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Abstract

Direct measurement of hydraulic properties is time consuming, costly, and sometimes unreliable because of soil heterogeneity

and experimental errors. Instead, hydraulic properties can be estimated from surrogate data such as soil texture and bulk

density with pedotransfer functions (PTFs). This paper describes neural network PTFs to predict soil water retention, saturated

and unsaturated hydraulic properties from limited or more extended sets of soil properties. Accuracy of prediction generally

increased if more input data are used but there was always a considerable difference between predictions and measurements.

The neural networks were combined with the bootstrap method to generate uncertainty estimates of the predicted hydraulic

properties. # 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Concern about the quality of soil and water

resources has motivated the development of increas-

ingly sophisticated models to describe water ¯ow and

solute transport in unsaturated soils. These models are

generally based on numerical solutions of the

Richards equation which rely on expressions for soil

water retention and unsaturated hydraulic conductiv-

ity. A popular four-parameter expression for water

retention is given by van Genuchten (1980):

Se � �1� ��h���1=�ÿ1
(1)

where h is the soil water pressure head; � and � are

curve shape parameters. Se is the relative saturation

which is expressed in actual, residual and saturated

volumetric water content (�, �r, �s) as:

Se � ��ÿ �r�
��s ÿ �r� (2)

Combination of Eq. (1) with the pore size distribu-

tion model of Mualem (1976) leads to an expression

for the unsaturated hydraulic conductivity (van Gen-

uchten, 1980):

K�Se� � KsS
�
ef1ÿ �1ÿ S�=��ÿ1�

e �1ÿ1=�g2
(3)

K is the hydraulic conductivity and � is an empirical

parameter that is normally ®xed to 0.5 (Mualem,

1976); Schaap and Leij (1998) found that ��ÿ1.0

was more realistic. Ks is the saturated hydraulic
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conductivity and the only free parameter if Se and

� are derived from water retention measurements.

Unsaturated hydraulic conductivity can also be

described by the empirical expression of Gardner

(1958):

K�h� � Ks

1� �ah�b (4)

where Ks, a and b are the three model parameters.

Direct measurements of �(h) and especially K(h)

relationships are not easily performed and in many

cases not available. As an alternative, pedotransfer

functions (PTFs) can be used to predict hydraulic

properties from texture and bulk density. A variety

of PTFs have been established with different mathe-

matical concepts, predicted properties and input data

requirements. Most PTFs are empirical and often use

simple linear multiple regression equations (Gupta

and Larson, 1979; Rawls et al., 1982; Vereecken et

al., 1989, 1990).

PTFs can also be constructed with arti®cial neural

networks. Studies by Pachepsky et al. (1996);

Schaap and Bouten (1996); Schaap et al. (1998)

and Tamari et al. (1996) show that results are often

better than more traditional methods. Neural net-

works are sometimes described as universal func-

tion approximators which can `learn' to approximate

any continuous nonlinear function (Haykin, 1994).

An advantage of neural networks, as compared to

traditional PTFs, is that they require no a-priori

concept of the relations between input data and

output data. During an iterative calibration pro-

cedure the optimal relations between input and output

data are found and implemented automatically. A

drawback is that these relations are dif®cult to inter-

pret because of the black-box nature of neural net-

works.

Several studies have reported on the use of different

levels of input data to predict soil hydraulic properties

(Rawls et al., 1982; Schaap and Bouten, 1996; Ver-

eecken et al., 1989, 1990). Especially the addition of

one or two water retention points to soil textural data

improved the predictability of water retention and Ks

(Rawls et al., 1982; Ahuja, 1989 and Schaap et al.,

1998). The ¯exibility of neural networks allows us to

investigate and implement PTFs that use limited or

more expanded sets of input variables to predict

hydraulic properties.

All PTFs provide estimates of soil hydraulic proper-

ties. Considerable scatter exists between measure-

ments and predictions of various PTFs, as shown by

Tietje and Tapkenhinrichs (1993); Kern (1995) and

Tietje and Hennings (1996). The reliability of a PTF

can be judged by how well it describes an independent

data set. However, predictions may actually be more

reliable for certain subsets of the data and less reliable

for others. It would be useful if a PTF was able to

provide both a prediction and an associated reliability.

In this paper we will show some results of predicting

water retention, saturated and unsaturated soil hydrau-

lic conductivity with neural networks using different

levels of input data. By combining the neural networks

with the bootstrap method (Efron and Tibshirani,

1993) we can provide a probabilistic distribution of

the predicted parameters.

