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Abstract

In this paper, we consider numerous inventory control problems for which the base-stock policies
are known to be optimal and we propose stochastic approximation methods to compute the optimal
base-stock levels. The existing stochastic approximation methods in the literature guarantee that
their iterates converge, but not necessarily to the optimal base-stock levels. In contrast, we prove
that the iterates of our methods converge to the optimal base-stock levels. Moreover, our methods
continue to enjoy the well-known advantages of the existing stochastic approximation methods. In
particular, they only require the ability to obtain samples of the demand random variables, rather
than to compute expectations explicitly and they are applicable even when the demand information
is censored by the amount of available inventory.



1 Introduction

One approach for finding good solutions to stochastic optimization problems is to concentrate on a class
of policies that are characterized by a number of parameters and to find a good set of values for these
parameters by using stochastic approximation methods. This approach is quite flexible. We only need
a sensible guess at the form of a good policy and stochastic approximation methods allow us to work
with samples of the underlying random variables, rather than to compute expectations. Consequently,
parameterized policies along with stochastic approximation methods are widely used in practice.

In this paper, we analyze stochastic approximation methods for several inventory control problems
for which the base-stock policies are known to be optimal. For these problems, there exist base-stock
levels {r∗1, . . . , r∗τ} such that it is optimal to keep the inventory position at time period t as close as
possible to r∗t . In other words, letting xt be the inventory position at time period t and [x]+ = max{x, 0},
it is optimal to order [r∗t − xt]+ units of inventory at time period t. This particular structure of the
optimal policy generally arises from the fact that the value functions in the dynamic programming
formulations of these problems are convex in the inventory position. In this case, the computation
of the optimal base-stock levels through the Bellman equations requires solving a number of convex
optimization problems.

On the other hand, we lose the appealing structure of the Bellman equations when we try to
compute the optimal base-stock levels by using the existing stochastic approximation methods in the
literature. As a result, the existing stochastic approximation methods can only guarantee that their
iterates converge, but not necessarily to the optimal base-stock levels. Our main goal is to develop
stochastic approximation methods that can indeed compute the optimal base-stock levels.

To illustrate the difficulties, we consider a two-period newsvendor problem with backlogged demands,
zero lead times for the replenishments, and linear holding and backlogging costs. For this problem, it
is known that the base-stock policies are optimal under fairly general assumptions. Assuming that the
purchasing cost is zero and the initial inventory position is x1, the total expected cost incurred by a
base-stock policy characterized by the base-stock levels {r1, r2} can be written as

g(x1, r1, r2) = hE
{

[(x1 ∨ r1)− d1]+ + [max{(x1 ∨ r1)− d1, r2} − d2]+
}

+ bE
{

[d1 − (x1 ∨ r1)]+ + [d2 −max{(x1 ∨ r1)− d1, r2}]+
}

,

where {d1, d2} are the demand random variables in the two time periods, h is the per unit holding cost
and b is the per unit backlogging cost, and we let x ∨ y = max{x, y}. Since the inventory position
after the replenishment decision at the first time period is x1 ∨ r1 and the inventory position after
the replenishment decision at the second time period is max{(x1 ∨ r1) − d1, r2}, the two expectations
above respectively compute the total expected holding and backlogging costs. In this case, the optimal
base-stock levels can be found by solving the problem

(r∗1, r
∗
2) = argmin

(r1,r2)
g(x1, r1, r2). (1)

One approach to solve this problem is to use stochastic gradients of g(x1, ·, ·) to iteratively search for
a good set of base-stock levels. Under certain assumptions, it is possible to show that the iterates of
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Figure 1: Total expected cost as a function of the base-stock levels for a two-period newsvendor problem.
The problem parameters are x1 = 0, h = 0.25, b = 0.4, d1 ∼ beta(1, 5), d2 ∼ beta(5, 1).

such a stochastic approximation method converge to a stationary point of g(x1, ·, ·) with probability
1 (w.p.1). However, g(x1, ·, ·) is not necessarily a convex function. In particular, a stationary point
of g(x1, ·, ·) may not be an optimal solution to problem (1) and the solution obtained by a stochastic
approximation method may not be very good. For example, Figure 1 shows the plot of g(x1, ·, ·) for a
particular problem instance where g(x1, ·, ·) is not convex.

This is a rather surprising observation. If we assume nothing about the structure of the optimal
policy and compute it through the Bellman equations, then the problem is “well-behaving” in the sense
that all we need to do is to solve a number of convex optimization problems. On the other hand, if
we exploit the information that the base-stock policies are optimal and use stochastic approximation
methods to solve problem (1), then we can only obtain a stationary point of g(x1, ·, ·).

In this paper, we mainly consider variants of the multi-period newsvendor problem for which the
base-stock policies are known to be optimal. Nevertheless, our results are fairly general and they can be
applied on other problem classes whose optimal policies are characterized by a finite number of base-stock
levels. To illustrate this point, we also consider a relatively nonstandard inventory purchasing problem
where the price of the product changes randomly over time and we have to purchase a certain amount
of product to satisfy the random demand that occurs at the end of the planning horizon. Although
the problems that we work with are well-studied, our paper makes several substantial contributions.
Most importantly, we offer a remedy for the aforementioned surprising observation by showing that it
is indeed possible to compute the optimal base-stock levels through stochastic approximation methods.
Apart from its theoretical value, this result allows us to exploit the well-known advantages of stochastic
approximation methods when computing the optimal base-stock levels.

A primary advantage of stochastic approximation methods is that they allow working directly with
the samples of the demand random variables, rather than the full demand distributions. In contrast,
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using conventional inventory control models typically requires three steps. First, the historical demand
data are collected. If the historical demand data include only the amount of inventory sold but not the
amount of demand, then we have a situation where the demand information is censored by the amount
of available inventory, and the historical demand data have to be “uncensored” to have access to the
samples of the demand random variables. After this, parametric forms for the demand distributions are
hypothesized and the parameters are fitted by using the historical demand data. Finally, the optimal
base-stock levels are computed under the assumption that the fitted demand distributions characterize
the demand random variables. In practice, the historical demand data are often “uncensored” by using
heuristic approaches. Furthermore, the hypothesized forms for the demand distributions usually do not
characterize the demand random variables accurately, causing errors just because wrong distributions
are hypothesized to begin with. On the other hand, stochastic approximation methods work directly
with the amount of inventory sold, rather than the amount of demand. Therefore, they do not require
“uncensoring” the historical demand data. Also, since stochastic approximation methods work directly
with the samples, they do not require hypothesizing parametric forms for the demand distributions.

The advantages mentioned in the previous paragraph unfortunately come at a cost. One difficulty
with stochastic approximation methods is the choice of the step size parameters. In general, choosing
the step size parameters requires some experimentation, and there are no hard and fast rules for making
the choice. Although this difficulty is always a major concern, our stochastic approximation methods
appear to be relatively robust to the choice of the step size parameters. In particular, we work with many
different problem classes, demand distributions and cost parameters in our numerical experiments, but
we use the same set of step size parameters throughout. The same set of step size parameters appear to
work well in all of our numerical experiments. Another difficulty with stochastic approximation methods
is the choice of the initial base-stock levels. A rough observation from our numerical experiments is that
if our stochastic approximation methods start with base-stock levels having 80% optimality gap, then
they take 10 to 40 iterations to obtain base-stock levels having 10% optimality gap. This performance
itself may be satisfactory in certain settings, but we note that this performance is obtained without
exploiting prior information about the demand distributions. In practice, we usually use some prior
information to choose better initial base-stock levels and the role of stochastic approximation methods
becomes that of only fine-tuning the base-stock levels by using the demand samples.

We also note that even if we have access to the demand distributions, numerically solving the Bellman
equations requires discretization when the demand distributions are continuous. Under reasonable
assumptions, the base-stock levels obtained by discretizing the demand distributions converge to the
optimal base-stock levels as the discretization becomes finer, but our stochastic approximation methods
can be used as an alternative method for computing the optimal base-stock levels.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related literature.
Sections 3 and 4 consider the multi-period newsvendor problem respectively with backlogged demands
and lost sales, and develop stochastic approximation methods to compute the optimal base-stock levels.
Section 5 shows that the proposed stochastic approximation methods are applicable when the demand
information is censored. Section 6 develops a stochastic approximation method for an inventory pur-
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chasing problem where we make purchasing decisions for a product whose price changes randomly over
time and we use the product to satisfy the random demand at the end of the planning horizon. Section
7 presents numerical experiments.

2 Relevant Literature

In this paper, we mainly consider the multi-period newsvendor problem with backlogged demands or
lost sales. The problem involves controlling the inventory of a perishable (or fashion) product over a
finite number of time periods. We have multiple opportunities to replenish the inventory of the product
before the product reaches the end of its useful life. A classical example is controlling the inventory
of a monthly magazine. We are allowed to replenish the magazines multiple times during the course
of a month, but the left over magazines at the end of a month are discarded, possibly at a salvage
value. For the multi-period newsvendor problem with lost sales, we assume that the lead times for the
replenishments are zero. All cost functions we deal with are linear, although generalizations to convex
cost functions are possible. The optimality of the base-stock policies for the variants of the multi-period
newsvendor problem that we consider is well-known; see Arrow, Karlin and Scarf (1958), Porteus (1990)
and Zipkin (2000). If the distribution of the demand is known, then the optimal base-stock levels can
be computed through the Bellman equations.

Significant literature has evolved around the newsvendor problem under the assumption that the
distribution of the demand is unknown. There may be different reasons for employing such an assump-
tion. For example, we may not have enough data to fit a parametric demand distribution or it may
be difficult to collect demand data since we are only able to observe the amount of inventory sold, but
not the amount of demand. Scarf (1960), Iglehart (1964) and Azoury (1985) use Bayesian framework
to estimate the demand parameters and to adaptively update the replenishment quantities as the de-
mand information becomes available. Levi, Roundy and Shmoys (2005) provide bounds on how many
demand samples are needed to obtain near-optimal base-stock levels with high probability. Conrad
(1976), Braden and Freimer (1991) and Ding (2002) focus on the case where the demand information is
censored by the amount of available inventory. Godfrey and Powell (2001) give a nice overview of the
newsvendor problem with censored demands.

Stochastic approximation methods can deal with the uncertainty in the distribution of the demand
and the censored demand information. They only require the ability to obtain samples from the demand
distributions. Furthermore, they usually do not require having access to the exact values of the demand
samples. Instead, only knowing the amount of inventory sold is often adequate. Consequently, stochastic
approximation methods can be used under the assumption that a parametric form for the demand
distribution is not available or the demand information is censored by the inventory availability.

The use of stochastic approximation methods for solving stochastic optimization problems is well-
known. Kushner and Clark (1978) and Bertsekas and Tsitsiklis (1996) give a detailed coverage of
stochastic approximation methods. As far as the applications are concerned, L’Ecuyer and Glynn (1994),
Fu (1994), Glasserman and Tayur (1995), Bashyam and Fu (1998), Mahajan and van Ryzin (2001),
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Karaesmen and van Ryzin (2004) and van Ryzin and Vulcano (2006) focus on queueing, inventory
control and revenue management settings. Although the objective functions that are considered in
many of these papers are not convex and we can only guarantee convergence to the stationary points,
computational experience indicates that stochastic approximation methods provide good solutions in
practice; see Mahajan and van Ryzin (2001) and van Ryzin and Vulcano (2006).

The traditional approach in the stochastic approximation literature is to concentrate on a class of
policies that are characterized by a number of parameters. The hope is that this class of policies contain
at least one good policy for the problem. In contrast, there are numerous reinforcement learning methods
that try to avoid this shortcoming by explicitly approximating the value functions in the dynamic
programming formulation of the problem. Q-learning and temporal differences learning use sampled
state trajectories to approximate the value functions in problems with discrete state and decision spaces;
see Sutton (1988) and Tsitsiklis (1994). Godfrey and Powell (2001), Topaloglu and Powell (2003) and
Powell, Ruszczynski and Topaloglu (2004) propose sampling-based methods to approximate piecewise-
linear convex value functions and these methods are convergent for certain stationary problems.

The stochastic approximation methods that we propose in this paper embody the characteristics of
the two types of approaches mentioned in the last two paragraphs. Similar to the standard stochastic
approximation methods, we concentrate on the class of policies that are characterized by a finite number
of base-stock levels, whereas similar to the value function approximation methods, we work with the
dynamic programming formulation of the problem to search for the optimal base-stock levels.

3 Multi-Period Newsvendor Problem with Backlogged Demands

We want to control the inventory of a product over the time periods {1, . . . , τ}. At time period t, we
observe the inventory position xt and place a replenishment order of yt − xt units, which costs c per
unit. The replenishment order arrives instantaneously and raises the inventory position to yt. Following
the arrival of the replenishment, we observe the random demand dt and satisfy the demand as much as
possible. We incur a cost of h per unit of held inventory per time period and a cost of b per unit of
unsatisfied demand per time period. We assume that the revenue from the sales is zero without loss of
generality. The goal is to minimize the total expected cost over the planning horizon.

Throughout, we assume that the demand random variables {dt : t = 1, . . . , τ} are independent
and have finite expectations, and their cumulative distribution functions are Lipschitz continuous. We
assume that the cost parameters satisfy b > c ≥ 0 and h ≥ 0. The assumption that the cost parameters
are stationary and the lead times for the replenishments are zero is for notational brevity. It is also
possible to extend our analysis to the case where the distributions of the demand random variables are
discrete. We note that the demand random variables do not have to be identically distributed. We let
vt(xt) be the minimum total expected cost incurred over the time periods {t, . . . , τ} when the inventory
position at time period t is xt and the optimal policy is followed over the time periods {t, . . . , τ}. The
functions {vt(·) : t = 1, . . . , τ} satisfy the Bellman equations

vt(xt) = min
yt≥xt

c [yt − xt] + E
{
h [yt − dt]+ + b [dt − yt]+ + vt+1(yt − dt)

}
, (2)
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with vτ+1(·) = 0. If we let

ft(rt) = c rt + E
{
h [rt − dt]+ + b [dt − rt]+ + vt+1(rt − dt)

}
, (3)

then it can be shown that ft(·) is a convex function with a finite unconstrained minimizer, say r∗t . In
this case, it is well-known that the optimal policy is a base-stock policy characterized by the base-stock
levels {r∗t : t = 1, . . . , τ}. That is, if the inventory position at time period t is xt, then it is optimal to
order [r∗t − xt]+ units. Therefore, we can write (2) as

vt(xt) =

{
E

{
h [xt − dt]+ + b [dt − xt]+ + vt+1(xt − dt)

}
if xt ≥ r∗t

c [r∗t − xt] + E
{
h [r∗t − dt]+ + b [dt − r∗t ]+ + vt+1(r∗t − dt)

}
if xt < r∗t

=

{
ft(xt)− c xt if xt ≥ r∗t
ft(r∗t )− c xt if xt < r∗t .

(4)

It can be shown that ft(·) and vt(·) are positive, Lipschitz continuous, differentiable and convex func-
tions. We use ḟt(·) and v̇t(·) to respectively denote the derivatives of ft(·) and vt(·). The following
lemma shows that ḟt(·) and v̇t(·) are also Lipschitz continuous.

Lemma 1 There exists a constant L such that we have |ḟt(x̂t) − ḟt(x̃t)| ≤ L |x̂t − x̃t| and |v̇t(x̂t) −
v̇t(x̃t)| ≤ L |x̂t − x̃t| for all x̂t, x̃t ∈ R, t = 1, . . . , τ .

