Using SAS for Simple Calculations
Jayson Shurgold
VanSUG - Nov 4 ${ }^{\text {th }}, 2015$

SAS - Modern, Reliable, Accurate:

support.sas.com...

- Access data in almost any format (SAS tables, Excel, and others).
- Manage and manipulate your data (data subsets, data combinations, or new data columns).
- Data analysis using statistical techniques (descriptive measures, correlations, logistic regression, modern model selection, or Bayesian hierarchical models).
- Present results and generate reports.
- Calculations!

Comparison: Calculator vs PC (SAS)

Image to scale

Example 1: $\mathrm{X}=50+6$

Regular Calculator

PC with SAS

Example 1: $\mathrm{X}=50+6$

Regular Calculator

PC with SAS

```
\square \text { -data calculation;}
    x=50+6;
    put "The answer is:' x;
    run;
    68 data calculation;
    69 x=50+6;
    70 put 'The answer is:' }x\mathrm{ ;
    71 rum;
    The answer is:56
```


Example 2: $\mathrm{X}=(9 / 45)\left(5^{*} 8\right)+9(42)$

Regular Calculator

 PC with SAS

Example 2: $\mathrm{X}=(9 / 45)\left(5^{*} 8\right)+9(42)$

Regular Calculator

PC with SAS

```
\square \text { data calculation;}
    x=(9/45) * (5*8) +9* (42);
    put 'The answer is:' x;
    run;
```

 80 data calculation;
 81 x=(9/45)*(5*8)+9*(42);
 82 put 'The answer is:' \(x\);
 83 run;
 The answer is:386

Example 3: $\mathrm{X}=(3 \times 0.1)-0.3$

Regular Calculator

 PC with SAS

Example 3: $\mathrm{X}=(3 \mathrm{xO} .1)-0.3$

Regular Calculator

PC with SAS

```
\square \text { data calculation;}
    x=(3*0.1)-0.3;
    put 'The answer is:' x;
    run;
    96 data calculation;
    97 x=(3*0.1)-0.3;
    98 put 'The answer is:' x;
    99 run;
    The answer i&:5.551115E-17
```


Everyday Numerical Errors:

Example 1: Base 10

Fraction	Decimal (base 10)
$2 / 1$	2
$1 / 1$	1
$1 / 2$	0.5
$1 / 3$	0.33333
$1 / 4$	0.25

Example 2: ???

x	y
1.57	1.55
60.0	60.0
2.35	2.35
8.88	8.90
1.00	1.00

A global programming problem:

Most programming languages do not understand recursion:

Numerical precision in general

Recall: (3x0.1) - 0.3

Using decimal arithmetic, the value 0.1 has an exact representation
Using binary arithmetic, the value 0.1 does not have an exact representation

0.000110011001100110011001100110011001100

At some point, the value represented is truncated or rounded, leading to error

Numerical precision in SAS software

How does SAS store numbers:

Consider the number 987 , which can be also be expressed as: 0.987×10^{3}

Sign: Positive or Negative
Mantissa: Represents the number to be multiplied by the Base
Base: The number being raised to a power
Exponent: The power to which the base is raised

Numerical precision in SAS software

How does SAS store numbers:

Consider the number 987 , which can be also be expressed as: 0.987×10^{3}

$$
\begin{gathered}
(+) 0.987
\end{gathered}
$$

0100010001110110

Numerical precision in SAS software

How does SAS store numbers:

Remember that the default length of a numerical variable in SAS is 8 bytes

$0.1=$

00111101	11001100

11001100

Why Floating Point Representation?

Space and Time.

Floating point representation allows the efficient calculation of very large and/or very small numbers using the same predictable 8 bytes.

In essence, Floating Point Representation is Scientific Notation in Base 2

How this relates to you - Decimals.

Example 1: Iterations.

```
Gdata null_;
    do i=-1 to 1 by .1;
    put i=:
    if i=| then put "AT ZERO':
    end:
    run:
```

$$
\begin{aligned}
& i=-1 \\
& i=-0.9 \\
& i=-0.8 \\
& i=-0.7 \\
& i=-0.6 \\
& i=-0.5 \\
& i=-0.4 \\
& i=-0.3 \\
& i=-0.2 \\
& i=-0.1 \\
& i=-1.38778 E-16 \\
& i=0.1 \\
& i=0.2 \\
& i=0.3 \\
& i=0.4 \\
& i=0.5 \\
& i=0.6 \\
& i=0.7 \\
& i=0.8 \\
& i=0.9 \\
& i=1
\end{aligned}
$$

Example 2: Manipulations

Example 2: Data Manipulations:

```
Gata a;
    x=15.7;
    y=-11.9;
    z=x+y;
    if z=3.8 then put 'eligible';
    else put 'not eligible';
    run;
    |
```

112 data a;
$113 \quad x=15.7$;
$114 \quad y=-11.9$;
$115 \quad z=x+y$;
116 if $z=3.8$ then put 'eligible';
117 else put 'not eligible';
118 run;
not eligible

One well-rounded solution:

```
O data _nul1_;
    do i=-1 ta 1 by .1;
    I}=\operatorname{round}(\mp@subsup{I}{r}{},1)
    put i=:
    if i=0 then put "AT ZERO":
    end:
    run:
    cata a:
    x=15,7:
    y=-11.9:
    z=round (X+y, 0,1);
    if z=3.8 then put "eligible";
    else put "not eligible";
    run;
```

$$
\begin{aligned}
& \mathrm{i}=-0.7 \\
& \mathrm{i}=-0.6 \\
& \mathrm{i}=-0.5 \\
& \mathrm{i}=-0.4 \\
& \mathrm{i}=-0.3 \\
& \mathrm{i}=-0.2 \\
& \mathrm{i}=-0.1 \\
& \mathrm{i}=0 \\
& \text { AT ZERID }
\end{aligned}
$$

119 data a;

```
120
121
122
123
124
125 run;
eligible
```

$$
x=15.7 ;
$$

$$
y=-11.9 ;
$$

$$
z=\operatorname{round}(x+y, 0.1)
$$

$$
\text { if } z=3.8 \text { then put 'eligible'; }
$$

else put not eligible';

And finally... $\mathrm{X}=(3 \times 0.1)-0.3$

```
\square \text { data calculation;}
    x=round ((3*0.1)-0.3,0.1);
    put 'The answer is: ' x;
    run;
```

134 data calculation;
$135 x=\operatorname{round}\left(\right.$ (3*0.1) $^{13} \mathbf{0 . 3 , 0 . 1) ; ~}$ 136 put ${ }^{\text {' }}$ The answer $\mathrm{is:}$: x ; 137 rum;

The answer is: 0

Thank you

Resources:
http://support.sas.com/documentation/cdl/en/|rcon/68089/HTML/defa ult/viewer.htm\#p0ji1unv6thm0dn1gp4t01a1u0g6.htm
https://www.youtube.com/watch?v=PZRI1IfStY0