2. Materials and methods

The data for this study were taken from the

UNSODA database (Leij et al., 1996) which consists

of 791 entries of ®eld and laboratory measured water

retention, saturated and unsaturated hydraulic con-

ductivity as well as particle size distribution data

and bulk density of many international sources. Suf®-

cient laboratory water retention data were available

for 554 samples, a subset of 315 samples had Ks data

while of 245 samples reliable K(h) characteristics

were available. The water retention and conductivity

functions, Eqs. (1),(3) and (4), were ®tted indepen-

dently to the data with the simplex algorithm (Nelder

and Mead, 1965). For Eq. (1) this resulted in �r, �s, �
and �. We ®tted Ks in two versions of Eq. (3) by ®xing

� to 0.5 (Mualem, 1976) or ÿ1.0 (Schaap and Leij,

1998) and deriving � and Se from Eq. (1). Fitting

Eq. (4) resulted in three parameters: Ks, a and b.

Conductivity data were log-transformed to remove

bias towards high conductivities.

Neural network models were calibrated to predict

the ®tted hydraulic parameters and the measured Ks

values from soil texture, bulk density and water reten-

tion points. Four levels of input variables were used:

(i) sand, silt and clay (SSC); (ii) SSC with the addition

of bulk density (SSCBD); (iii) SSCBD with one

retention point at 33 kPa (SSCBD�33) and (iv) SSCBD

with retention points at 10 and 33 kPa SSCBD�10�33.
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The usage of more input variables is expected to

improve the predictions. Still, the simpler models

are useful because they can be used when, for exam-

ple, only the soil texture is known. The hierarchical

approach followed here thus adds a degree of ¯ex-

ibility in estimating soil hydraulic properties. Because

the particle size information is based on only three

classes, the models can predict only mono-modal pore

size distributions.

The neural networks that were used in this study

consist of an input, a hidden and an output layer all

containing `nodes' (Fig. 1). The numbers of nodes in

input and output layers correspond to the number of

input and output variables of the model. After Schaap

and Bouten (1996), we used six hidden nodes. All

input nodes j�1. . .J, with the input variables x1. . .xJ,

are connected to all hidden layer nodes k�1. . .K by

means of the adaptable connections, or "weights", wjk

which can vary between ÿ1 and 1. At the hidden

nodes, the input values and weights are multiplied and

summed Eq. (5) the result, Sk, is input into a sigmoid

function Eq. (6) yielding the hidden node output Hk.

Sk �
XJ

j�0

�wjk � xj� (5)

Hk � 1

1� eÿsk
(6)

A bias value x0 (equal to 1) and weights w0k are used

to offset Sk. The output nodes l�1. . .L operate in the

same way as the hidden nodes. The hidden node

outputs, Hk, are multiplied by the weights wkl and

the model outputs (YÃ l) are produced in the same way as

in Hk in Eq. (6). The values of wjk and wkl are obtained

in an iterative calibration procedure.

The neural network calibrations were combined

with the bootstrap (Efron and Tibshirani, 1993) to

generate uncertainty estimates and to test the neural

networks on independent data. Brie¯y, the bootstrap

creates multiple random subsets of the original dataset

by sampling with replacement. Each sample thus has a

chance of 1ÿ ��N ÿ 1�=N�N to be selected once or

multiple times for a particular subset resulting in

subsets that contain about 63% of the original data.

On each subset a neural network calibration was

performed leading to a submodel which was subse-

quently tested on the 37% of the data that were not

present in the subset. Because each subset contains

slightly different data, slightly different submodels

result. The predictions of the submodels are averaged

to yield the model prediction for a hydraulic property.

The standard deviation of the submodel predictions

provides the uncertainty of a model prediction as a

probability density function. The reader is referred to

Efron and Tibshirani (1993) and Schaap et al. (1998)

for a more thorough description of this method. The

combined neural network-bootstrapping analysis was

carried out with a slightly adapted TRAINLM routine

of the neural network toolbox (version 2.0) of the

MATLAB11 package (version 4.0, MathWorks,

Natick, Massachussets). A maximum of 60 iterations

was suf®cient for neural network calibration. We used

60 bootstrap subsets to calculate model uncertainty.

Results are presented as root mean square residuals

(RMSR) of predicted and measured hydraulic proper-

ties of calibration or independent data according to:

RMSR �
�������������������������������
1

N

XNt

i�1

�Yi ÿ Y 0i �2
vuut (7)

where Nt is the total number of observations for water

retention, Ks, or unsaturated hydraulic conductivity; Yi

is the measured hydraulic property, Y 0i is the predicted

hydraulic property.

Fig. 1. Schematic overview of a three-layer neural network.

