure a maximum request 
rate that any API will accept. When our services are fronted by API Gateway, an Application Load 
Balancer, or Amazon CloudFront, we can configure AWS WAF to shed excess traffic on a number of 
dimensions.  

Visibility creates a difficult tension. Early rejection is important because it’s the cheapest place to 
drop excess traffic, but it comes at a cost to visibility. This is why we protect in layers: to let a server 
take on more than it can work on and drop the excess, and log enough information to know what 
traffic it is dropping. Since there is only so much traffic a server can drop, we rely on the layer in front 
of it to protect it from extreme volumes of traffic. 

Thinking about overload differently 
In this article, we discussed how the need to shed load arises out of the fact that systems become 
slower as they are given more concurrent work, as forces like resource limits and contention kick in. 
The overload feedback loop is driven by latency, which ultimately causes wasted work, request rate 
amplification, and even more overload. This force, driven by the Universal Scalability Law and 
Amdahl’s law, is important to sidestep by shedding excess load and maintaining predictable, 
consistent performance in the face of overload. Focusing on predictable, consistent performance is 
a key design principle on which services at Amazon are built.  

For example, Amazon DynamoDB is a database service that offers predictable performance and 
availability at scale. Even if a workload bursts quickly and exceeds the provisioned resources, 
DynamoDB maintains predictable goodput latency for that workload. Factors like DynamoDB auto 
scaling, adaptive capacity, and on-demand react quickly to increase goodput rates to adapt to an 
increase in a workload. During that time, goodput remains steady, keeping a service in the layers 
above DynamoDB with predictable performance as well, and improving the stability of the whole 
system. 

AWS Lambda provides an even broader example of the focus on predictable performance. When we 
use Lambda to implement a service, each API call runs in its own execution environment with 
consistent amounts of compute resources allocated to it, and that execution environment works on 
only that one request at a time. This differs from a server-based paradigm, where a given server 
works on multiple APIs. 

Isolating each API call to its own independent resources (compute, memory, disk, network) will 
circumvent Amdahl’s law in some ways, because the resources of one API call won’t be contending 
with the resources of another API call. Therefore, if throughput exceeds goodput, goodput will 
remain flat instead of dropping down as it does in a more traditional server-based environment. This 
isn’t a panacea, since dependencies can slow down and cause concurrency to go up. However, in this 
scenario, at least the types of on-host resource contention that we discussed in this article won’t 
apply.  

https://aws.amazon.com/waf/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://aws.amazon.com/blogs/database/how-amazon-dynamodb-adaptive-capacity-accommodates-uneven-data-access-patterns-or-why-what-you-know-about-dynamodb-might-be-outdated/#targetText=May%2024%2C%202019%2C%20update%3A,high%20performance%20at%20any%20scale.
https://aws.amazon.com/blogs/aws/amazon-dynamodb-on-demand-no-capacity-planning-and-pay-per-request-pricing/
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This resource isolation is a somewhat subtle but important benefit of modern, serverless compute 
environments like AWS Fargate, Amazon Elastic Container Service (Amazon ECS), and AWS Lambda. 
At Amazon, we have found that it requires a lot of work to implement load shedding, from tuning 
thread pools, to picking the perfect configuration for maximum load balancer connections. Sensible 
defaults for these types of configurations are difficult or impossible to find, because they depend on 
the unique operational characteristics of each system. These newer, serverless compute 
environments provide lower-level resource isolation and expose higher-level knobs, like throttling 
and concurrency controls, for protecting against overload. In some ways, instead of chasing the 
perfect default configuration value, we’re able to sidestep that configuration altogether and protect 
from categories of overload without any configuration at all. 

Further reading 

• Universal Scalability Law  
• Amdahl's law 
• Staged event-driven architecture (SEDA) 
• Little's law (describes concurrency in a system and how to determine the capacity of 

distributed systems) 
• Telling Stories About Little’s Law, Marc’s Blog 
• Elastic Load Balancing Deep Dive and Best Practices, presentation at re:Invent 2016 (describes 

the evolution of Elastic Load Balancing to stop queueing excess requests) 
• Burgess, Thinking in Promises: Designing Systems for Cooperation, O’Reilly Media, 2015 

 

https://aws.amazon.com/fargate/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
http://www.perfdynamics.com/Manifesto/USLscalability.html
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Staged_event-driven_architecture
https://en.wikipedia.org/wiki/Little%27s_law
https://brooker.co.za/blog/2018/06/20/littles-law.html
https://youtu.be/qy7zNaDTYGQ?t=2506
https://www.amazon.com/gp/product/1491917873
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