Proof We show the result by induction over the time periods. Since v̇τ+1(·) = 0, this function is
Lipschitz continuous. We assume that v̇t+1(·) is Lipschitz continuous. We have

ḟt(xt) = c + hP
{
dt < xt

}− bP
{
dt ≥ xt

}
+ E

{
v̇t+1(xt − dt)

}
, (5)

where the interchange of the expectation and the derivative above follows from Lemma 6.3.1 in Glasser-
man (1994). Since the composition of Lipschitz continuous functions is also Lipschitz continuous by
Lemma 6.3.3 in Glasserman (1994), ḟt(·) is Lipschitz continuous. To see that v̇t(·) is Lipschitz continu-
ous, we use (4) to obtain

v̇t(xt) =

{
ḟt(xt)− c if xt ≥ r∗t
−c if xt < r∗t .

(6)

We assume that x̂t ≥ x̃t without loss of generality and consider three cases. First, we assume that
x̂t ≥ r∗t ≥ x̃t. Since r∗t is the minimizer of ft(·), we have ḟt(r∗t ) = 0, which implies that

|v̇t(x̂t)− v̇t(x̃t)| = |ḟt(x̂t)| = |ḟt(x̂t)− ḟ(r∗t )| ≤ L |x̂t − r∗t | ≤ L |x̂t − x̃t|,

where we use the Lipschitz continuity of ḟt(·) in the first inequality. The other two cases where we have
x̂t ≥ x̃t > r∗t or r∗t > x̂t ≥ x̃t are easy to show. 2

We now consider computing the optimal base-stock levels {r∗t : t = 1, . . . , τ} through a stochastic
approximation method. Noting (5) and using 1(·) to denote the indicator function, we can compute a
stochastic gradient of ft(·) at xt through

∆t(xt, dt) = c + h1(dt < xt)− b1(dt ≥ xt) + v̇t+1(xt − dt). (7)
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In this case, letting {rk
t : t = 1, . . . , τ} be the estimates of the optimal base-stock levels at iteration k,

{dk
t : t = 1, . . . , τ} be the demand random variables at iteration k and αk be a step size parameter, we

can iteratively update the estimates of the optimal base-stock levels through

rk+1
t = rk

t − αk ∆t(rk
t , dk

t ). (8)

However, this approach is clearly not realistic because the computation in (7) requires the knowledge
of {v̇t(·) : t = 1, . . . , τ}. The stochastic approximation method we propose is based on constructing
tractable approximations to the stochastic gradients of {ft(·) : t = 1, . . . , τ}.

Since r∗t is the minimizer of ft(·), (5) implies that −c = ḟt(r∗t ) − c = hP
{
dt < r∗t

} − bP
{
dt ≥

r∗t
}

+ E
{
v̇t+1(r∗t − dt)

}
. Therefore, using (5) and (6), we obtain

v̇t(xt) =

{
hP

{
dt < xt

}− bP
{
dt ≥ xt

}
+ E

{
v̇t+1(xt − dt)

}
if xt ≥ r∗t

hP
{
dt < r∗t

}− bP
{
dt ≥ r∗t

}
+ E

{
v̇t+1(r∗t − dt)

}
if xt < r∗t .

(9)

From this expression, it is clear that

v̇t(xt, dt) =

{
h1(dt < xt)− b1(dt ≥ xt) + v̇t+1(xt − dt) if xt ≥ r∗t
h1(dt < r∗t )− b1(dt ≥ r∗t ) + v̇t+1(r∗t − dt) if xt < r∗t

(10)

gives a stochastic gradient of vt(·) at xt, satisfying v̇t(xt) = E
{
v̇t(xt, dt)

}
. To construct tractable

approximations to the stochastic gradients of {ft(·) : t = 1, . . . , τ}, we “mimic” the computation in (10)
by using the estimates of the optimal base-stock levels. In particular, letting {rk

t : t = 1, . . . , τ} be the
estimates of the optimal base-stock levels at iteration k, we recursively define

ξk
t (xt, dt, . . . , dτ ) =

{
h1(dt < xt)− b1(dt ≥ xt) + ξk

t+1(xt − dt, dt+1, . . . , dτ ) if xt ≥ rk
t

h1(dt < rk
t )− b1(dt ≥ rk

t ) + ξk
t+1(r

k
t − dt, dt+1, . . . , dτ ) if xt < rk

t ,
(11)

with ξk
τ+1(·, ·, . . . , ·) = 0. At iteration k, replacing v̇t+1(xt − dt) in (7) with ξk

t+1(xt − dt, dt+1, . . . , dτ ),
we approximate a stochastic gradient of ft(·) at xt by using

sk
t (xt, dt, . . . , dτ ) = c + h1(dt < xt)− b1(dt ≥ xt) + ξk

t+1(xt − dt, dt+1, . . . , dτ ). (12)

Consequently, we propose the following algorithm to search for the optimal base-stock levels.

Algorithm 1
Step 1. Initialize the estimates of the optimal base-stock levels {r1

t : t = 1, . . . , τ} arbitrarily. Initialize
the iteration counter by setting k = 1.
Step 2. Letting {dk

t : t = 1, . . . , τ} be the demand random variables at iteration k, set

rk+1
t = rk

t − αksk
t (r

k
t , dk

t , . . . , d
k
τ )

for all t = 1, . . . , τ .
Step 3. Increase k by 1 and go to Step 2.

We let Fk be the filtration generated by {{r1
1, . . . , r

1
τ}, {d1

1, . . . , d
1
τ}, . . . , {dk−1

1 , . . . , dk−1
τ }}. Given Fk,

we assume that the conditional distribution of {dk
t : t = 1, . . . , τ} is the same as the distribution of
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{dt : t = 1, . . . , τ}. For notational brevity, we use Ek

{ · } to denote expectations and Pk

{ · } to denote
probabilities conditional on Fk. We assume that the step size parameter αk is Fk-measurable, in which
case the estimates of the optimal base-stock levels {rk

t : t = 1, . . . , τ} are also Fk-measurable.

Comparing (7) and (12) indicates that if the functions Ek

{
ξk
t+1(·, dk

t+1, . . . , d
k
τ )

}
and v̇t+1(·) are

“close” to each other, then the step directions Ek

{
sk
t (·, dk

t , . . . , d
k
τ )

}
and Ek

{
∆t(·, dk

t )
}

are “close” to
each other, in which case using sk

t (r
k
t , dk

t , . . . , d
k
τ ) instead of ∆t(rk

t , dk
t ) does not bring too much error. In

fact, our convergence proof is heavily based on analyzing the error function v̇t(·)−Ek

{
ξk
t (·, dk

t , . . . , d
k
τ )

}
.

In this section, we show that limk→∞ ḟt(rk
t ) = 0 w.p.1 for all t = 1, . . . , τ for a sequence of base-stock

levels {rk
t : t = 1, . . . , τ}k generated by Algorithm 1 and the total expected cost of the policy that uses

the base-stock levels {rk
t : t = 1, . . . , τ} converges to the total expected cost of the optimal policy as

k →∞. We begin with several preliminary lemmas.

3.1 Preliminaries

In the following lemma, we derive bounds on ξk
t (·, dk

t , . . . , d
k
τ ) and sk

t (·, dk
t , . . . , d

k
τ ).

Lemma 2 There exists a constant M such that |ξk
t (xt, d

k
t , . . . , d

k
τ )| ≤ M and |sk

t (xt, d
k
t , . . . , d

k
τ )| ≤ M

w.p.1 for all xt ∈ R, t = 1, . . . , τ , k = 1, 2, . . ..

Proof We let N = max{c, h, b}. We show by induction over the time periods that |ξk
t (xt, d

k
t , . . . , d

k
τ )| ≤

2 [τ − t + 1]N w.p.1 for all xt ∈ R, t = 1, . . . , τ , k = 1, 2, . . .. The result holds for time period τ by (11).
Assuming that the result holds for time period t + 1, we have |ξk

t (xt, d
k
t , . . . , d

k
τ )| ≤ h + b + 2 [τ − t] N ≤

2 [τ − t + 1] N w.p.1 and this establishes the result. Therefore, we have |sk
t (xt, d

k
t , . . . , d

k
τ )| ≤ c + h + b +

2 [τ − t] N ≤ 2 [τ − t + 2]N w.p.1 by (12). The result follows by letting M = 2 [τ + 1]N . 2

We note that v̇t(·), being the derivative of the convex function vt(·), is increasing. The following
lemma shows that Ek

{
ξk
t (·, dk

t , . . . , d
k
τ )

}
also satisfies this property.

Lemma 3 If x̂t, x̃t satisfy x̂t ≤ x̃t, then we have Ek

{
ξk
t (x̂t, d

k
t , . . . , d

k
τ )

} ≤ Ek

{
ξk
t (x̃t, d

k
t , . . . , d

k
τ )

}
w.p.1

for all t = 1, . . . , τ , k = 1, 2, . . ..

Proof We show the result by induction over the time periods. We first show that the result holds
for time period τ . We consider three cases. First, we assume that rk

τ ≤ x̂τ ≤ x̃τ . Using (11), we have
Ek

{
ξk
τ (x̂τ , d

k
τ )

}
= hPk

{
dk

τ < x̂τ

}−bPk

{
dk

τ ≥ x̂τ

}
= [h+b]Pk

{
dk

τ < x̂τ

}−b ≤ [h+b]Pk

{
dk

τ < x̃τ

}−b =
Ek

{
ξk
τ (x̃τ , d

k
τ )

}
. Second, we assume that x̂τ < rk

τ ≤ x̃τ . In this case, (11) and the argument in the
previous sentence imply that Ek

{
ξk
τ (x̂τ , d

k
τ )

}
= Ek

{
ξk
τ (rk

τ , dk
τ )

} ≤ Ek

{
ξk
τ (x̃τ , d

k
τ )}. Third, we assume

that x̂τ ≤ x̃τ < rk
τ . We have Ek

{
ξk
τ (x̂τ , d

k
τ )

}
= Ek

{
ξk
τ (rk

τ , dk
τ )

}
= Ek

{
ξk
τ (x̃τ , d

k
τ )}. Therefore, the result

holds for time period τ . Assuming that the result holds for time period t + 1, it is easy to check in a
similar fashion that the result holds for time period t by considering the three cases rk

t ≤ x̂t ≤ x̃t or
x̂t < rk

t ≤ x̃t or x̂t ≤ x̃t < rk
t . 2
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As mentioned above, our convergence proof analyzes the error function v̇t(·)−Ek

{
ξk
t (·, dk

t , . . . , d
k
τ )

}

extensively. For notational brevity, we let

ek
t (xt) = v̇t(xt)− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}
, (13)

with ek
τ+1(·) = 0. In the following lemma, we establish a bound on the error function. This result is a

direct implication of the fact that ft(·) is convex and Ek

{
ξk
t (·, dk

t , . . . , d
k
τ )

}
is increasing.

Lemma 4 We have

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣, Ek

{|ek
t+1(r

k
t − dk

t )|
}
, Ek

{|ek
t+1(xt − dk

t )|
}}

(14)

w.p.1 for all xt ∈ R, t = 1, . . . , τ , k = 1, 2, . . ..

Proof Using (5) and (11), we obtain

Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}
=





hPk

{
dk

t < xt

}− bPk

{
dk

t ≥ xt

}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )

}
if xt ≥ rk

t

hPk

{
dk

t < rk
t

}− b Pk

{
dk

t ≥ rk
t

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

}
if xt < rk

t

=





ḟt(xt)− c− Ek

{
v̇t+1(xt − dk

t )
}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )

}
if xt ≥ rk

t

ḟt(rk
t )− c− Ek

{
v̇t+1(rk

t − dk
t )

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

}
if xt < rk

t .

(15)

We consider four cases. First, we assume that xt ≥ rk
t and xt ≥ r∗t . Using (6) and (15), we have

ek
t (xt) = Ek

{
v̇t+1(xt−dk

t )
}−Ek

{
ξk
t+1(xt−dk

t , d
k
t+1, . . . , d

k
τ )

}
= Ek

{
ek
t+1(xt−dk

t )
}
. Therefore, we obtain

|ek
t (xt)| ≤ Ek

{|ek
t+1(xt − dk

t )|
}

by Jensen’s inequality.

Second, we assume that xt ≥ rk
t and xt < r∗t . We have Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

} ≥ Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}

by Lemma 3. Using this inequality, (6) and (15), we obtain

ek
t (xt) = −c− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

} ≤ −c− Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}

= −ḟt(rk
t ) + Ek

{
v̇t+1(rk

t − dk
t )

}− Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

}

= −ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}
.

Since xt < r∗t and r∗t is the minimizer of the convex function ft(·), we have ḟt(xt) ≤ 0. Using (15), we
also obtain

ek
t (xt) = −c− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}

= −ḟt(xt) + Ek

{
v̇t+1(xt − dk

t )
}− Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )

} ≥ Ek

{
ek
t+1(xt − dk

t )
}
.

The last two chains of inequalities imply that

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣, Ek

{|ek
t+1(xt − dk

t )|
}}

.
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Third, we assume that xt < rk
t and xt ≥ r∗t . Since ft(·) is convex, we have ḟt(rk

t ) ≥ ḟt(xt) ≥
ḟt(r∗t ) = 0. Using (6) and (15), we obtain ek

t (xt) = ḟt(xt)− ḟt(rk
t ) + Ek

{
v̇t+1(rk

t − dk
t )

}− Ek

{
ξk
t+1(r

k
t −

dk
t , d

k
t+1, . . . , d

k
τ )

}
= ḟt(xt)− ḟt(rk

t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}
, which implies that

−ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
} ≤ ek

t (xt) ≤ Ek

{
ek
t+1(r

k
t − dk

t )
}
.

Therefore, we obtain

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣, Ek

{|ek
t+1(r

k
t − dk

t )|
}}

.

Fourth, we assume that xt < rk
t and xt < r∗t . In this case, (6) and (15) imply that ek

t (xt) =
−ḟt(rk

t )+Ek

{
v̇t+1(rk

t −dk
t )

}−Ek

{
ξk
t+1(r

k
t −dk

t , d
k
t+1, . . . , d

k
τ )

}
= −ḟt(rk

t )+Ek

{
ek
t+1(r

k
t −dk

t )
}
. Therefore,

we obtain |ek
t (xt)| =

∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣. The result follows by combining the four cases. 2

3.2 Convergence Proof

We have the following convergence result for Algorithm 1.

Proposition 5 Assume that the sequence of step size parameters {αk}k satisfy αk ≥ 0 for all k =
1, 2, . . .,

∑∞
k=1 αk = ∞ and

∑∞
k=1[α

k]2 < ∞ w.p.1. If the sequence of base-stock levels {rk
t : t =

1, . . . , τ}k are generated by Algorithm 1, then the sequence {ft(rk
t )}k converges w.p.1 for all t = 1, . . . , τ

and we have limk→∞ ḟt(rk
t ) = 0 w.p.1 for all t = 1, . . . , τ .

Proof All statements in the proof are in w.p.1 sense. We use induction over the time periods to show
that the following results hold for all t = 1, . . . , τ .

(A.1) The sequence {ft(rk
t )}k converges.