1Trade names are provided for the benefit of the reader and do

not imply endorsement by the USDA.
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3. Results

Table 1 shows that using more input variables low-

ers the RMSR values of water retention, saturated and

unsaturated conductivity. For water retention, the

addition of bulk density and especially one or two

water retention points contributed to the predictability.

The RMSR for independent data to decreased from

0.107±0.073 cm3 cmÿ3. The RMSR of log(Ks)

decreased from 0.840±0.713 log(cm dayÿ1). Addition

of bulk density or one retention point improved the

prediction of Ks whereas using two retention points

instead of one decreased the RMSR by only a small

margin. RMSR values for all three investigated unsa-

turated conductivity functions were larger than those

for the saturated hydraulic conductivity, re¯ecting the

high error margin with which K(h) measurements are

commonly made. The Mualem-van Genuchten model

Eq. (3) with ��0.5 has the highest RMSR for all four

input data levels. Using ��ÿ1.0 instead leads to

considerable improvement. The empirical Gardner

(1958) model still was somewhat better. All three

conductivity models are relatively insensitive to the

input data level. Addition of BD and one or two

retention points improved the prediction of K(h) only

slightly. Inclusion of soil variables other than those

discussed here did not improve the prediction of �(h),

Ks or K(h).

The difference in RMSRs for calibration and

independent data was found to be small, thus indi-

cating that the neural network models were rather

robust. However, we note that the lowest RMSRs

were not nearly as small as the RMSRs of the

direct ®ts of Eqs. (1),(3) and (4) to the data (Table 1).

Hence, there must be considerable uncertainty with

which the predictions are made. This uncertainty is

partly caused by noise in the measurements and partly

by the dependence of the models on the calibration

data.

The combination of the neural network calibration

with the bootstrap method enables us to quantify

model uncertainty on a per sample basis. Figs. 2±4

show the uncertainty as predicted by the models that

used SSCBD�33 as input for water retention, Ks and

the Gardner function Eq. (4) respectively, for both a

loamy sand and a clay sample. For water retention and

the Gardner function, 10 and 90% percentiles of the

variability among the submodels are shown; for Ks we

show the entire probability distribution. Directly

apparent from the ®gures is the larger uncertainty

for the clay as compared to the loamy sand. This is

caused by the lower number of ®ne-textured soils in

the data set relative to coarse-textured soils. In gen-

eral, the uncertainty estimates increased when predic-

tions were made for samples that were less common in

the calibration data sets.

Table 1

Root mean square residuals (RMSR) for neural network models predicting water retention parameters (VG), saturated hydraulic conductivity

Ks, and unsaturated conductivity according to van Genuchten (1980) with ��0.5 and ÿ1.0 (MVG) and Gardner (1958). Also shown are the

RMSR values for the direct fits of the functions to the data

Input VG (cm3 cmÿ3) Ks MVG � (log(cm dayÿ1))� Gardner

0.5 ÿ1.0

SSC calibration 0.109 0.831 1.76 1.36 1.23

SSC independent 0.107 0.840 1.77 1.37 1.25

SSCBD calibration 0.096 0.761 1.70 1.29 1.15

SSCBD independent 0.098 0.775 1.74 1.29 1.22

SSCBD�33 calibration 0.077 0.680 1.65 1.25 1.13

SSCBD�33 independent 0.080 0.720 1.69 1.29 1.20

SSCBD�10�33 calibration 0.068 0.661 1.62 1.18 1.12

SSCBD�10�33 independent 0.073 0.713 1.65 1.24 1.18

Direct fit all data 0.013 NA 1.08 0.77 0.22
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Note that the saturated hydraulic conductivity in

Fig. 3 is higher than the apparent saturated hydraulic

conductivity inferred at log(h)�0 in Fig. 4. This result

is consistent with the data in UNSODA. Most Ks

measurements include ¯ow through macropores,

whereas most K(h) measurements usually exclude

macropores by starting at a low suction resulting in

empty macropores and a lower `saturated' conductiv-

ity.

4. Conclusion

This paper focussed on the prediction of hydraulic

properties that are required to solve the Richards

equation. We created an hierarchical system of neural

network models that predict soil hydraulic properties

from different levels of input data. Because all models

were calibrated with data from one database the

predictions among models and input data levels are

consistent. Additionally, the availability of uncertainty

estimates provided information about the reliability of

the predictions. These characteristics can be very

useful to generate uncertainty estimates of water

and solute transport processes, even when limited

information about the soil is available. Although pre-

diction errors and con®dence limits were often large,

estimation of soil hydraulic properties with PTFs may

be accurate enough for most applications, and hence

will ®ll a need where hydraulic properties are not

readily available.
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