
Using SDDS, tcltk and EPICS together

Using SDDS and tcltk with EPICS

Louis Emery
AOP
ASD

EPICS training Lecture series May 26th 2015

Using SDDS, tcltk and EPICS together

Outline
 Overall picture and philosophy of data archiving, data taking and analysis
 What is SDDS
 What is Tcl/Tk
 Examples of application

– Setting up storage ring magnets
– Orbit correction
– Various beam experiments collecting data from EPICS waveforms and also

non-EPICS instrumentation (which could be digitial oscilloscopes, etc.)
– Generalized feedback: transfer lines, thermal effect compensation
– Knobs

 Documentation of software found in
http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_Opera
tions_Physics/oagSoftware.shtml

2

Using SDDS, tcltk and EPICS together

Use of Data Files in Operations of APS

 EPICS hold live data
 Record all data of interest into file

– To better organize efforts of various kinds, we require a file protocol to read,
store and handle all data

 Applications: Put all data and configuration settings in files (as opposed to
resident memory) and use software tools as filters from which you can
build larger and complicated processes

– Modularity (make complex operation from smaller pieces)
– Reusability (e.g. feedback configurable by supplied PV list)
– Repurposed by others

Using SDDS, tcltk and EPICS together

Control Room Work

data

data

SDDS tool

Procedures
launched
from GUIs

data

EPICS
SDDS-compliant

tool

Epics

...

EPICS
command-line

tool

Using SDDS, tcltk and EPICS together

What is SDDS

 SDDS stands for "Self Describing Data Sets"
 A standardized way to store and access data, i.e., a "file protocol"
 A group of ~100 programs use this file protocol
 These programs are the "tools" in the SDDS Toolkit
 Programs in the SDDS toolkit can be used to sequentially transform SDDS

data sets
– Use of Unix pipes is extensive

 Each tool makes others more useful without advance planning by
developers

Data
sources

SDDS
data

Conversion
programs

Conversion
programs

SDDS
Toolkit

programs

Human
readback

output

Using SDDS, tcltk and EPICS together

Examples of SDDS Toolkit Function

 Data display
 Plotting (2 programs)
 Printing data as formatted text
 Summarizing data set contents
 Data processing
 Equation evaluation
 Data filtering and outlier removal
 Statistics, histograms, and

correlations
 Fitting and smoothing
 Matrix operations (e.g., SVD)
 Cross-referencing, sorting, and

collation
 FFTs and digital filtering

 Data collection from EPICS
 Logging data at fixed time

intervals
 Event-driven data logging
 Alarm logging
 N-dimensional experiments
 Save/restore of EPICS data
 Control functions for EPICS
 Generalized feedback control
 Generalized optimization

EPICS toolsGeneral tools

Using SDDS, tcltk and EPICS together

Tutorial on SDDS

 Protocol requires every data element has a name and forbids access to
data except via name

 File header: namelist description of a structure of an arbitrary number of
parameters and arrays, and a data table of arbitrary rows and columns

 Zero or more instances of the structure
 Simplicity of protocol makes the SDDS toolkit feasible

http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_Operations_Physics/SDDSIntroTalk/slides.html

SDDS1
¶meter name=pauseBetweenReadings, type=double, &end
&column name=ControlName, type=string, &end
&column name=LowerLimit, type=double, units=kV &end
&column name=UpperLimit, type=double, units=kV &end
&column name=InitialChange, type=double, units=kV &end
&data mode=ascii, &end
! page number 1
 0.000000000000000e+00
 2
S:IK3:VoltageSetSendAO 0.000000000000000e+00 1.100000000000000e+01 2.000000000000000e-01
S:IK4:VoltageSetSendAO 0.000000000000000e+00 1.500000000000000e+01 2.000000000000000e-01

Example of a small file

Using SDDS, tcltk and EPICS together

Other Use of SDDS

 SDDS file protocol can be used for physics simulation codes
– Outside codes can be modified to use SDDS input and produce SDDS output

 Data obtained from the “off-line” optimization of simulation work can be
used in the control room without the need of conversion programs

Using SDDS, tcltk and EPICS together

What is Tcl

 Scripting language “Tool Command Language”
 Simple syntax, few special characters
 Data structures such as list and arrays
 The usual control structures (if, foreach while, etc)
 Built-in event-driven programming
 GUI toolkit Tk seen elsewhere (perl, python) was designed for Tcl
 Launch with tclsh (or oagtclsh, our version)
 These are the features I was interested in. More features listed in

http://wiki.tcl.tk/299

Using SDDS, tcltk and EPICS together

Tutorial on Tcl/Tk

 Launch with tclsh
 Variables; there is no types

set phase 180
puts $phase

 Lists
set a {1 2 3}
puts $a

 User-defined procedures
proc calculateSquare x {
 return [expr x*x]
}

 […] means run the procedure inside and return a value

Using SDDS, tcltk and EPICS together

Fun recipe.tcl example

proc ? L {
 # returns an random index
 lindex $L [expr {int(rand()*[llength $L])}]
}

proc recipe {} {
 # create four lists
 set a {
 {3 eggs} {an apple} {a pound of garlic}
 {a pumpkin} {20 marshmallows}
 }
 set b {
 {Cut in small pieces} {Dissolve in lemonade}
 {Bury in the ground for 3 months}
 {Bake at 300 degrees} {Cook until tender}
 }
 set c {parsley snow nutmeg curry raisins cinnamon}
 set d {
 icecream {chocolate cake} spinach {fried potatoes} rice {soy sprouts}
 }
 # returns a recipe, i.e. one of each list
 return "Take [? $a].\n[? $b].\nTop with [? $c].\nServe with [? $d]."
}

