
Using Microsoft R Server to Address
Scalability Issues

February 4th, 2016 - Welcome!

R – What is it?

Open Source
“lingua franca”

Analytics, Computing,
Modeling

Global Community

Millions of users 7000+ Algorithms, Test
Data & Evaluations

Can be Scaled to
Big Data,

Big Analytics

Ecosystem

Scalability

R from Microsoft brings

Microsoft R Products

• Free and open source R distribution

• Enhanced and distributed by Revolution Analytics

Microsoft R Open

• Built in Advanced Analytics and Stand Alone Server Capability

• Leverages the Benefits of SQL 2016 Enterprise Edition

SQL Server R Services

• Microsoft R Server for Redhat Linux

• Microsoft R Server for SUSE Linux

• Microsoft R Server for Teradata DB

• Microsoft R Server for Hadoop on Redhat

Microsoft R Server

Introducing Microsoft R Open

• Enhanced Open Source R distribution
• Based on the latest Open Source R (3.2.2)

• Built, tested and distributed by Microsoft

• Enhanced by Intel MKL Library to speed up linear algebra functions

• Compatible with all R-related software
• CRAN packages, RStudio, third-party R integrations, …

• Revolutions Open-Source R packages
• Reproducible R Toolkit – Checkpoint , miniCRAN

• ParallelR – parallelise execution via ‘foreach’ loop

• Rhadoop – rhdfs, rhbase, ravro, rmr2, plyrmr

• AzureML – read/write data to AzureML, publish R code as ML API

• MRAN website mran.revolutionanalytics.com
• Enhanced documentation and learning resources

• Discover 6500 free add-on R packages

• Open source (GPLv2 license) - 100% free to download, use and share

CRAN R compared to Microsoft R Open

• Matrix calculation – up to 27x faster

• Matrix functions – up to 16x faster

• Programation – 0x faster

• More efficient and multi-threaded math computation.

• Benefits math intensive processing.

• No benefit to program logic and data transform

9

CRAN, MRO, MRS Comparison

Datasize
In-memory

In-memory In-Memory or Disk Based

Speed of Analysis
Single threaded Multi-threaded

Multi-threaded, parallel

processing 1:N servers

Support
Community Community Community + Commercial

Analytic Breadth

& Depth 7500+ innovative analytic

packages
7500+ innovative analytic

packages

7500+ innovative packages +

commercial parallel high-

speed functions

License
Open Source

Open Source

Commercial license.

Supported release with

indemnity

Microsoft

R Open

Microsoft

R Server

Introducing Microsoft R Server

Microsoft R Server is a broadly deployable enterprise-class analytics platform based on R that is

supported, scalable and secure. Supporting a variety of big data statistics, predictive modeling and

machine learning capabilities, R Server supports the full range of analytics – exploration, analysis,

visualization and modeling

High-performance open source R plus:
• Data source connectivity to big-data objects

• Big-data advanced analytics

• Multi-platform environment support

• In-Hadoop and in-Teradata predictive modeling

• Development and production environment support
• IDE for data scientist developers

• Secure, Scalable R Deployment

DeployR

R Open R Server

DevelopR

The Microsoft R Server Platform

R Open Microsoft R Server

DeployRDevelopR

ConnectR
• High-speed & direct

connectors

Available for:
• High-performance XDF

• SAS, SPSS, delimited & fixed
format text data files

• Hadoop HDFS (text & XDF)

• Teradata Database & Aster

• EDWs and ADWs

• ODBC
ScaleR
• Ready-to-Use high-performance

big data big analytics

• Fully-parallelized analytics

• Data prep & data distillation

• Descriptive statistics & statistical tests

• Range of predictive functions

• User tools for distributing customized R algorithms
across nodes

• Wide data sets supported – thousands of variables

DistributedR
• Distributed computing framework

• Delivers cross-platform portability

R+CRAN
• Open source R interpreter

• R 3.1.2

• Freely-available huge range of R
algorithms

• Algorithms callable by RevoR

• Embeddable in R scripts

• 100% Compatible with existing R scripts,
functions and packages

MRO
• Performance enhanced R

interpreter

• Based on open source R

• Adds high-performance
math library to speed up
linear algebra functions

ScaleR – Parallel + “Big Data”

Stream data in to RAM in blocks. “Big Data” can be any data

size. We handle Megabytes to Gigabytes to Terabytes…

Our ScaleR algorithms work

inside multiple cores / nodes

in parallel at high speed

Interim results are collected

and combined analytically to

produce the output on the

entire data set

XDF file format is optimised to work with the ScaleR library and

significantly speeds up iterative algorithm processing.