(A.2) We have
∑∞

k=1 αk
[ |ḟt(rk

t )|2 − ḟt(rk
t ) Ek

{
ek
t+1(r

k
t − dk

t )
}]+

< ∞.
(A.3) We have limk→∞ ḟt(rk

t ) = 0.
(A.4) We have |ek

t (xt)| ≤
∑τ

s=t |ḟs(rk
s )| for all xt ∈ R, k = 1, 2, . . ..

(A.5) There exists a constant At such that we have

|ek
t (xt)|2 ≤ At

τ∑
s=t

[ |ḟs(rk
s )|2 − ḟs(rk

s ) Ek

{
ek
s+1(r

k
s − dk

s)
}]+ (16)

for all xt ∈ R, k = 1, 2, . . ..

We begin by showing that (A.1)-(A.5) hold for time period τ . Since we have rk+1
τ = rk

τ − αk sk
τ (r

k
τ , dk

τ ),
using Lemma 1 and the Taylor series expansion of fτ (·) at rk+1

τ , a standard argument yields

fτ (rk+1
τ ) ≤ fτ (rk

τ )− αk ḟτ (rk
τ ) sk

τ (r
k
τ , dk

τ ) +
1
2

[αk]2L |sk
τ (r

k
τ , dk

τ )|2; (17)

see (3.39) in Bertsekas and Tsitsiklis (1996). Since we have Ek

{
sk
τ (r

k
τ , dk

τ )
}

= c + hPk

{
dk

τ < rk
τ

} −
bPk

{
dk

τ ≥ rk
τ

}
= ḟτ (rk

τ ), taking expectations in (17) and using Lemma 2 yield

Ek

{
fτ (rk+1

τ )
} ≤ fτ (rk

τ )− αk [ḟτ (rk
τ )]2 +

1
2

[αk]2LM2. (18)
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Since fτ (·) is positive and
∑∞

k=1[α
k]2 < ∞, we can now use the supermartingale convergence theorem

to conclude that the sequence {fτ (rk
τ )}k converges and

∑∞
k=1 αk[ḟτ (rk

τ )]2 < ∞; see Neveu (1975).
Therefore, since ek

τ+1(·) = 0 by definition, (A.1) and (A.2) hold for time period τ . Since we have
Ek

{
sk
τ (r

k
τ , dk

τ )
}

= ḟτ (rk
τ ), the iteration rk+1

τ = rk
τ − αk sk

τ (r
k
τ , dk

τ ) is a standard stochastic approximation
method to minimize fτ (·) and we have limk→∞ ḟτ (rk

τ ) = 0; see Proposition 4.1 in Bertsekas and Tsitsiklis
(1996). Therefore, (A.3) holds for time period τ . Since ek

τ+1(·) = 0, Lemma 4 shows that (A.4) and
(A.5) hold for time period τ . Therefore, (A.1)-(A.5) hold for time period τ .

Assuming that (A.1)-(A.5) hold for time periods t + 1, . . . , τ , Lemmas 6-8 below show that (A.1)-
(A.5) also hold for time period t. This completes the induction argument, and the result follows by
(A.1) and (A.3). 2

Lemmas 6-8 complete the induction argument given in the proof of Proposition 5. All statements
in their proofs should be understood in w.p.1 sense.

Lemma 6 If (A.1)-(A.5) hold w.p.1 for time periods t + 1, . . . , τ , then (A.1) and (A.2) hold w.p.1 for
time period t.

Proof Using (5) and (12), we have

Ek

{
sk
t (r

k
t , dk

t , . . . , d
k
τ )

}
= c + hPk

{
dk

t < rk
t

}− bPk

{
dk

t ≥ rk
t

}
+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

}

= ḟt(rk
t )− Ek{v̇t+1(rk

t − dk
t )

}
+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

}
.

Similar to (17) and (18), using the equality above, Lemma 1 and the Taylor series expansion of ft(·) at
rk+1
t , we have

Ek

{
ft(rk+1

t )
} ≤ ft(rk

t )− αk ḟt(rk
t ) Ek

{
sk
t (r

k
t , dk

t , . . . , d
k
τ )

}
+

1
2

[αk]2LM2

= ft(rk
t )− αk ḟt(rk

t )
[
ḟt(rk

t )− Ek

{
ek
t+1(r

k
t − dk

t )
}]

+
1
2

[αk]2LM2.

Letting Xk = αk ḟt(rk
t )

[
ḟt(rk

t )−Ek

{
ek
t+1(r

k
t −dk

t )
}]

, the expression above is of the form Ek

{
ft(rk+1

t )
} ≤

ft(rk
t ) − [Xk]+ + [−Xk]+ + [αk]2LM2/2. Therefore, if we can show that

∑∞
k=1[−Xk]+ < ∞, then we

can use the supermartingale convergence theorem to conclude that the sequence {ft(rk
t )}k converges

and
∑∞

k=1[X
k]+ < ∞.

We now show that
∑∞

k=1[−Xk]+ < ∞. If [−Xk]+ > 0, then we have

0 ≤ [ḟt(rk
t )]2 < ḟt(rk

t )Ek

{
ek
t+1(r

k
t − dk

t )
} ≤ |ḟt(rk

t )| ∣∣Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣.

Dividing the expression above by |ḟt(rk
t )|, we obtain |ḟt(rk

t )| < ∣∣Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣. Therefore, having

[−Xk]+ > 0 implies that

[−Xk]+ = αk
[
ḟt(rk

t )Ek

{
ek
t+1(r

k
t − dk

t )
}− [ḟt(rk

t )]2
]+ ≤ αk

[
ḟt(rk

t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+

≤ αk |ḟt(rk
t )| ∣∣Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣ ≤ αk

∣∣Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣2 ≤ αk Ek

{|ek
t+1(r

k
t − dk

t )|2
}
.
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We note that the expression on the right side of (16) does not depend xt and it is Fk-measurable. In
this case, using the chain of inequalities above and the induction hypothesis (A.5), we obtain

∞∑

k=1

[−Xk]+ =
∞∑

k=1

1([−Xk]+ > 0) [−Xk]+ ≤
∞∑

k=1

αk Ek

{|ek
t+1(r

k
t − dk

t )|2
}

≤
∞∑

k=1

τ∑

s=t+1

αk At+1

[ |ḟs(rk
s )|2 − ḟs(rk

s ) Ek

{
ek
s+1(r

k
s − dk

s)
}]+

=
τ∑

s=t+1

∞∑

k=1

αk At+1

[ |ḟs(rk
s )|2 − ḟs(rk

s ) Ek

{
ek
s+1(r

k
s − dk

s)
}]+

< ∞,

where exchanging the order of the sums in the second equality is justified by Fubini’s theorem and the
last inequality follows from the induction hypothesis (A.2). Therefore, we can use the supermartingale
convergence theorem to conclude that {ft(rk

t )}k converges and
∑∞

k=1[X
k]+ < ∞, which is to say that∑∞

k=1 αk
[ |ḟt(rk

t )|2 − ḟt(rk
t ) Ek

{
ek
t+1(r

k
t − dk

t )
}]+

< ∞. 2

Lemma 7 If (A.1)-(A.5) hold w.p.1 for time periods t+1, . . . , τ , then (A.3) holds w.p.1 for time period
t.

Proof We first show that liminfk→∞|ḟt(rk
t )| = 0. By the induction hypothesis (A.4), we have |ek

t+1(r
k
t −

dk
t )| ≤

∑τ
s=t+1 |ḟs(rk

s )|. Taking expectations and limits, and using the induction hypothesis (A.3), we
obtain limk→∞ Ek

{|ek
t+1(r

k
t −dk

t )|
}

= 0. Therefore, for given ε > 0, there exists a finite iteration number
K such that Ek

{|ek
t+1(r

k
t − dk

t )|
} ≤ 2 ε for all k = K, K + 1, . . ..

By Lemma 6, (A.2) holds for time period t. Since we have
∑∞

k=1 αk = ∞, (A.2) implies that
liminfk→∞

[ |ḟt(rk
t )|2 − ḟt(rk

t ) Ek

{
ek
t+1(r

k
t − dk

t )
}]+ = 0. In particular, we must have

[ |ḟt(rk
t )|2 −

ḟt(rk
t ) Ek

{
ek
t+1(r

k
t − dk

t )
}]+ ≤ 3 ε2 for infinite number of iterations. Therefore, after iteration num-

ber K, we must have

|ḟt(rk
t )|2 − 2 |ḟt(rk

t )| ε ≤ |ḟt(rk
t )|2 − |ḟt(rk

t )| Ek

{|ek
t+1(r

k
t − dk

t )|
} ≤ 3 ε2

for infinite number of iterations, which implies that |ḟt(rk
t )| ∈ [−ε, 3 ε] for infinite number of iterations.

Since ε is arbitrary, we obtain liminfk→∞|ḟt(rk
t )| = 0.

By examining the so-called upcrossings of the interval [ε/2, ε] by the sequence {|ḟt(rk
t )|}k and fol-

lowing an argument similar to the one used to show Proposition 4.1 in Bertsekas and Tsitsiklis (1996),
we can also show that limsupk→∞|ḟt(rk

t )| = 0 and this establishes the result. We defer the proof of this
part to the appendix. 2

Lemma 8 If (A.1)-(A.5) hold w.p.1 for time periods t + 1, . . . , τ , then (A.4) and (A.5) hold w.p.1 for
time period t.

Proof The induction hypothesis (A.4) implies that |ek
t+1(xt−dk

t )| ≤
∑τ

s=t+1 |ḟs(rk
s )| for all xt ∈ R and

|ek
t+1(r

k
t − dk

t )| ≤
∑τ

s=t+1 |ḟs(rk
s )|. Taking expectations and using these expectations in (14), it is easy
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to see that (A.4) holds for time period t. For all xt ∈ R, squaring (14) also implies that

|ek
t (xt)|2 ≤ [ḟt(rk

t )]2 − 2 ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}

+
[
Ek

{
ek
t+1(r

k
t − dk

t )
}]2

+
[
Ek

{|ek
t+1(r

k
t − dk

t )|
}]2 +

[
Ek

{|ek
t+1(xt − dk

t )|
}]2

≤ 2
[
[ḟt(rk

t )]2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+ + 2Ek

{|ek
t+1(r

k
t − dk

t )|2
}

+ Ek

{|ek
t+1(xt − dk

t )|2
}

≤ 2
[
[ḟt(rk

t )]2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+

+ 3At+1

τ∑

s=t+1

[ |ḟs(rk
s )|2 − ḟs(rk

s ) Ek

{
ek
s+1(r

k
s − dk

s)
}]+

,

where we use the induction hypothesis (A.5) in the last inequality. Letting At = max{2, 3At+1}, (A.5)
holds for time period t. 2

We close this section by investigating the performances of the policies characterized by the base-
stock levels {rk

t : t = 1, . . . , τ}. The policy characterized by the base-stock levels {rk
t : t = 1, . . . , τ}

keeps the inventory position at time period t as close as possible to rk
t . We let V k

t (xt) be the total
expected cost incurred by this policy over the time periods {t, . . . , τ} when the inventory position at
time period t is xt. The functions {V k

t (·) : t = 1, . . . , τ} satisfy

V k
t (xt) =

{
Ek

{
h [xt − dk

t ]
+ + b [dk

t − xt]+ + V k
t+1(xt − dk

t )
}

if xt ≥ rk
t

c [rk
t − xt] + Ek

{
h [rk

t − dk
t ]

+ + b [dk
t − rk

t ]+ + V k
t+1(r

k
t − dk

t )
}

if xt < rk
t .

(19)

In contrast, the function v1(·) gives the minimum total expected cost incurred over the time periods
{1, . . . , τ}. Proposition 9 shows that limk→∞ |V k

1 (x1)− v1(x1)| = 0 w.p.1 for all x1 ∈ R and establishes
that the policies characterized by the base-stock levels {rk

t : t = 1, . . . , τ} are asymptotically optimal.

Proposition 9 Assume that the sequence of step size parameters {αk}k satisfy αk ≥ 0 for all k =
1, 2, . . .,

∑∞
k=1 αk = ∞ and

∑∞
k=1[α

k]2 < ∞ w.p.1. If the sequence of base-stock levels {rk
t : t =

1, . . . , τ}k are generated by Algorithm 1, then we have limk→∞ |V k
1 (x1) − v1(x1)| = 0 w.p.1 for all

x1 ∈ R.

Proof All statements are in w.p.1 sense. We first show that limk→∞ ft(rk
t ) = ft(r∗t ) for all t = 1, . . . , τ .

By Proposition 5, the sequence {ft(rk
t )}k converges, which implies that there exists a subsequence {rkj

t }j

with the limit point r̂t. Since the sequence {ḟt(rk
t )}k converges to 0 by Proposition 5, we must have

ḟt(r̂t) = 0. Therefore, since ft(·) is convex, r̂t is a minimizer of ft(·) satisfying ft(r̂t) = ft(r∗t ). In
this case, the subsequence {ft(r

kj

t )}j converges to ft(r∗t ). Since the sequence {ft(rk
t )}k converges, we

conclude that this sequence converges to ft(r∗t ).

Noting (3), we can write (19) as

V k
t (xt) =

{
ft(xt)− c xt + Ek

{
V k

t+1(xt − dk
t )− vt+1(xt − dk

t )
}

if xt ≥ rk
t

ft(rk
t )− c xt + Ek

{
V k

t+1(r
k
t − dk

t )− vt+1(rk
t − dk

t )
}

if xt < rk
t .

(20)

We now use induction over the time periods to show that 0 ≤ V k
t (xt)− vt(xt) ≤

∑τ
s=t

[
fs(rk

s )− fs(r∗s)
]

for all xt ∈ R, t = 1, . . . , τ , in which case the final result follows by noting that {ft(rk
t )}k converges to
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ft(r∗t ) for all t = 1, . . . , τ . It is easy to show the result for the last time period. Assuming that the
result holds for time period t + 1, we now show that the result holds for time period t. We consider
four cases. Assume that rk

t ≤ xt < r∗t . Since r∗t is the minimizer of the convex function ft(·), we have
ft(xt) ≤ ft(rk

t ). In this case, using (4), (20) and the induction hypothesis, we obtain

0 ≤ V k
t (xt)− vt(xt) = ft(xt)− ft(r∗t ) + Ek

{
V k

t+1(xt − dk
t )− vt+1(xt − dk

t )
}

≤ ft(rk
t )− ft(r∗t ) +

τ∑

s=t+1

[
fs(rk

s )− fs(r∗s)
]
.

The other three cases where we have r∗t ≤ xt < rk
t , or r∗t ≤ xt and rk

t ≤ xt, or r∗t ≥ xt and rk
t ≥ xt can

be shown similarly. 2

4 Multi-Period Newsvendor Problem with Lost Sales

This section shows how to extend the ideas in Section 3 to the case where the unsatisfied demand
is immediately lost. We use the same assumptions for the cost parameters and the demand random
variables. In particular, we have b > c ≥ 0, h ≥ 0 and the demand random variables at different
time periods are independent, but not necessarily identically distributed. However, we need to strictly
impose the assumption that the lead times for the replenishments are zero. Otherwise, the base-stock
policies are not necessarily optimal. In addition, our presentation here strictly imposes the assumption
that the cost parameters are stationary, but the online supplement extends our analysis to the case
where the cost parameters are nonstationary. Letting vt(xt) have the same interpretation as in Section
3, the functions {vt(·) : t = 1, . . . , τ} satisfy the Bellman equations

vt(xt) = min
yt≥xt

c [yt − xt] + E
{
h [yt − dt]+ + b [dt − yt]+ + vt+1([yt − dt]+)

}
, (21)

with vτ+1(·) = 0. We also let

ft(rt) = c rt + E
{
h [rt − dt]+ + b [dt − rt]+ + vt+1([rt − dt]+)

}
.