Using SDDS, tcltk and EPICS together

Run recipe example

>oagtclsh
% source recipe.tcl
% recipe
Take 20 marshmallows.
Cut in small pieces.
Top with raisins.
Serve with spinach.
% recipe
Take an apple.
Bury in the ground for 3 months.
Top with parsley.
Serve with rice.
% exit

Using SDDS, tcltk and EPICS together

Other Tcl Features

 Run external commands with exec command <arguments..>
– set Idipole [exec caget n SBM:CurrentAO]

 Catching error codes. Used extensively in our software.
 Regexp
 Some file I/O, though most of the time our complex data files are handled

by SDDS toolkit
 Socket communication, e.g. HP instruments
 Events
 Many extensions available, including

– “pv” package for channel access, and
– “sdds” package for writing tcl data to and from SDDS files directly.

Using SDDS, tcltk and EPICS together

Command Syntax of pv package

 Examples:
pv linkw S35BeamCurrent S35DCCT:currentCC
pv linkw $apsTopupTclVarList $apsTopupPvList

 Second word: one of command operation link, unlink, get,
getw, put, putw, putq, info, stat, mon, umon, cmon

 Third word: list of names of tcl variables
 Other words: depend on operation. For linkw it is the list of names of

PVs

http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_Operations_Physics/manuals/APStclCA/APStclCA.html

Using SDDS, tcltk and EPICS together

Example of pv get

 pv linkw S35BeamCurrent S35DCCT:currentCC
pv getw S35BeamCurrent
if {$S35BeamCurrent < 102} {
 injectmorebeam
}

Using SDDS, tcltk and EPICS together

More Complex Example of pv Package

make links between tcl variables and PV names
The tcl variables are arrays, BPx(1), BPx(2), etc, one for each sector of APS
There are 4 elements in the tcl variables list
The 4 PV names are setpoints for BPMs of a particular sector
set sector 1
set Sn 1
set Sn1 2
pv linkw \
 [list BPx($sector) BPy($sector) APx($sector) APy($sector)] \
 [list S${Sn}B:P1:x:SetpointAO S${Sn}B:P1:y:SetpointAO \
 S${Sn1}A:P1:x:SetpointAO S${Sn1}A:P1:SetpointAO]
set up monitor with a script to execute
pv umon BPx($sector) {set BPx($sector) $BPx($sector)}
pv umon BPy($sector) {set BPy($sector) $BPy($sector)}

Using SDDS, tcltk and EPICS together

Example of pv Package with Catch Statements

make links between tcl variables and PV names
The tcl variables are arrays, BPx(1), BPx(2), etc, one for each sector of APS
The PV names are setpoints for BPMs of a particular sector
set sector 1
set Sn 1
set Sn1 2
If { [pv linkw \
 [list BPx($sector) BPy($sector) APx($sector) APy($sector)] \
 [list S${Sn}B:P1:x:SetpointAO S${Sn}B:P1:y:SetpointAO \
 S${Sn1}A:P1:x:SetpointAO S${Sn1}A:P1:SetpointAO]] != 0} {
 APSAlertBox .alert -errorMessage "linkw error $errorCode"
 exit
}
set up monitor with a script to execute
If { [pv umon BPx($sector) {set BPx($sector) $BPx($sector)}] != 0} {
 APSAlertBox .alert -errorMessage "umon error $errorCode"
 exit
}
If { [pv umon BPy($sector) {set BPy($sector) $BPy($sector)}] != 0} {
 APSAlertBox .alert -errorMessage "umon error $errorCode"
 exit
}

Using SDDS, tcltk and EPICS together

About 60 GUIs use pv package

 ExperimentDesigner
 PVmonitor
 SRIDSteering, SRBMIntensityOptimization
 SRBunchTrain
 SREnergyApVoltScan
 SRRFPhaseSliders
 TclKnobs
 Also many libraries, cautils.tcl devices.tcl APSRunControl.tcl

Using SDDS, tcltk and EPICS together

What is Tk

 Windowing toolkit, extension of Tcl
 Creates and manipulates widgets in a window
 Buttons, labels, text boxes, list boxes, scrollbar
 Extensions available for fancy elements like tabs.
 Launch with wish (or oagwish, our version)
 More at http://wiki.tcl.tk/487
 APS has built a standard set of Tk calls for APS GUIs

http://wiki.tcl.tk/487

Using SDDS, tcltk and EPICS together

APS Tcl/Tk Library (1996)

 Collection of widget procedures for creating Tk applications with a
consistent look and feel

 Calling convention:
 APSWhatever <widget> [<optionlist>]
 where <option-list> is a list of -name value pairs.