Scale R – Parallelized Algorithms & Functions

 Data import – Delimited, Fixed, SAS, SPSS,

OBDC

 Variable creation & transformation

 Recode variables

 Factor variables

 Missing value handling

 Sort, Merge, Split

 Aggregate by category (means, sums)

 Min / Max, Mean, Median (approx.)

 Quantiles (approx.)

 Standard Deviation

 Variance

 Correlation

 Covariance

 Sum of Squares (cross product matrix for set

variables)

 Pairwise Cross tabs

 Risk Ratio & Odds Ratio

 Cross-Tabulation of Data (standard tables & long

form)

 Marginal Summaries of Cross Tabulations

 Chi Square Test

 Kendall Rank Correlation

 Fisher’s Exact Test

 Student’s t-Test

 Subsample (observations & variables)

 Random Sampling

Data Preparation Statistical Tests

Sampling

Descriptive Statistics

 Sum of Squares (cross product matrix for set

variables)

 Multiple Linear Regression

 Generalized Linear Models (GLM) exponential

family distributions: binomial, Gaussian, inverse

Gaussian, Poisson, Tweedie. Standard link

functions: cauchit, identity, log, logit, probit. User

defined distributions & link functions.

 Covariance & Correlation Matrices

 Logistic Regression

 Classification & Regression Trees

 Predictions/scoring for models

 Residuals for all models

Predictive Models
 K-Means

 Decision Trees

 Decision Forests

 Gradient Boosted Decision Trees

 Naïve Bayes

Cluster Analysis

Classification

Simulation

Variable Selection

 Stepwise Regression

 Simulation (e.g. Monte Carlo)

 Parallel Random Number Generation

Combination
 rxDataStep

 rxExec

 PEMA-R API Custom Algorithms

ScaleR - Performance comparison
Microsoft R Server has no data size limits in relation to size of available RAM. When open source R operates
on data sets that exceed RAM it will fail. In contrast Microsoft R Server scales linearly well beyond RAM
limits and parallel algorithms are much faster.

 US flight data for 20 years

 Linear Regression on Arrival Delay

 Run on 4 core laptop, 16GB RAM and 500GB SSD

Example of In-Database Acceleration

• 5+ hours to 40 seconds:

rows

m
in

u
te

s

R on a

server

pulling data

via SQL

R on a server

Invoking RRE

ScaleR Inside

the EDW

Distributed R - “Write Once. Deploy Anywhere.”

DistributedR

ScaleR

ConnectR

DevelopR

Code Portability Across Platforms

In the Cloud

Workstations & Servers Linux
Windows

EDW Teradata

Hadoop
Hortonworks
Cloudera
MapR

+ HD Insights

+ Hadoop Spark

+ Azure MLAzure Marketplace

+ SQL Server v16

Microsoft R Server

C
o

m
in

g

S
o

o
n

DistributedR - Remote Execution

Algorithm

Master

Big

Data

Predictive

Algorithm

Analyze

Blocks In

Parallel

Load Block

At A Time

Distribute Work,

Compile Results

The Results:

• Even Faster Computation

• Larger Data Set Capacity

• Fewer Security Concerns

• No Data Movement, No Copies

Work

“Pack and Ship” Requests

to Remote Environments

Results

Microsoft R Server functions

• A compute context defines remote connection
• Microsoft R functions prefixed with rx

• Current compute context determines processing

location

DistributedR - Revolution Code Portability

SETUP HADOOP ENVIRONMENT VARIABLES

myHadoopCCC <- RxHadoopMR()

HADOOP COMPUTE CONTEXT

rxSetComputeContext(myHadoopCC)