It can be shown that vt(·) and ft(·) are positive, Lipschitz continuous, differentiable and convex func-
tions, and ft(·) has a finite unconstrained minimizer. In this case, the optimal base-stock levels
{r∗t : t = 1, . . . , τ} are the minimizers of the functions {ft(·) : t = 1, . . . , τ}.

Since we have

ḟt(rt) = c + hP
{
dt < rt

}− bP
{
dt ≥ rt

}
+ E

{
v̇t+1(rt − dt)1(dt < rt)

}
, (22)

we can compute a stochastic gradient of ft(·) at xt through

∆t(xt, dt) = c + h1(dt < xt)− b1(dt ≥ xt) + v̇t+1(xt − dt)1(dt < xt) (23)

and iteratively search for the optimal base-stock levels through (8). However, this approach requires
the knowledge of {vt(·) : t = 1, . . . , τ}. We now use ideas similar to those in Section 3 to approximate
the stochastic gradients of {ft(·) : t = 1, . . . , τ} in a tractable manner.
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Using the optimal base-stock level r∗t , we write (21) as

vt(xt) =

{
E

{
h [xt − dt]+ + b [dt − xt]+ + vt+1([xt − dt]+)

}
if xt ≥ r∗t

c [r∗t − xt] + E
{
h [r∗t − dt]+ + b [dt − r∗t ]+ + vt+1([r∗t − dt]+)

}
if xt < r∗t .

(24)

Since r∗t is the minimizer of ft(·), (22) implies that −c = ḟt(r∗t ) − c = hP
{
dt < r∗t

} − bP
{
dt ≥

r∗t
}

+ E
{
v̇t+1(r∗t − dt)1(dt < r∗t )

}
. Therefore, using this expression in (24), we obtain

v̇t(xt) =

{
hP

{
dt < xt

}− bP
{
dt ≥ xt

}
+ E

{
v̇t+1(xt − dt)1(dt < xt)

}
if xt ≥ r∗t

hP
{
dt < r∗t

}− bP
{
dt ≥ r∗t

}
+ E

{
v̇t+1(r∗t − dt)1(dt < r∗t )

}
if xt < r∗t .

(25)

In this case,

v̇t(xt, dt) =

{
h1(dt < xt)− b1(dt ≥ xt) + v̇t+1(xt − dt)1(dt < xt) if xt ≥ r∗t
h1(dt < r∗t )− b1(dt ≥ r∗t ) + v̇t+1(r∗t − dt)1(dt < r∗t ) if xt < r∗t

(26)

clearly gives a stochastic gradient of vt(·) at xt.

To construct tractable approximations to the stochastic gradients of {ft(·) : t = 1, . . . , τ}, we
“mimic” the computation in (26) by using the estimates of the optimal base-stock levels. In particular,
letting {rk

t : t = 1, . . . , τ} be the estimates of the optimal base-stock levels at iteration k, we recursively
define

ξk
t (xt, dt, . . . , dτ ) =





h1(dt < xt)− b1(dt ≥ xt)
+ ξk

t+1(xt − dt, dt+1, . . . , dτ )1(dt < xt) if xt ≥ rk
t

h1(dt < rk
t )− b1(dt ≥ rk

t )
+ ξk

t+1(r
k
t − dt, dt+1, . . . , dτ )1(dt < rk

t ) if xt < rk
t ,

(27)

with ξk
τ+1(·, ·, . . . , ·) = 0. At iteration k, replacing v̇t+1(xt − dt) in (23) with ξk

t+1(xt − dt, dt+1, . . . , dτ ),
we use

sk
t (xt, dt, . . . , dτ ) = c + h1(dt < xt)− b1(dt ≥ xt) + ξk

t+1(xt − dt, dt+1, . . . , dτ )1(dt < xt) (28)

to approximate the stochastic gradient of ft(·) at xt. Thus, we can use Algorithm 1 to search for the
optimal base-stock levels. The only difference is that we need to use the step direction above in Step 2.

The proof of convergence for this algorithm follows from an argument similar to the one in Sections
3.1 and 3.2. In particular, we can follow the proof of Lemma 2 to derive bounds on ξk

t (·, dk
t , . . . , d

k
τ ) and

sk
t (·, dk

t , . . . , d
k
τ ). It is possible establish an analogue of Lemma 3 to show that Ek

{
ξk
t (·, dk

t , . . . , d
k
τ )

}
is

increasing. We define the error function as

ek
t (xt) = v̇t(xt)1(xt > 0)− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )1(xt > 0)

}
,

with ek
τ+1(·) = 0. In this case, we can show that the same bound on the error function given in Lemma

4 holds. Once we have this bound on the error function, we can follow the same induction argument
in Proposition 5, Lemmas 6-8 and Proposition 9 to show the final result. The details of the proof are
given in the online supplement.
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5 Censored Demands

This section considers the multi-period newsvendor problem with lost sales and censored demands.
Demand censorship refers to the situation where we only observe the amount of inventory sold, but
not the amount of demand. In this case, our demand observations are “truncated” when the amount
of demand exceeds the amount of available inventory. Our goal is to show that we can still compute
the step direction in (28), which implies that the algorithm proposed in Section 4 remains applicable
when the demand information is censored. We note if the unsatisfied demand is backlogged, then we
can always observe the amount of demand and the censored demand information is not an issue.

If the unsatisfied demand is immediately lost and the demand information is censored, then we do
not observe the random variables {dk

t : t = 1, . . . , τ} in Step 2 of Algorithm 1. Instead, we simulate the
behavior of the policy characterized by the base-stock levels {rk

t : t = 1, . . . , τ} and Step 2 of Algorithm
1 is replaced by the following steps.

Step 2.a. Initialize the beginning inventory position xk
1. Set t = 1.

Step 2.b. Place a replenishment order of [rk
t −xk

t ]
+ units to raise the inventory position to max{rk

t , xk
t }.

Set the inventory position after the replenishment order as yk
t = max{rk

t , xk
t }.

Step 2.c. Compute the inventory position at the next time period as xk
t+1 = yk

t −min{yk
t , dk

t }. If t < τ ,
then increase t by 1 and go to Step 2.b.
Step 2.d. Set rk+1

t = rk
t − αksk

t (r
k
t , dk

t , . . . , d
k
τ ) for all t = 1, . . . , τ .

Therefore, we only have access to {min{yk
t , dk

t } : t = 1, . . . , τ}, but not the demand random variables
themselves. Proposition 10 shows that this information is adequate to compute the step direction.

Proposition 10 Knowledge of {rk
t : t = 1, . . . , τ}, {yk

t : t = 1, . . . , τ} and {min{yk
t , dk

t } : t = 1, . . . , τ}
is adequate to compute sk

t (r
k
t , dk

t , . . . , d
k
τ ) in (28) for all t = 1, . . . , τ .

Proof It is possible to show the result by induction over the time periods, but we use a constructive
proof, which is more instructive and easier to follow. We begin with a chain of inequalities that directly
follow from Steps 2.a-2.c above. For any time period s, we have yk

s ≥ rk
s , yk

s ≥ xk
s and xk

s+1 ≥ yk
s − dk

s ,
from which we obtain rk

s − dk
s ≤ yk

s − dk
s ≤ xk

s+1 ≤ yk
s+1, yk

s+1 − dk
s+1 ≤ yk

s+2, . . . , yk
t−1 − dk

t−1 ≤ yk
t for

all t = s + 1, . . . , τ . Combining these inequalities, we have rk
s − dk

s − dk
s+1 − . . . − dk

t−1 ≤ yk
t for all

t = s + 1, . . . , τ . Consequently, if we have min{yk
t , dk

t } = yk
t for any time period t, then we must have

rk
s ≤ dk

s + dk
s+1 + . . . + dk

t for all s = 1, . . . , t− 1.

Assume that we want to compute sk
t (r

k
t , dk

t , . . . , d
k
τ ), where we have sk

t (r
k
t , dk

t , . . . , d
k
τ ) = c+h1(dk

t <

rk
t )− b1(dk

t ≥ rk
t ) + ξk

t+1(r
k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t ). We consider two cases.

Case 1. Assume that min{yk
t , dk

t } = yk
t . In this case, we can deduce that dk

t ≥ yk
t ≥ rk

t . Therefore, we
have sk

t (r
k
t , dk

t , . . . , d
k
τ ) = c− b and we are done.

Case 2. Assume that min{yk
t , dk

t } < yk
t . In this case, since we know the value of min{yk

t , dk
t }, we can

deduce the value of dk
t as being equal to min{yk

t , dk
t }. Thus, since we know the values of dk

t and rk
t , we can
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compute 1(dk
t < rk

t ) and 1(dk
t ≥ rk

t ). Therefore, it only remains to compute ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )

for a known value of rk
t − dk

t . We consider two subcases.

Case 2.a. Assume that min{yk
t+1, d

k
t+1} = yk

t+1. In this case, we can deduce that dk
t+1 ≥ yk

t+1 ≥ rk
t+1.

By the inequality we derive at the beginning of the proof, we have rk
t ≤ dk

t + dk
t+1. Using (27), we have

ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ ) =





h1(dk
t+1 < rk

t − dk
t )− b1(dk

t+1 ≥ rk
t − dk

t )
+ ξk

t+2(r
k
t − dk

t − dk
t+1, d

k
t+2, . . . , d

k
τ )1(dk

t+1 < rk
t − dk

t ) if rk
t − dk

t ≥ rk
t+1

h1(dk
t+1 < rk

t+1)− b1(dk
t+1 ≥ rk

t+1)
+ ξk

t+2(r
k
t+1 − dk

t+1, d
k
t+2, . . . , d

k
τ )1(dk

t+1 < rk
t+1) if rk

t − dk
t < rk

t+1,

which is equal to −b in either one of the cases and we are done.

Case 2.b. Assume that min{yk
t+1, d

k
t+1} < yk

t+1. In this case, we can deduce the value of dk
t+1 as being

equal to min{yk
t+1, d

k
t+1}. Thus, since we know the values of rk

t , rk
t+1, dk

t and dk
t+1, we can compute

1(dk
t+1 < rk

t − dk
t ), 1(dk

t+1 ≥ rk
t − dk

t ), 1(dk
t+1 < rk

t+1) and 1(dk
t+1 ≥ rk

t+1) in the expression above.
Therefore, it only remains to compute ξk

t+2(r
k
t −dk

t −dk
t+1, d

k
t+2, . . . , d

k
τ ) and ξk

t+2(r
k
t+1−dk

t+1, d
k
t+2, . . . , d

k
τ )

for known values of rk
t − dk

t − dk
t+1 and rk

t+1− dk
t+1. The result follows by continuing in the same fashion

for the subsequent time periods. 2

6 Inventory Purchasing Problem under Price Uncertainty

We want to make purchasing decisions for a product over the time periods {1, . . . , τ}. The price of the
product changes randomly over time and the goal is to satisfy the demand for the product at the end of
the planning horizon with minimum total expected cost. We borrow this problem from Nascimento and
Powell (2006). A possible application area for it is the situation where we need to lease storage space
on an ocean liner. The price of storage space changes randomly over time and the amount of storage
space that we actually need becomes known just before the departure time of the ocean liner.

We let pt be the price at time period t, d be the demand and b be the penalty cost associated with
not being able to satisfy a unit of demand. We assume that the random variables {pt : t = 1, . . . , τ}
and d are independent of each other, take positive values and have finite expectations. We assume that
the cumulative distribution function of d is Lipschitz continuous and pt has a finite support Pt. When
the distinction is crucial, we use p̂t to denote a particular realization of the random variable pt. Letting
xt be the total amount of product purchased up to time period t, the optimal policy is characterized by
the Bellman equations

vt(xt) = E
{

min
yt≥xt

pt [yt − xt] + vt+1(yt)
}

, (29)

with vτ+1(xτ+1) = bE
{
[d− xτ+1]+

}
. Letting

ft(rt, pt) = pt rt + vt+1(rt),

it can be shown that ft(·, pt) is a convex function with a finite unconstrained minimizer, say r∗t (pt). In
this case, it is easy to see that the optimal policy is a price-dependent base-stock policy characterized
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by the base-stock levels {r∗t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}. That is, if the total amount of product
purchased up to time period t is xt and the price of the product is p̂t, then it is optimal to purchase
[r∗t (p̂t) − xt]+ units at time period t. It can be shown that ft(·, pt) and vt(·) are positive, Lipschitz
continuous, differentiable and convex functions. Since we have

ḟt(rt, pt) = pt + v̇t+1(rt), (30)

we can compute the derivative of ft(·, pt) at xt through

∆t(xt, pt) = pt + v̇t+1(xt), (31)

where ḟt(·, pt) refers to the derivative with respect to the first argument. Since r∗t (p̂t) is the minimizer
of ft(·, p̂t), we can search for the optimal base-stock levels through

rk+1
t (p̂t) = rk

t (p̂t)− αk ∆t(rk
t (p̂t), p̂t)

for all p̂t ∈ Pt, t = 1, . . . , τ , where {rk
t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ} are the estimates of the optimal

base-stock levels at iteration k. Similar to Sections 3 and 4, we now approximate the derivatives of
{ft(·, p̂t) : p̂t ∈ Pt, t = 1, . . . , τ} in a tractable manner.

Using the optimal base-stock level r∗t (pt), we write (29) as vt(xt) = E
{
vt(xt, pt)

}
, where

vt(xt, pt) =

{
vt+1(xt) if xt ≥ r∗t (pt)
pt [r∗t (pt)− xt] + vt+1(r∗t (pt)) if xt < r∗t (pt).

(32)

Therefore, a stochastic gradient of vt(·) at xt can be obtained through

v̇t(xt, pt) =

{
v̇t+1(xt) if xt ≥ r∗t (pt)
−pt if xt < r∗t (pt).

(33)

Since r∗t (pt) is the minimizer of ft(·, pt), (30) implies that −pt = v̇t+1(r∗t (pt)) and we obtain

v̇t(xt, pt) =

{
v̇t+1(xt) if xt ≥ r∗t (pt)
v̇t+1(r∗t (pt)) if xt < r∗t (pt).

(34)

To construct tractable approximations to the derivatives of {ft(·, p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}, we “mimic”
the computation above by using the estimates of the optimal base-stock levels. In particular, letting
{rk

t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ} be the estimates of the optimal base-stock levels at iteration k, we define

ξk
t (xt, pt, . . . , pτ , d) =

{
ξk
t+1(xt, pt+1, . . . , pτ , d) if xt ≥ rk

t (pt)
ξk
t+1(r

k
t (pt), pt+1, . . . , pτ , d) if xt < rk

t (pt),
(35)

with ξk
τ+1(xτ+1, d) = −b1(d ≥ xτ+1). At iteration k, replacing v̇t+1(xt) in (31) with ξk

t+1(xt, pt+1, . . . , pτ , d),
we use

sk
t (xt, pt, . . . , pτ , d) = pt + ξk

t+1(xt, pt+1, . . . , pτ , d)

to approximate the derivative of ft(·, pt) at xt. Consequently, we propose the following algorithm to
search for the optimal base-stock levels.
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Algorithm 2
Step 1. Initialize the estimates of the optimal base-stock levels {r1

t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}
arbitrarily. Initialize the iteration counter by setting k = 1.
Step 2. Letting {pk

t : t = 1, . . . , τ} be the price random variables and dk be the demand random
variable at iteration k, set

rk+1
t (pk

t ) = rk
t (pk

t )− αk sk
t (r

k
t , pk

t , . . . , p
k
τ , d

k)

for all t = 1, . . . , τ . Furthermore, set rk+1
t (p̂t) = rk

t (p̂t) for all p̂t ∈ Pt \ {pk
t }, t = 1, . . . , τ .