 Options common to most procedures
parent <widget>
packOption <list>
contextHelp <string>

 Use APSHelp to get the latest list of procedures and usage

http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_Operations_Physics/manuals/APSTk/APSTk4.html

Using SDDS, tcltk and EPICS together

Demo Script of APS widgets

/usr/local/oag/apps/bin/linux-x86_64/demoScript

Using SDDS, tcltk and EPICS together

Demo Script of APS widgets

Using SDDS, tcltk and EPICS together

Demo Script of APS widgets

Using SDDS, tcltk and EPICS together

Use of tag/value pairs in Tcl/Tk calling procedures

 APS Tcl scripts and procedures are called with tag-value pair arguments,
making it unnecessary to remember the order of arguments.
myAPScommand var1 val1 var2 val2

 These items are converted into local variables inside procedure
disregarding the order
proc myAPScommand {args} {
 # new local variables will be creates from
 # the args list
 APSParseArguments {var1 var2}
 puts $var1
 puts $var2
}

Using SDDS, tcltk and EPICS together

Script working with SDDS and EPICS toolkits

data

data

SDDS tool

Tools
launched

from Tcl/Tk

data

EPICS
SDDS-compliant

tool

Epics

...

EPICS
command-line

tool

Using SDDS, tcltk and EPICS together

Three ways to communicate with EPICS from Tcl

 pv extension package, e.g.
– pv putw SRdipoleMain 450

 External command-line interface, e.g.
– exec caput S:BM:CurrentAO 450
– exec cavput list=S range=beg=1,end=40 \

list=A:QS4:CurrentAO=0.1 delta

 APS extension library
– APScavput list=S range=beg=1,end=40 \

list=A:QS4:CurrentAO=0.1 delta

 SDDS-compliant toolkit, e.g.
– exec sddscasr restore SR.snp
– exec sddsmonitor PV.mon PV01 interval=1 time=1,day
– exec sddscontrollaw matrix interval=1 gain=0.5

 Choice depends on complexity and requirement for leaving CA
connections open

Using SDDS, tcltk and EPICS together

Example of procedure: Starting up SR magnets

 Goal: run the necessary steps to turn on power supplies of SR magnets,
run conditioning cycles, and leave magnets running with currents of
predetermined set points. Also we need to monitor progress.

 A high-level procedure was written that
– Requests from the operator which archived file to use for current set points
– Selected possible a subset of sectors or magnet types
– Creates a file of PVs that configures the power supplies cycling
– Sends “configure” commands to power supplies ioc
– Sends “On” commands to all power supplies. Waits for completion
– Sends “Start conditioning” commands. Waits for completion
– Sends final values for current to power supplies
– Pop-up window gives progress.

http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_Operations_Physics/manuals/APSPEM/APSPEM4.html

Using SDDS, tcltk and EPICS together

Procedure Launched from PEM interface

Using SDDS, tcltk and EPICS together

Windows for Starting SR Magnets

Using SDDS, tcltk and EPICS together

Choices in Running an Experiment

 For the purpose of this discussion, an “experiment” is a scan of one or
more control variables (could be discrete values form a list) and the
collection of physcially-dependent quantities

 Use a loop in a Tcl/Tk script or GUI
 Use sddsexperiment with configuration file describing with namelist

commands the control variable and the monitored variables, and also the
pauses between the steps

 Use ExperimentDesigner for very complex situations that need scripts to
be run in between steps

Using SDDS, tcltk and EPICS together

Experiment Designer

Using SDDS, tcltk and EPICS together

Experiment Designer

Using SDDS, tcltk and EPICS together

Experiment Designer

Using SDDS, tcltk and EPICS together

Other Tcl Applications

 See following slides

Using SDDS, tcltk and EPICS together

Orbit Correction Launcher

Using SDDS, tcltk and EPICS together

Orbit Correction Configuration

These two interfaces
(and another for BPM

status) are
an example of modularity

Using SDDS, tcltk and EPICS together

Dispersion and Chromaticity Measurement

Control of a
network analyzer
and rf frequency

Using SDDS, tcltk and EPICS together

Tcl knobs for SR Tune

 Use File menu to configure the knobs to a different set of PVs

Using SDDS, tcltk and EPICS together

BSP-100 BPM Control Waveform Viewer

Control of
sampling of bpms

Using SDDS, tcltk and EPICS together

Conclusions and Comments

 Complex applications have been constructed using Tcl/Tk working with
EPICS and with SDDS and EPICS tools

 All this could have been done similarly with other scripting languages. I
find Tcl/Tk (espeically other's code) cleaner to read.

 Other labs have used MATLAB in the role of Tcl/Tk, and instead of using
SDDS toolkit, they have used MATLAB functions.

– SDDS extension is available in MATLAB, BTW.