CREATE HDFS, DIRECTORY AND FILE OBJECTS

hdfsFS <- RxHdfsFileSystem()

AirlineDataSet <-

RxXdfData(“AirlineDemoSmall/AirlineDemoSmall.xdf”)

, fileSystem = hdfsFS)

ANALYTICAL PROCESSING

Statistical Summary of the data

rxSummary(~ArrDelay+DayOfWeek, data= AirlineDataSet, reportProgress=1)

CrossTab the data

rxCrossTabs(ArrDelay ~ DayOfWeek, data= AirlineDataSet, means=T)

Linear Model and plot

hdfsXdfArrLateLinMod <- rxLinMod(ArrDelay ~ DayOfWeek + 0 , data = AirlineDataSet)

plot(hdfsXdfArrLateLinMod$coefficients)

SETUP LOCAL ENVIRONMENT VARIABLES

myLocalCC <- “localpar”

LOCAL COMPUTE CONTEXT

rxSetComputeContext(myLocalCC)

CREATE LINUX, DIRECTORY AND FILE OBJECTS

linuxFS <- RxNativeFileSystem())

AirlineDataSet <-

RxXdfData(“AirlineDemoSmall/AirlineDemoSmall.xdf”,

fileSystem = linuxFS)

Local Parallel processing – Linux or Windows In – Hadoop

ScaleR models can be deployed from a server or edge node to run in Hadoop

without any functional R model re-coding for map-reduce

Compute

context R script

– sets where the

model will run

Functional

model R script –

does not need

to change to run

in Hadoop

DistributedR - In-Hadoop

• Uses Hadoop nodes for R
computations

• Eliminate data movement
latency on very large data

• Remove data duplication

• Faster model development

• No MapReduce R coding

• Develop better models
using all the data

= Microsoft R Server

DistributedR - Hadoop Processing Methods

Method 1: Local (Linux) parallel processing using all

cores on one node, copying data from HDFS to store

in local Linux file-system.

Compute Context

HadoopCompute Context

HadoopCompute Context

Local Parallel

Linux (Local)

File-System
HDFS

Csv, Xdf

Processing

Data

1 Edge node 1:n data nodes

1:n disks 1:(n x number of

nodes) disks

Csv, Xdf

Linux FS

Read / write

Method 1

(“Beside” or “Edge”)

Copy

to

Local

File

Method 2: Local (Linux) parallel processing using
all cores on one node, streaming data from / to
HDFS

Compute Context

HadoopCompute Context

HadoopCompute Context

Local Parallel

Compute Context

Hadoop

Linux (Local)

File-System
HDFS

Csv, Xdf

1:n nodes

1:n disks 1:(n x number of

nodes) disks

1 Edge node

DistributedR - Hadoop Processing Methods
Method 3

Method 3: Hadoop (Map-Reduce) parallel processing

using all cores on n nodes, using HDFS data on each

node

Compute Context

HadoopCompute Context

HadoopCompute Context

Local Parallel

Compute Context

Hadoop

Linux (Local)

File-System
HDFS

Csv, Xdf

Processing

Data

1:n nodes

1:n disks 1:(n x number of

nodes) disks

Csv, Xdf

HDFS

Read / write

(“inside”)

R script

sent to

data

nodes

1 Edge node

R model script sent to Master Node:

1. Starts a master process

2. Distribute work

3. Master tasks for each node

4. Master initiates distributed work
1.Hadoop schedules mapper for each split

2.Algorithm computes intermediate result

3.Reducer combines intermediate results

5. Master process evaluates

completion

6. Iterates as required by the

algorithm

7. Returns consolidated answer to

script

DistributedR - What processing mode to use?

Analytic data set size and processing complexity (e.g. simple summary statistics vs iterative algorithm)

guide the use of Method 1 and 2 (Edge Node / Server Linux local processing) vs Method 3 (in-Hadoop

processing)

Low Medium High

Small Data

< 10GB

Medium Data

< 50GB

Bigger Data

> 50GB

Edge Node Linux

processing
In-Hadoop

processing

Local Linux

file-system
Hadoop

file-system

Legend
Processing

Complexity

Data Size