Step 3. Increase k by 1 and go to Step 2.

We emphasize that only the base-stock levels {rk
t (pk

t ) : t = 1, . . . , τ} are “updated” at iteration k in
Step 2 of Algorithm 2. The other base-stock levels {rk

t (p̂t) : p̂t ∈ Pt \ {pk
t }, t = 1, . . . , τ} remain

the same. The proof of convergence for Algorithm 2 follows from an argument similar to the one in
Sections 3.1 and 3.2. We can follow the proof of Lemma 2 to derive bounds on ξk

t (·, pk
t , . . . , p

k
τ , d

k) and
sk
t (·, pk

t , . . . , p
k
τ , d

k), and the proof of Lemma 3 to show that Ek

{
ξk
t (·, pk

t , . . . , p
k
τ , d

k)
}

is increasing. We
define the error function as

ek
t (xt, p̂t) = v̇t(xt, p̂t)− Ek

{
ξk
t (xt, p̂t, p

k
t+1, . . . , p

k
τ , d

k)
}
,

with ek
τ+1(·, ·) = 0. In this case, we can show that

|ek
t (xt, p̂t)| ≤ max

{∣∣ḟt(rk
t (p̂t), p̂t)− Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}∣∣,

Ek

{|ek
t+1(r

k
t (p̂t), pk

t+1)|
}
, Ek

{|ek
t+1(xt, p

k
t+1)|

}}

w.p.1 for all xt ∈ R, p̂t ∈ Pt, t = 1, . . . , τ , k = 1, 2, . . .. Once we have this bound on the error function,
we can follow the same induction argument in Proposition 5, Lemmas 6-8 and Proposition 9 to show the
final result. In particular, we can show that limk→∞ ḟt(rk

t (p̂t), p̂t) = 0 w.p.1 for all p̂t ∈ Pt, t = 1, . . . , τ .
The details of the proof are given in the online supplement.

7 Numerical Illustrations

This section focuses on the problems described in Sections 3, 4 and 6, and numerically compares the
performances of Algorithms 1 and 2 with standard stochastic approximation methods.

7.1 Multi-Period Newsvendor Problem with Backlogged Demands

We consider a policy characterized by the base-stock levels {rt : t = 1, . . . , τ}. That is, if the inventory
position at time period t is xt, then this policy orders [rt − xt]+ units. If we follow this policy starting
with the initial inventory position x1 and the demands over the planning horizon turn out to be {dt :
t = 1, . . . , τ}, then the inventory position at time period t is given by

xt = max
{
x1 −

∑t−1
s=1 ds, r1 −

∑t−1
s=1 ds, . . . , rt−1 −

∑t−1
s=t−1 ds

}
.
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This is easy to see by noting that the inventory position at time period t + 1 is max{xt, rt} − dt and
using induction over the time periods. In this case, the holding cost that we incur at time period t is

Ht(x1, D | r) = h [max{xt, rt} − dt]+

= h
[
max

{
x1 −Dt−1

1 , r1 −Dt−1
1 , . . . , rt−1 −Dt−1

t−1, rt

}− dt

]+

= h max
{
x1 −Dt

1, r1 −Dt
1, . . . , rt−1 −Dt

t−1, rt −Dt
t, 0

}
, (36)

where we let Dt
s = ds + . . . + dt for notational brevity and use D to denote the cumulative demands

{Dt
s : s = 1, . . . , τ, t = s, . . . , τ} and r to denote the base-stock levels {rt : t = 1, . . . , τ}. Similarly, the

backlogging cost that we incur at time period t is

Bt(x1, D | r) = b [dt −max{xt, rt}]+

= b
[
dt −max

{
x1 −Dt−1

1 , r1 −Dt−1
1 , . . . , rt−1 −Dt−1

t−1, rt

}]+

= b max
{

min
{
Dt

1 − x1, D
t
1 − r1, . . . , D

t
t−1 − rt−1, D

t
t − rt

}
, 0

}
, (37)

whereas the replenishment cost that we incur at time period t is

Ct(x1, D | r) = c [rt − xt]+

= c
[
rt −max

{
x1 −Dt−1

1 , r1 −Dt−1
1 , . . . , rt−1 −Dt−1

t−1

}]+

= c max
{

min
{
rt − x1 + Dt−1

1 , rt − r1 + Dt−1
1 , . . . , rt − rt−1 + Dt−1

t−1

}
, 0

}
. (38)

Therefore, we can try to solve the problem minr E
{∑τ

t=1

[
Ht(x1, D | r)+Bt(x1, D | r)+Ct(x1, D | r)]}

to compute the optimal base-stock levels. However, it is easy to check that the objective function of
this problem is not necessarily differentiable with respect to r. We overcome this technical difficulty by
using an approach proposed by van Ryzin and Vulcano (2006). In particular, we let {ζt : t = 1, . . . , τ}
be uniformly distributed random variables over the small interval [0, ε] and perturb the base-stock levels
by using these random variables. As a result, we solve the problem

min
r
E

{
τ∑

t=1

[
Ht(x1, D | r + ζ) + Bt(x1, D | r + ζ) + Ct(x1, D | r + ζ)

]
}

, (39)

where we use r + ζ to denote the perturbed base-stock levels {rt + ζt : t = 1, . . . , τ}. It is now possible
to show that the objective function of problem (39) is differentiable with respect to r and its gradient is
Lipschitz continuous. Therefore, we can use a standard stochastic approximation method to solve this
problem. If ε is small, then solving problem (39) instead of the original problem should not cause too
much error.

After straightforward algebraic manipulations on (36) and (37), it is easy to see that the rs-th
component in the gradient of Ht(x1, D | r) with respect to r is given by

∇sHt(x1, D | r) =





h1(rs −Dt
s ≥ 0)× 1(rs −Dt

s ≥ x1 −Dt
1)

× 1(rs −Dt
s ≥ r1 −Dt

1)× . . .× 1(rs −Dt
s ≥ rt −Dt

t) if s ≤ t

0 if s > t,

(40)

21



whereas the rs-th component in the gradient of Bt(x1, D | r) with respect to r is given by

∇sBt(x1, D | r) =





−b1(Dt
s − rs ≥ 0)× 1(Dt

s − rs ≤ Dt
1 − x1)

× 1(Dt
s − rs ≤ Dt

1 − r1)× . . .× 1(Dt
s − rs ≤ Dt

t − rt) if s ≤ t

0 if s > t.

(41)

To be precise, the gradients of Ht(x1, D | r) or Bt(x1, D | r) do not exist everywhere. However, it is
possible to check that the gradients of Ht(x1, D | r + ζ) and Bt(x1, D | r + ζ) exist everywhere w.p.1 and
we can replace {rt : t = 1, . . . , τ} with {rt +ζt : t = 1, . . . , τ} in the expressions above to compute the rs-
th components in the gradients of Ht(x1, D | r+ ζ) and Bt(x1, D | r+ ζ). Similarly, after straightforward
algebraic manipulations on (38) and some simplifications, it is easy to see that the rs-th component in
the gradient of Ct(x1, D | r) with respect to r is given by

∇sCt(x1, D | r) =





−c1(rt − rs + Dt−1
s ≥ 0)× 1(Dt−1

s − rs ≤ Dt−1
1 − x1)

× 1(Dt−1
s − rs ≤ Dt−1

1 − r1)× . . .× 1(Dt−1
s − rs ≤ Dt−1

t−1 − rt−1) if s < t

c1(rt − x1 + Dt−1
1 ≥ 0)

× 1(rt − r1 + Dt−1
1 ≥ 0)× . . .× 1(rt − rt−1 + Dt−1

t−1 ≥ 0) if s = t

0 if s > t.

(42)

Consequently, the following algorithm is a standard stochastic approximation method for solving prob-
lem (39).

Algorithm 3
Step 1. Initialize the estimates of the optimal base-stock levels {r1

t : t = 1, . . . , τ} arbitrarily. Initialize
the iteration counter by setting k = 1.
Step 2. Letting {dk

t : t = 1, . . . , τ} be the demand random variables and {ζk
t : t = 1, . . . , τ} be the

perturbation random variables at iteration k, set

rk+1
t = rk

t − αk
τ∑

s=1

[∇tHs(x1, D
k | rk + ζk) +∇tBs(x1, D

k | rk + ζk) +∇tCs(x1, D
k | rk + ζk)

]

for all t = 1, . . . , τ , we use Dk to denote the cumulative demands {dk
s + . . . + dk

t : s = 1, . . . , τ, t =
s, . . . , τ}.
Step 3. Increase k by 1 and go to Step 2.

We can use Proposition 4.1 in Bertsekas and Tsitsiklis (1996) to show that the iterates of this algorithm
converge w.p.1 to a stationary point of the objective function of problem (39).

Our test problems use four demand distributions labeled by NR, UN, EX and BT. Specifically, NR,
UN, EX and BT respectively correspond to the cases where dt is normally distributed with mean µt

and standard deviation σt, uniformly distributed over the interval [lt, ut], exponentially distributed with
mean λt and beta distributed with shape parameters α1

t and α2
t . To choose values for {(µt, σt) : t =

1, . . . , τ}, {(lt, ut) : t = 1, . . . , τ}, {λt : t = 1, . . . , τ} and {(α1
t , α

2
t ) : t = 1, . . . , τ}, we sample µt, lt, ut,

λt, α1
t and α2

t from the uniform distribution over the interval [1, 20] and let σt = µt/3. The per unit
replenishment and backlogging costs are respectively 0.1 and 0.5.
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We run Algorithms 1 and 3 for 10,000 iterations. We make 25 different runs for each algorithm to
eliminate the effect of the randomness in the samples of the demand random variables. Each run starts
from different initial base-stock levels and uses a different sequence of the samples of the demand random
variables. To be fair, the s-th run for both algorithms starts from the same initial base-stock levels and
uses the same sequence of the samples of the demand random variables. We choose the initial base-stock
levels {r1

t : t = 1, . . . , τ} by sampling r1
t from the uniform distribution over the interval [0, 40]. We use

the step size parameter αk = 100/(40 + k) at iteration k. Letting rA1(s) = {rA1
t (s) : t = 1, . . . , τ} and

rA3(s) = {rA3
t (s) : t = 1, . . . , τ} respectively be the base-stock levels obtained by Algorithms 1 and 3

after the 10,000-th iteration of the s-th run, we are interested in the performance measures

AVA =
1
25

25∑

s=1

E

{
τ∑

t=1

[
Ht(x1, D | rA(s)) + Bt(x1, D | rA(s)) + Ct(x1, D | rA(s))

]
}

MXA = max
s∈{1,...,25}

{
E

{
τ∑

t=1

[
Ht(x1, D | rA(s)) + Bt(x1, D | rA(s)) + Ct(x1, D | rA(s))

]
}}

MIA = min
s∈{1,...,25}

{
E

{
τ∑

t=1

[
Ht(x1, D | rA(s)) + Bt(x1, D | rA(s)) + Ct(x1, D | rA(s))

]
}}

for A ∈ {A1, A3}. These performance measures capture the average, worst-case and best-case perfor-
mances over all runs. We estimate the expectations in the expressions above by simulating the behavior
of the policy characterized by the base-stock levels {rA

t (s) : t = 1, . . . , τ} for all s = 1, . . . , 25.

Our first set of computational results are summarized in Table 1. The first column in this table
shows the problem parameters by using the triplets (τ, h, d) ∈ {5, 10}×{0.1, 0.25}×{NR, UN, EX, BT},
where τ is the number of time periods, h is the per unit holding cost and d is the demand distribution.
The second column shows the total expected cost incurred by the optimal policy. We obtain the optimal
policy by discretizing the demand distributions and solving the Bellman equations approximately. The
third, fourth and fifth columns show AV, MX and MI for Algorithm 1, whereas the eighth, ninth and
tenth columns show AV, MX and MI for Algorithm 3.

Our computational results show that even the worst-case performance of Algorithm 1 is always close
to optimal. This result is expected since Algorithm 1 converges to the optimal base-stock levels w.p.1.
Although the best-case performance of Algorithm 3 is always close to optimal, the average and worst-
case performances of this algorithm can respectively be up to 9% and 55% worse than the performance
of the optimal policy. Therefore, Algorithm 3 may converge to the optimal base-stock levels, but the
performance of this algorithm depends on the initial solution and the sequence of the samples of the
demand random variables.

Our second set of computational results explore how the performances of Algorithms 1 and 3 change
when we choose the initial solutions carefully. We use test problem (10, 0.1, NR) as an example and
perturb the mean demand at each time period in this test problem by ∓ε% to obtain a perturbed
test problem (10, 0.1,NR)ε. We compute the optimal base-stock levels for test problem (10, 0.1, NR)ε

and use these base-stock levels as the initial solution when computing the optimal-base stock levels for
test problem (10, 0.1, NR). Figure 2 shows the performances of Algorithms 1 and 3 on test problem

23



Problem OP AVA1 MXA1 MIA1 AVA1

OP
MXA1

OP AVA3 MXA3 MIA3 AVA3

OP
MXA3

OP
(5, 0.1, NR) 10.47 10.48 10.48 10.47 100.04 100.08 10.73 12.10 10.47 102.51 115.54
(5, 0.1, UN) 7.73 7.73 7.73 7.73 100.03 100.07 8.04 9.99 7.73 104.03 129.29
(5, 0.1, EX) 19.83 19.84 19.86 19.83 100.06 100.13 19.85 19.87 19.83 100.08 100.18
(5, 0.1, BT) 0.36 0.36 0.36 0.36 100.45 101.59 0.37 0.45 0.36 102.71 127.72

(5, 0.25, NR) 12.92 12.93 12.94 12.92 100.04 100.11 13.05 16.10 12.92 101.01 124.61
(5, 0.25, UN) 9.13 9.13 9.14 9.13 100.07 100.17 9.54 13.70 9.13 104.51 150.15
(5, 0.25, EX) 25.11 25.12 25.13 25.11 100.03 100.06 25.12 25.13 25.11 100.02 100.05
(5, 0.25, BT) 0.41 0.41 0.41 0.41 100.64 101.82 0.42 0.63 0.41 102.58 155.05

(10, 0.1, NR) 18.47 18.47 18.48 18.47 100.03 100.07 19.52 21.88 18.47 105.68 118.48
(10, 0.1, UN) 17.17 17.18 17.19 17.17 100.02 100.12 18.81 22.57 17.17 109.54 131.40
(10, 0.1, EX) 36.25 36.25 36.27 36.25 100.02 100.07 36.58 37.33 36.25 100.93 102.99
(10, 0.1, BT) 0.58 0.59 0.59 0.59 101.02 101.92 0.62 0.72 0.58 105.88 123.16

(10, 0.25, NR) 23.32 23.32 23.34 23.32 100.04 100.09 24.69 27.12 23.32 105.88 116.31
(10, 0.25, UN) 20.95 20.96 20.99 20.95 100.06 100.21 22.57 27.17 20.95 107.75 129.74
(10, 0.25, EX) 46.64 46.65 46.67 46.64 100.03 100.07 46.72 48.59 46.64 100.19 104.19
(10, 0.25, BT) 0.68 0.69 0.72 0.69 101.34 104.66 0.71 0.88 0.69 104.28 128.91

Table 1: Computational results for the multi-period newsvendor problem with backlogged demands.

(10, 0.1, NR) for 10 different runs starting from the initial solutions obtained by letting ε = 50, ε = 75
and ε = 100. If we have ε = 50, then both algorithms converge to the optimal base-stock levels for all
runs and their performances are essentially identical. If we have ε = 75, then both algorithms converge
to the optimal base-stock levels for all runs, but the convergence behavior of Algorithm 3 is somewhat
erratic. If we have ε = 100, then Algorithm 1 converges to the optimal base-stock levels for all runs,
but this is not the case for Algorithm 3. Therefore, if ε is small and the initial solution is close to the
optimal base-stock levels, then the performance of Algorithm 3 may be quite good. This explains the
success of the existing stochastic approximation methods in the literature, at least to a certain extent.
On the other hand, if ε is large and the initial solution is far from the optimal base-stock levels, then
Algorithm 3 may converge to different base-stock levels for different runs.

7.2 Multi-Period Newsvendor Problem with Lost Sales

This section assumes that the unsatisfied demand is immediately lost. If we follow a policy characterized
by the base-stock levels {rt : t = 1, . . . , τ} starting with the initial inventory position x1 and the demands
over the planning horizon turn out to be {dt : t = 1, . . . , τ}, then the inventory position at time period
t is given by

xt = max
{
x1 −

∑t−1
s=1 ds, r1 −

∑t−1
s=1 ds, . . . , rt−1 −

∑t−1
s=t−1 ds, 0

}
.

This is easy to see by noting that the inventory position at time period t + 1 is [max{xt, rt} − dt]+ and
using induction over the time periods. In this case, we can modify (36)-(38), (40)-(42) and Algorithm 3
in a straightforward manner to come up with a stochastic approximation method to solve problem (39)
under the assumption that the unsatisfied demand is immediately lost.

Our computational results are summarized in Table 2. The entries in this table have the same
interpretations as the ones in Table 1. Similar to our computational results in Table 1, even the worst-
case performance of Algorithm 1 is always close to optimal. Although the best-case performance of
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Figure 2: Performances of Algorithms 1 and 3 on test problem (10, 0.1, NR) for 10 different runs starting
from the initial solutions that are chosen carefully.

Algorithm 3 is always close to optimal, the average and worst-case performances of this algorithm can
respectively be up to 8% and 47% worse than the performance of the optimal policy.

7.3 Inventory Purchasing Problem under Price Uncertainty

We consider a policy characterized by the base-stock levels {rt(p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}. That is,
if the total amount of product purchased up to time period t is xt and the price of the product is pt,
then this policy purchases [rt(pt)−xt]+ units. If we follow this policy starting with the initial inventory
position x1 and the prices over the planning horizon turn out to be {pt : t = 1, . . . , τ}, then the inventory
position at time period t is given by xt = max

{
x1, r1(p1), . . . , rt−1(pt−1)

}
. This can be seen by noting

that the inventory position at time period t + 1 is max{xt, rt(pt)} and using induction over the time
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Problem OP AVA1 MXA1 MIA1 AVA1

OP
MXA1

OP AVA3 MXA3 MIA3 AVA3

OP
MXA3

OP
(5, 0.1, NR) 10.30 10.30 10.31 10.30 100.00 100.04 10.57 11.96 10.30 102.57 116.13
(5, 0.1, UN) 7.66 7.66 7.66 7.66 100.01 100.04 7.96 9.83 7.66 103.95 128.30
(5, 0.1, EX) 18.82 18.83 18.84 18.82 100.02 100.07 18.83 18.87 18.82 100.05 100.25
(5, 0.1, BT) 0.35 0.35 0.36 0.35 100.18 101.03 0.36 0.45 0.35 101.64 127.09

(5, 0.25, NR) 12.52 12.52 12.52 12.52 100.02 100.05 12.65 15.78 12.52 101.06 126.05
(5, 0.25, UN) 8.93 8.93 8.94 8.93 100.02 100.13 9.32 13.21 8.93 104.37 147.87
(5, 0.25, EX) 23.23 23.23 23.24 23.23 100.01 100.05 23.23 23.24 23.23 100.00 100.04
(5, 0.25, BT) 0.40 0.40 0.40 0.40 100.04 100.94 0.40 0.40 0.40 100.00 100.80

(10, 0.1, NR) 18.06 18.07 18.07 18.06 100.01 100.06 19.06 21.33 18.06 105.53 118.07
(10, 0.1, UN) 16.97 16.97 16.97 16.97 100.01 100.02 18.42 22.12 16.97 108.54 130.35
(10, 0.1, EX) 33.60 33.60 33.61 33.60 100.02 100.05 33.94 34.68 33.60 101.02 103.23
(10, 0.1, BT) 0.57 0.58 0.58 0.58 100.87 101.37 0.60 0.66 0.58 104.26 115.46

(10, 0.25, NR) 22.36 22.36 22.37 22.36 100.00 100.03 23.64 25.93 22.36 105.74 115.99
(10, 0.25, UN) 20.36 20.36 20.38 20.36 100.03 100.10 21.06 26.19 20.36 103.46 128.66
(10, 0.25, EX) 42.07 42.08 42.09 42.07 100.01 100.04 42.08 42.09 42.07 100.01 100.04
(10, 0.25, BT) 0.68 0.68 0.68 0.68 100.00 100.49 0.68 0.81 0.68 100.17 120.24

Table 2: Computational results for the multi-period newsvendor problem with lost sales.

periods. In this case, the purchasing cost that we incur at time period t is

Ct(x1, p | r) = pt [rt(pt)− xt]+ = pt max
{
rt(pt)−max

{
x1, r1(p1), . . . , rt−1(pt−1)

}
, 0

}

= pt max
{

min
{
rt(pt)− x1, rt(pt)− r1(p1), . . . , rt(pt)− rt−1(pt−1)

}
, 0

}
, (43)

where we use p to denote the prices {pt : t = 1, . . . , τ} and r to denote the base-stock levels {rt(p̂t) :
p̂t ∈ Pt, t = 1, . . . , τ}. On the other hand, if the demand turns out to be d, then the penalty cost that
we incur at the end of the planning horizon is

Bτ+1(x1, p, d | r) = b [d− xτ+1]+ = b max
{
d−max

{
x1, r1(p1), . . . , rτ (pτ )

}
, 0

}

= b max
{

min
{
d− x1, d− r1(p1), . . . , d− rτ (pτ )

}
, 0

}
. (44)

Therefore, we can try to solve the problem minr E
{∑τ

t=1 Ct(x1, p | r)+Bτ+1(x1, p, d | r)} to compute
the optimal base-stock levels. Similar to the situation in Section 7.1, it is easy to check that the objective
function of this problem is not necessarily differentiable with respect to r and we perturb the base-stock
levels by using the random variables {ζt(p̂t) : p̂t ∈ Pt, t = 1, . . . , τ} that are uniformly distributed over
the small interval [0, ε]. Consequently, we solve the problem

min
r
E

{
τ∑

t=1

Ct(x1, p | r + ζ) + Bτ+1(x1, p, d | r + ζ)

}
, (45)

where we use r+ζ to denote the perturbed base-stock levels {rt(p̂t)+ζt(p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}. It is
now possible to show that the objective function of problem (45) is differentiable with respect to r and
its gradient is Lipschitz continuous. This implies that we can use a standard stochastic approximation
method to solve problem (45).

Similar to (40)-(42), after straightforward algebraic manipulations on (43) and (44), and some
simplifications, it is easy to see that the rs(ps)-th component in the gradient of Ct(x1, p | r) with respect
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to r is given by

∇sCt(x1, p | r) =





−pt 1(rt(pt)− rs(ps) ≥ 0)× 1(rs(ps)− x1 ≥ 0)
× 1(rs(ps)− r1(p1) ≥ 0)× . . .× 1(rs(ps)− rt−1(pt−1) ≥ 0) if s < t

pt 1(rt(pt)− x1 ≥ 0)
× 1(rt(pt)− r1(p1) ≥ 0)× . . .× 1(rt(pt)− rt−1(pt−1) ≥ 0) if s = t

0 if s > t,

whereas the rs(ps)-th component in the gradient of Bτ+1(x1, p, d | r) with respect to r is given by

∇sBτ+1(x1, p, d | r) = −b1(d− rs(ps) ≥ 0)× 1(rs(ps)− x1 ≥ 0)

× 1(rs(ps)− r1(p1) ≥ 0)× . . .× 1(rs(ps)− rτ (pτ ) ≥ 0).

The remarks for (40)-(42) also hold here. In particular, the gradients of Ct(x1, p | r) or Bτ+1(x1, p, d | r)
do not exist everywhere, but the gradients of Ct(x1, p | r + ζ) and Bτ+1(x1, p, d | r + ζ) exist everywhere
w.p.1. Consequently, the following algorithm is a standard stochastic approximation method for solving
problem (45).

Algorithm 4
Step 1. Initialize the estimates of the optimal base-stock levels {r1

t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ}
arbitrarily. Initialize the iteration counter by setting k = 1.
Step 2. Letting {pk

t : t = 1, . . . , τ} be the price random variables, dk be the demand random variable
and {ζk

t (p̂t) : p̂t ∈ Pt, t = 1, . . . , τ} be the perturbation random variables at iteration k, set

rk+1
t (pk

t ) = rk
t (pk

t )− αk

{
τ∑

s=1

∇tCs(x1, p
k | rk + ζk) +∇tBτ+1(x1, p

k, dk | rk + ζk)

}

for all t = 1, . . . , τ . Furthermore, set rk+1
t (p̂t) = rk

t (p̂t) for all p̂t ∈ Pt \ {pk
t }, t = 1, . . . , τ .

Step 3. Increase k by 1 and go to Step 2.

In our test problems, the penalty cost b is an integer. The price at each time period is uniformly
distributed over the integers {1, . . . , b} and the demand is uniformly distributed over the interval [0, 1].
Our experimental setup is the same as the one in Section 7.1 and our computational results are sum-
marized in Table 3. The first column in this table shows the problem parameters by using the pairs
(τ, b) ∈ {1, 2, 4, 6} × {2, 5, 10}, where τ is the number of time periods and b is the penalty cost. The
other entries in this table have the same interpretations as the ones in Table 1.

Similar to our computational results in Tables 1 and 2, even the worst-case performance of Algorithm
2 is always close to optimal. However, it is interesting to note that even the best-case performance of
Algorithm 4 can be significantly worse than the performance of the optimal policy.

8 Conclusions

We proposed three stochastic approximation methods to compute the optimal base-stock levels in three
problem classes for which the base-stock policies are known to be optimal. The proposed methods
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Problem OP AVA2 MXA2 MIA2 AVA2

OP
MXA2

OP AVA4 MXA4 MIA4 AVA4

OP
MXA4

OP
(1, 2) 0.88 0.88 0.89 0.88 100.16 100.74 0.88 0.88 0.88 100.16 100.64
(1, 5) 1.92 1.93 1.94 1.92 100.39 101.10 1.93 1.95 1.92 100.42 101.44
(1, 10) 3.56 3.61 3.66 3.58 101.25 102.58 3.61 3.65 3.57 101.28 102.34

(2, 2) 0.79 0.79 0.80 0.79 100.35 101.73 0.84 0.85 0.84 106.92 107.58
(2, 5) 1.60 1.62 1.64 1.61 100.85 101.96 1.89 1.90 1.75 117.60 118.64
(2, 10) 2.90 2.96 3.04 2.92 101.74 104.74 3.48 3.65 3.24 119.95 125.64

(4, 2) 0.78 0.78 0.80 0.78 100.63 102.55 0.89 0.89 0.88 113.66 114.54
(4, 5) 1.34 1.36 1.37 1.34 100.94 101.99 1.84 1.90 1.60 137.07 141.13
(4, 10) 2.38 2.44 2.50 2.40 102.62 104.98 3.48 3.81 3.14 146.51 160.36

(6, 2) 0.76 0.77 0.77 0.76 100.65 101.86 0.89 0.89 0.88 116.50 116.99
(6, 5) 1.16 1.18 1.19 1.17 101.32 102.23 1.85 1.90 1.62 159.33 163.74
(6, 10) 2.02 2.07 2.11 2.04 102.74 104.72 3.21 3.55 2.88 158.99 176.20

Table 3: Computational results for the inventory purchasing problem under price uncertainty.

enjoy the well-known advantages of the stochastic approximation methods. They work with samples
of the random variables, eliminating the need to compute expectations explicitly. Furthermore, they
remain applicable when the demand information is censored by the amount of available inventory. The
iterates of the proposed methods converge to the optimal base-stock levels, but this is not guaranteed
for standard stochastic approximation methods, such as Algorithms 3 and 4.

One can unify the approaches in Sections 3, 4 and 6 to a certain extent. Equations (5), (22) and (30)
characterize the first order conditions that must be satisfied by the optimal base-stock levels. However,
finding a solution to these first order conditions through stochastic approximation methods requires
knowing the function v̇t+1(·). In (10), (26) and (34), we come up with recursive expressions that can
be used to compute the stochastic gradients of {vt(·) : t = 1, . . . , τ}. At iteration k, we “mimic”
these expressions by using the estimates of the optimal base-stock levels as in (11), (27) and (35). The
convergence proofs are based on analyzing the error function.

Our results easily extend to other settings, such as the revenue management problems for which the
booking-limit policies are known to be optimal. On the other hand, our analysis in this paper strictly
exploits the fact that the base-stock policies are optimal for the problem classes that we consider. It
is not yet clear what advantages our analysis can provide for the problem classes where the base-stock
policies are not necessarily optimal, but we only look for a good set of base-stock levels.
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9 Appendix

This section completes the proof of Lemma 7 by showing that limsupk→∞|ḟt(rk
t )| = 0. For ε > 0, we call

{k′, k′ + 1, . . . , k′′} as an upcrossing interval from ε/2 to ε, if we have |ḟt(rk′
t )| < ε/2, |ḟt(rk′′

t )| > ε and
ε/2 ≤ |ḟt(rk

t )| ≤ ε for all k = k′+1, . . . , k′′−1. We show that there exist only a finite number of upcrossing
intervals from ε/2 to ε. Since we have liminfk→∞|ḟt(rk

t )| = 0, this implies that limsupk→∞|ḟt(rk
t )| ≤ ε.

To show the result by contradiction, we fix ε > 0 and assume that the number of upcrossing intervals
from ε/2 to ε is infinite. We let {k′n, k′n + 1, . . . , k′′n} be the n-th upcrossing interval. We have

|ḟt(r
k′n+1
t )| − |ḟt(r

k′n
t )| ≤ |ḟt(r

k′n+1
t )− ḟt(r

k′n
t )|

≤ L |rk′n+1
t − r

k′n
t | = αk′nL |sk′n

t (rk′n
t , d

k′n
t , . . . , dk′n

τ )| ≤ LM αk′n ,

where we use Lemmas 1 and 2. Since |ḟt(r
k′n+1
t )| ≥ ε/2 and limk→∞ αk = 0, the chain of inequalities

above imply that there exists a finite number N̂ such that we have |ḟt(r
k′n
t )| ≥ ε/4 for all n = N̂ , N̂+1, . . ..

Since limk→∞ Ek

{|ek
t+1(r

k
t −dk

t )|
}

= 0 by the argument at the beginning of the proof of Lemma 7, there
exists a finite number Ñ such that we have Ek

{|ek
t+1(r

k
t − dk

t )|
} ≤ ε/8 for all k = k′

Ñ
, k′

Ñ
+ 1, . . ..

Therefore, letting N = max{N̂ , Ñ}, we have

|ḟt(r
k′n
t )| ≥ ε/4 and Ek

{|ek
t+1(r

k
t − dk

t )|
} ≤ ε/8 (46)

for all n = N, N + 1, . . ., k = k′N , k′N + 1, . . ..

On the other hand, using Lemmas 1 and 2, we have

ε/2 ≤ |ḟt(r
k′′n
t )| − |ḟt(r

k′n
t )| ≤ |ḟt(r

k′′n
t )− ḟt(r

k′n
t )| ≤ L |rk′′n

t − r
k′n
t | ≤ L

k′′n−1∑

k=k′n

αk |sk
t (r

k
t , dk

t , . . . , d
k
τ )|,

which implies that
∑k′′n−1

k=k′n
αk ≥ ε/[2LM ]. Therefore, using (46), we obtain

∞∑

n=N

k′′n−1∑

k=k′n

αk |ḟt(rk
t )|2 ≥

∞∑

n=N

ε2

16

k′′n−1∑

k=k′n

αk ≥
∞∑

n=N

ε3

32LM
= ∞. (47)

We have |ḟt(rk
t )|/2 ≥ ε/8 ≥ Ek

{|ek
t+1(r

k
t − dk

t )|
}

for all n = N, N + 1, . . ., k = k′n, k′n + 1, . . . , k′′n − 1
by (46) and the definition of an upcrossing interval. This implies that

|ḟt(rk
t )|2 − ḟt(rk

t )Ek

{
ek
t+1(r

k
t − dk

t )
} ≥ |ḟt(rk

t )|2 − |ḟt(rk
t )|Ek

{|ek
t+1(r

k
t − dk

t )|
} ≥ |ḟt(rk

t )|2 − |ḟt(rk
t )|2/2

for all n = N, N + 1, . . ., k = k′n, k′n + 1, . . . , k′′n − 1. Using this chain of inequalities, since (A.2) holds
for time period t by Lemma 6, we obtain

∞∑

n=N

k′′n−1∑

k=k′n

αk |ḟt(rk
t )|2/2 ≤

∞∑

n=N

k′′n−1∑

k=k′n

αk
[ |ḟt(rk

t )|2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]

≤
∞∑

k=1

αk
[ |ḟt(rk

t )|2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+

< ∞.

This expression contradicts (47). Therefore, we must have a finite number of upcrossing intervals from
ε/2 to ε, which implies that limsupk→∞|ḟt(rk

t )| ≤ ε. Since ε is arbitrary, we obtain the desired result. 2
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10 Online Supplement

This section shows that the stochastic approximation methods that we propose for the multi-period
newsvendor problem with lost sales and the inventory purchasing problem under price uncertainty
converge to the optimal base-stock levels w.p.1.

10.1 Multi-Period Newsvendor Problem with Lost Sales and Stationary Cost
Parameters

We consider the setting described in Section 4 and show that the error function ek
t (xt) = v̇t(xt)1(xt >

0) − Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )1(xt > 0)

}
satisfies the same bound given in Lemma 4. Once we have this

bound, we can follow the same induction argument in Proposition 5, Lemmas 6-8 and Proposition 9
to show that the stochastic approximation method that we propose for the multi-period newsvendor
problem with lost sales converges to the optimal base-stock levels w.p.1. The following lemma is
analogous to Lemma 3.

Lemma 11 If x̂t, x̃t satisfy x̂t ≤ x̃t, then we have Ek

{
ξk
t (x̂t, d

k
t , . . . , d

k
τ )

} ≤ Ek

{
ξk
t (x̃t, d

k
t , . . . , d

k
τ )

}

w.p.1 for all t = 1, . . . , τ , k = 1, 2, . . ..

Proof We show the result by induction over the time periods. Since (11) and (27) reduce to the
same expression for time period τ , we can show that the result holds for time period τ by following the
argument in the proof of Lemma 3. Furthermore, we have Ek

{
ξk
τ (xτ , d

k
τ )

} ≥ −b for all xτ ∈ R by (27).
Assuming that the result holds for time period t+1 and we have Ek

{
ξk
t+1(xt+1, d

k
t+1, . . . , d

k
τ )

} ≥ −b for all
xt+1 ∈ R, we now show that the result holds for time period t and we have Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

} ≥ −b

for all xt ∈ R. We consider three cases. First, we assume that rk
t ≤ x̂t ≤ x̃t. We investigate the

conditional expectation Ek

{
ξk
t (·, dk

t , . . . , d
k
τ ) | dk

t = φt

}
, where φt is a known constant, by examining the

following three subcases.

Case 1.a. Assume that φt < x̂t. Since we have φt < x̂t ≤ x̃t, (27) implies that ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) =

h+ξk
t+1(x̂t−φt, d

k
t+1, . . . , d

k
τ ) and ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ) = h+ξk

t+1(x̃t−φt, d
k
t+1, . . . , d

k
τ ). Taking expecta-

tions conditional on dk
t = φt and noting the fact that the demand random variables at different time peri-

ods are independent, we obtain Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= h+Ek

{
ξk
t+1(x̂t−φt, d

k
t+1, . . . , d

k
τ )

}

and Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= h+Ek

{
ξk
t+1(x̃t−φt, d

k
t+1, . . . , d

k
τ )

}
. Thus, the induction hy-

pothesis implies that Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

} ≥ Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

} ≥ −b.

Case 1.b. Assume that x̂t ≤ φt < x̃t. We have ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) = −b and ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ) =

h + ξk
t+1(x̃t − φt, d

k
t+1, . . . , d

k
τ ) by (27). Taking expectations conditional on dk

t = φt, the induction hy-
pothesis implies that Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= −b ≤ h+Ek

{
ξk
t+1(x̃t−φt, d

k
t+1, . . . , d

k
τ )

}
=

Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
.

Case 1.c. Assume that φt ≥ x̃t. In this case, we have ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) = −b = ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ).

Taking expectations conditional on dk
t = φt, we obtain Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= −b =

Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
.
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The three subcases above show that if rk
t ≤ x̂t ≤ x̃t, then we have Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t

} ≥
Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t

} ≥ −b. Taking expectations, we obtain Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ )

} ≥
Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ )

} ≥ −b.

It can be shown that the result holds for time period t by considering the other two cases where we
have x̂t < rk

t ≤ x̃t or x̂t ≤ x̃t < rk
t . This completes the induction argument. 2

We now show that the error function ek
t (xt) = v̇t(xt)1(xt > 0) − Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )1(xt > 0)

}

satisfies the same bound given in Lemma 4. If xt ≤ 0, then we have ek
t (xt) = 0 and the bound

immediately holds. Therefore, we assume that xt > 0 for the rest of the discussion. Using (22) and
(27), we obtain

Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}
=





hPk

{
dk

t < xt

}− bPk

{
dk

t ≥ xt

}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

if xt ≥ rk
t

hPk

{
dk

t < rk
t

}− b Pk

{
dk

t ≥ rk
t

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}
if xt < rk

t

=





ḟt(xt)− c− Ek

{
v̇t+1(xt − dk

t )1(dk
t < xt)

}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

if xt ≥ rk
t

ḟt(rk
t )− c− Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}
if xt < rk

t .

(48)

Since r∗t is the minimizer of the convex function ft(·), we have ḟt(r∗t ) = 0. Using (22) and (25), we
obtain

v̇t(xt) =

{
ḟt(xt)− c if xt ≥ r∗t
−c if xt < r∗t .

(49)

We consider four cases. First, we assume that xt ≥ rk
t and xt ≥ r∗t . Using (48) and (49), we have

ek
t (xt) = Ek

{
v̇t+1(xt−dk

t )1(dk
t < xt)

}−Ek

{
ξk
t+1(xt−dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

= Ek

{
ek
t+1(xt−dk

t )
}
.

Therefore, we obtain |ek
t (xt)| ≤ Ek

{|ek
t+1(xt − dk

t )|
}

by Jensen’s inequality.

Second, we assume that xt ≥ rk
t and xt < r∗t . We have Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

} ≥ Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}

by Lemma 11. Using this inequality, (48) and (49), we obtain

ek
t (xt) = −c− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

} ≤ −c− Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}

= −ḟt(rk
t ) + Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}− Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}

= −ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}
.

Since xt < r∗t and r∗t is the minimizer of the convex function ft(·), we have ḟt(xt) ≤ 0. Using (48), we
also obtain

ek
t (xt) = −c− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}

= −ḟt(xt) + Ek

{
v̇t+1(xt − dk

t )1(dk
t < xt)

}− Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

≥ Ek

{
ek
t+1(xt − dk

t )
}
.
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The last two chains of inequalities imply that

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣, Ek

{|ek
t+1(xt − dk

t )|
}}

.

Third, we assume that xt < rk
t and xt ≥ r∗t . Since ft(·) is convex, we have ḟt(rk

t ) ≥ ḟt(xt) ≥ ḟt(r∗t ) =
0. Using (48) and (49), we obtain

ek
t (xt) = ḟt(xt)− ḟt(rk

t ) + Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}− Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}

= ḟt(xt)− ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}
,

which implies that −ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
} ≤ ek

t (xt) ≤ Ek

{
ek
t+1(r

k
t − dk

t )
}
. Therefore, we have

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣, Ek

{|ek
t+1(r

k
t − dk

t )|
}}

.

Fourth, we assume that xt < rk
t and xt < r∗t . In this case, (48) and (49) imply that

ek
t (xt) = −ḟt(rk

t ) + Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}− Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}

= −ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}
.

Therefore, we have |ek
t (xt)| =

∣∣ḟt(rk
t ) − Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣. The result follows by combining the four

cases.

10.2 Multi-Period Newsvendor Problem with Lost Sales and Nonstationary
Cost Parameters

This section shows how to extend the ideas in Section 4 to the case where the cost parameters are
nonstationary. We use ct, ht and bt to respectively denote the per unit replenishment, holding and
penalty costs at time period t. In addition to the earlier assumptions for the demand random variables
and the lead times, we also assume that the cost parameters satisfy bt > ct+1 ≥ 0 and ht ≥ 0 for all
t = 1, . . . , τ , with cτ+1 = 0. This assumption is standard and holds in many applications since the
per unit penalty cost is usually much higher than the per unit replenishment cost. Intuitively, this
assumption ensures that it is never optimal to hold inventory to satisfy the future demand while leaving
the demand in the current time period unsatisfied. Under this assumption, it is possible to show that
the functions {vt(·) : t = 1, . . . , τ} and {ft(·) : t = 1, . . . , τ} defined in Section 4 are convex.

The functions {vt(·) : t = 1, . . . , τ} satisfy the Bellman equations

vt(xt) = min
yt≥xt

ct [yt − xt] + E
{
ht [yt − dt]+ + bt [dt − yt]+ + vt+1([yt − dt]+)

}
,

with vτ+1(·) = 0. We also let

ft(rt) = ct rt + E
{
ht [rt − dt]+ + bt [dt − rt]+ + vt+1([rt − dt]+)

}
.

It can be shown that vt(·) and ft(·) are positive, Lipschitz continuous, differentiable and convex func-
tions, and ft(·) has a finite unconstrained minimizer. In this case, the optimal base-stock levels
{r∗t : t = 1, . . . , τ} are the minimizers of the functions {ft(·) : t = 1, . . . , τ}.
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Our approach is based on constructing tractable approximations to the stochastic gradients of {ft(·) :
t = 1, . . . , τ}. Since we have

ḟt(rt) = ct + ht P
{
dt < rt

}− bt P
{
dt ≥ rt

}
+ E

{
v̇t+1(rt − dt) 1(dt < rt)

}
, (50)

we can compute a stochastic gradient of ft(·) at xt through

∆t(xt, dt) = ct + ht 1(dt < xt)− bt 1(dt ≥ xt) + v̇t+1(xt − dt)1(dt < xt). (51)

On the other hand, (25) implies that

v̇t(xt) =

{
ḟt(xt)− ct if xt ≥ r∗t
−ct if xt < r∗t ,

(52)

=

{
ht P

{
dt < xt

}− bt P
{
dt ≥ xt

}
+ E

{
v̇t+1(xt − dt)1(dt < xt)

}
if xt ≥ r∗t

ht P
{
dt < r∗t

}− bt P
{
dt ≥ r∗t

}
+ E

{
v̇t+1(r∗t − dt)1(dt < r∗t )

}
if xt < r∗t ,

in which case

v̇t(xt, dt) =

{
ht 1(dt < xt)− bt 1(dt ≥ xt) + v̇t+1(xt − dt)1(dt < xt) if xt ≥ r∗t
ht 1(dt < r∗t )− bt 1(dt ≥ r∗t ) + v̇t+1(r∗t − dt)1(dt < r∗t ) if xt < r∗t ,

(53)

gives a stochastic gradient of vt(·) at xt. To construct tractable approximations to the stochastic
gradients of {ft(·) : t = 1, . . . , τ}, we “mimic” the computation in (53) by using the estimates of the
optimal base-stock levels. In particular, letting {rk

t : t = 1, . . . , τ} be the estimates of the optimal
base-stock levels at iteration k, we recursively define

ξk
t (xt, dt, . . . , dτ ) =





ht 1(dt < xt)− bt 1(dt ≥ xt)
+ ξk

t+1(xt − dt, dt+1, . . . , dτ )1(dt < xt) if xt ≥ rk
t

ht 1(dt < rk
t )− bt 1(dt ≥ rk

t )
+ ξk

t+1(r
k
t − dt, dt+1, . . . , dτ )1(dt < rk

t ) if xt < rk
t ,

(54)

with ξk
τ+1(·, ·, . . . , ·) = 0. At iteration k, replacing v̇t+1(xt − dt) in (51) with ξk

t+1(xt − dt, dt+1, . . . , dτ ),
we use

sk
t (xt, dt, . . . , dτ ) = ct + ht 1(dt < xt)− bt 1(dt ≥ xt) + ξk

t+1(xt − dt, dt+1, . . . , dτ )1(dt < xt)

to approximate the stochastic gradient of ft(·) at xt. Thus, we can use Algorithm 1 to search for the
optimal base-stock levels. The only difference is that we need to use the step direction above in Step 2.

To establish the convergence of Algorithm 1 to the optimal base-stock levels for the multi-period
newsvendor problem with lost sales and nonstationary cost parameters, we analyze the error function
defined as

ek
t (xt) = v̇t(xt)1(xt > 0)− Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )1(xt > 0)

}
,

with ek
τ+1(·) = 0. We can easily follow the argument in the proof of Lemma 2 to derive bounds on

ξk
t (·, dk

t , . . . , d
k
τ ) and sk

t (·, dk
t , . . . , d

k
τ ). The following lemma is analogous to Lemma 3.
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Lemma 12 If x̂t, x̃t satisfy x̂t ≤ x̃t, then we have

Ek

{
ξk
t (x̂t, d

k
t , . . . , d

k
τ )

} ≤ Ek

{
ξk
t (x̃t, d

k
t , . . . , d

k
τ )

}
+

τ∑

s=t+1

Ek

{|ek
s(x̃t −

∑s−1
s′=t dk

s′)|
}

(55)

w.p.1 for all t = 1, . . . , τ , k = 1, 2, . . ..

Proof We show the result by induction over the time periods. It is easy to show that the result
holds for time period τ by following the corresponding argument in the proof of Lemma 3. Assuming
that the result holds for time period t + 1, we now show that the result holds for time period t. We
consider three cases. First, we assume that rk

t ≤ x̂t ≤ x̃t. We investigate the conditional expectation
Ek

{
ξk
t (·, dk

t , . . . , d
k
τ ) | dk

t = φt

}
, where φt is a known constant, by examining the following three subcases.

Case 1.a. Assume that φt < x̂t. Since we have φt < x̂t ≤ x̃t, (54) implies that ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) =

ht + ξk
t+1(x̂t − φt, d

k
t+1, . . . , d

k
τ ) and ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ) = ht + ξk

t+1(x̃t − φt, d
k
t+1, . . . , d

k
τ ). Taking

expectations conditional on dk
t = φt and noting the fact that the demand random variables at different

time periods are independent, we obtain Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= ht + Ek

{
ξk
t+1(x̂t −

φt, d
k
t+1, . . . , d

k
τ )

}
and Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= ht +Ek

{
ξk
t+1(x̃t−φt, d

k
t+1, . . . , d

k
τ )

}
. Thus,

the induction hypothesis implies that

Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}

≤ Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
+

τ∑

s=t+2

Ek

{|ek
s(x̃t − φt −

∑s−1
s′=t+1 dk

s′)|
}
.

Case 1.b. Assume that x̂t ≤ φt < x̃t. We have ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) = −bt and ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ) =

ht + ξk
t+1(x̃t − φt, d

k
t+1, . . . , d

k
τ ) by (54). Taking expectations conditional on dk

t = φt and noting that
x̃t − φt > 0, we have Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= −bt and Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t =
φt

}
= ht +Ek

{
ξk
t+1(x̃t−φt, d

k
t+1, . . . , d

k
τ )

}
= ht + v̇t+1(x̃t−φt)− ek

t+1(x̃t−φt). Since r∗t is the minimizer
of the convex function ft(·), (52) implies that we have v̇t(·) ≥ −ct for all t = 1, . . . , τ . Therefore, we
obtain

Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= −bt ≤ ht − ct+1

≤ ht + v̇t+1(x̃t − φt) ≤ Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
+ |ek

t+1(x̃t − φt)|,

where the first inequality follows from the assumption that bt ≥ ct+1.

Case 1.c. Assume that φt ≥ x̃t. In this case, we have ξk
t (x̂t, φt, d

k
t+1, . . . , d

k
τ ) = −bt = ξk

t (x̃t, φt, d
k
t+1, . . . , d

k
τ ).

Taking expectations conditional on dk
t = φt, we obtain Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
= −bt =

Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t = φt

}
.

The three subcases above show that if rk
t ≤ x̂t ≤ x̃t, then we have Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t

} ≤
Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ ) | dk

t

}
+ |ek

t+1(x̃t − dk
t )|+

∑τ
s=t+2 Ek

{|ek
s(x̃t − dk

t −
∑s−1

s′=t+1 dk
s′)| | dk

t

}
. Taking

expectations, we obtain Ek

{
ξk
t (x̂t, d

k
t , d

k
t+1, . . . , d

k
τ )

} ≤ Ek

{
ξk
t (x̃t, d

k
t , d

k
t+1, . . . , d

k
τ )

}
+

∑τ
s=t+1 Ek

{|ek
s(x̃t−∑s−1

s′=t dk
s′)|

}
.
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It can be shown that the result holds for time period t by considering the other two cases where we
have x̂t < rk

t ≤ x̃t or x̂t ≤ x̃t < rk
t . This completes the induction argument. 2

The following lemma is analogous to Lemma 4.

Lemma 13 We have

|ek
t (xt)| ≤ 2max

{
∣∣ḟt(rk

t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣,Ek

{|ek
t+1(r

k
t − dk

t )|
}
,

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}
}

w.p.1 for all xt ∈ R, t = 1, . . . , τ , k = 1, 2, . . ..

Proof Using (50) and (54), we have

Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}
=





ht Pk

{
dk

t < xt

}− bt Pk

{
dk

t ≥ xt

}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

if xt ≥ rk
t

ht Pk

{
dk

t < rk
t

}− bt Pk

{
dk

t ≥ rk
t

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}
if xt < rk

t

=





ḟt(xt)− ct − Ek

{
v̇t+1(xt − dk

t )1(dk
t < xt)

}

+ Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

if xt ≥ rk
t

ḟt(rk
t )− ct − Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}

+ Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}
if xt < rk

t .

(56)

As before, we consider four cases. It is easy to show that

|ek
t (xt)| ≤ max

{∣∣ḟt(rk
t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣,Ek

{|ek
t+1(r

k
t − dk

t )|
}
,Ek

{|ek
t+1(xt − dk

t )|
}}

for the cases where xt ≥ rk
t and xt ≥ r∗t , or xt < rk

t and xt ≥ r∗t , or xt < rk
t and xt < r∗t by following the

argument in the proof of Lemma 4. This implies that the result holds for these three cases. We only
consider the remaining case where xt ≥ rk

t and xt < r∗t . If xt ≤ 0, then we have ek
t (xt) = 0 and the

result immediately holds. Therefore, we assume that xt > 0 for the rest of the discussion. We have

Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}
+

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
} ≥ Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}

by Lemma 12. Using this inequality, (52) and (56), we obtain

ek
t (xt) = −ct − Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}

≤ −ct − Ek

{
ξk
t (rk

t , dk
t , . . . , d

k
τ )

}
+

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}

= −ḟt(rk
t ) + Ek

{
v̇t+1(rk

t − dk
t )1(dk

t < rk
t )

}

− Ek

{
ξk
t+1(r

k
t − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < rk
t )

}
+

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}

= −ḟt(rk
t ) + Ek

{
ek
t+1(r

k
t − dk

t )
}

+
τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}
.
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Since xt < r∗t and r∗t is the minimizer of the convex function ft(·), we have ḟt(xt) ≤ 0. Using (56), we
also obtain

ek
t (xt) = −ct − Ek

{
ξk
t (xt, d

k
t , . . . , d

k
τ )

}

= −ḟt(xt) + Ek

{
v̇t+1(xt − dk

t )1(dk
t < xt)

}− Ek

{
ξk
t+1(xt − dk

t , d
k
t+1, . . . , d

k
τ )1(dk

t < xt)
}

≥ Ek

{
ek
t+1(xt − dk

t )
}
.

The last two chains of inequalities imply that

|ek
t (xt)| ≤ max

{
∣∣ḟt(rk

t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣ +

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}
,Ek

{|ek
t+1(xt − dk

t )|
}
}

≤ 2 max

{
∣∣ḟt(rk

t )− Ek

{
ek
t+1(r

k
t − dk

t )
}∣∣,

τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}
}

.

The result follows by combining the four cases. 2

Finally, we have the following lemma, which is analogous to (A.4) and (A.5) in Proposition 5.

Lemma 14 There exist constants At and Bt such that we have

|ek
t (xt)| ≤ At

τ∑
s=t

|ḟs(rk
s )| (57)

|ek
t (xt)|2 ≤ Bt

τ∑
s=t

[ |ḟs(rk
s )|2 − ḟs(rk

s )Ek

{
ek
s+1(r

k
s − dk

s)
}]+ (58)

w.p.1 for all xt ∈ R, t = 1, . . . , τ , k = 1, 2, . . ..

Proof We show the result by induction over the time periods. Since ek
τ+1(·) = 0, Lemma 13 shows

that (57) and (58) hold for time period τ with Aτ = 2 and Bτ = 4. Assuming that the result holds for
time periods t + 1, . . . , τ , Lemma 13 and the induction hypothesis imply that

|ek
t (xt)| ≤ 2

{
|ḟt(rk

t )|+ Ek

{|ek
t+1(r

k
t − dk

t )|
}

+
τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}
}

≤ 2

{
|ḟt(rk

t )|+ At+1

τ∑

s=t+1

|ḟs(rk
s )|+

τ∑

s=t+1

{
As

τ∑

s′=s

|ḟs′(rk
s′)|

}}
.

If we let At = 2 (1 + At+1 +
∑τ

s=t+1 As), then (57) holds for time period t. For all xt ∈ R, squaring the
bound in Lemma 13 also implies that

|ek
t (xt)|2 ≤ 4

{
[ḟt(rk

t )]2 − 2 ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}

+
[
Ek

{
ek
t+1(r

k
t − dk

t )
}]2

+
[
Ek

{|ek
t+1(r

k
t − dk

t )|
}]2 +

{
τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|
}

}2 }
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≤ 4

{
2

[
[ḟt(rk

t )]2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+

+ 2Ek

{|ek
t+1(r

k
t − dk

t )|2
}

+ [τ − t]
τ∑

s=t+1

Ek

{|ek
s(xt −

∑s−1
s′=t dk

s′)|2
}
}

≤ 4

{
2

[
[ḟt(rk

t )]2 − ḟt(rk
t )Ek

{
ek
t+1(r

k
t − dk

t )
}]+

+ 2 Bt+1

τ∑

s=t+1

[ |ḟs(rk
s )|2 − ḟs(rk

s )Ek

{
ek
s+1(r

k
s − dk

s)
}]+

+ [τ − t]
τ∑

s=t+1

{
Bs

τ∑

s′=s

[ |ḟs′(rk
s′)|2 − ḟs′(rk

s′)Ek

{
ek
s′+1(r

k
s′ − dk

s′)
}]+

}}
,

where the second inequality uses the fact that
[∑n

i=1 ai

]2 ≤ n
∑n

i=1 a2
i and Jensen’s inequality, and the

third inequality uses the induction hypothesis. If we let Bt = 4 [2 + 2Bt+1 + (τ − t)
∑τ

s=t+1 Bs], then
(58) holds for time period t. 2

Once we have these preliminary results, we can follow the same induction argument in Proposition
5, Lemmas 6-8 and Proposition 9 to show that the stochastic approximation method that we propose
for the multi-period newsvendor problem with lost sales and nonstationary cost parameters converges
to the optimal base-stock levels w.p.1. We also note that the lemma above already shows that results
analogous to (A.4) and (A.5) in Proposition 5 are satisfied.

10.3 Inventory Purchasing Problem under Price Uncertainty

We consider the setting described in Section 6 and show that the error function ek
t (xt, p̂t) = v̇t(xt, p̂t)−

Ek

{
ξk
t (xt, p̂t, p

k
t+1, . . . , p

k
τ , d

k)
}

satisfies a bound similar to the one given in Lemma 4. Once we have this
bound, we can follow the same induction argument in Proposition 5, Lemmas 6-8 and Proposition 9 to
show that the stochastic approximation method that we propose for the inventory purchasing problem
under price uncertainty converges to the optimal base-stock levels w.p.1.

Using (35), we obtain

Ek

{
ξk
t (xt, p̂t, p

k
t+1 . . . , pk

τ , d
k)

}
=

{
Ek

{
ξk
t+1(xt, p

k
t+1, . . . , p

k
τ , d

k)
}

if xt ≥ rk
t (p̂t)

Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

if xt < rk
t (p̂t).

(59)

We consider four cases. First, we assume that xt ≥ rk
t (p̂t) and xt ≥ r∗t (p̂t). Using (34) and (59), we

have ek
t (xt, p̂t) = v̇t+1(xt) − Ek

{
ξk
t+1(xt, p

k
t+1 . . . , pτ , d)

}
= Ek

{
ek
t+1(xt, p

k
t+1)

}
. Therefore, we obtain

|ek
t (xt, p̂t)| ≤ Ek

{|ek
t+1(xt, p

k
t+1)|

}
by Jensen’s inequality.

Second, we assume that xt ≥ rk
t (p̂t) and xt < r∗t (p̂t). Following the argument in the proof of Lemma

3, it is easy to show that Ek

{
ξk
t (·, p̂t, p

k
t+1, . . . , p

k
τ , d

k)
}

is increasing. In this case, using (33) and (59),
we obtain ek

t (xt, p̂t) = −p̂t − Ek

{
ξk
t+1(xt, p

k
t+1, . . . , p

k
τ , d

k)
} ≤ −p̂t − Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}
.
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Therefore, (30) implies that

ek
t (xt, p̂t) ≤ −p̂t − Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

= −ḟt(rk
t (p̂t), p̂t) + v̇t+1(rk

t (p̂t))− Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

= −ḟt(rk
t (p̂t), p̂t) + Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}
.

Since xt < r∗t (p̂t) and r∗t (p̂t) is the minimizer of the convex function ft(·, p̂t), we have ḟt(xt, p̂t) ≤ 0.
Using (30), we also obtain

ek
t (xt, p̂t) = −p̂t − Ek

{
ξk
t+1(xt, p

k
t+1, . . . , p

k
τ , d

k)
}

= −ḟt(xt, p̂t) + v̇t+1(xt)− Ek

{
ξk
t+1(xt, p

k
t+1, . . . , p

k
τ , d

k)
} ≥ Ek

{
ek
t+1(xt, p

k
t+1)

}
.

The last two chains of inequalities imply that

|ek
t (xt, p̂t)| ≤ max

{∣∣ḟt(rk
t (p̂k

t ), p̂t)− Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}∣∣, Ek

{|ek
t+1(xt, p

k
t+1)|

}}
.

Third, we assume that xt < rk
t (p̂t) and xt ≥ r∗t (p̂t). Since ft(·, p̂t) is convex, we have ḟt(rk

t (p̂t), p̂t) ≥
ḟt(xt, p̂t) ≥ ḟt(r∗t (p̂t), p̂t) = 0. On the other hand, (30) implies that v̇t+1(xt) = ḟt(xt, p̂t) − p̂t =
ḟt(xt, p̂t)− ḟt(rk

t (p̂t), p̂t) + v̇t+1(rk
t (p̂t)). In this case, using (34) and (59), we obtain

ek
t (xt, p̂t) = ḟt(xt, p̂t)− ḟt(rk

t (p̂t), p̂t) + v̇t+1(rk
t (p̂t))− Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

= ḟt(xt, p̂t)− ḟt(rk
t (p̂t), p̂t) + Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}
,

which implies that −ḟt(rk
t (p̂t), p̂t)+Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
} ≤ ek

t (xt, p̂t) ≤ Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}
. There-

fore, we have

|ek
t (xt, p̂t)| ≤ max

{∣∣ḟt(rk
t (p̂t), p̂t)− Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}∣∣,Ek

{|ek
t+1(r

k
t (p̂t), pk

t+1)|
}}

.

Fourth, we assume that xt < rk
t (p̂t) and xt < r∗t (p̂t). In this case, (30), (33) and (59) imply that

ek
t (xt, p̂t) = −pt − Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

= −ḟt(rk
t (p̂t), p̂t) + v̇t+1(rk

t (p̂t))− Ek

{
ξk
t+1(r

k
t (p̂t), pk

t+1, . . . , p
k
τ , d

k)
}

= −ḟt(rk
t (p̂t), p̂t) + Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}
.

Therefore, we have |ek
t (xt, p̂t)| =

∣∣ḟt(rk
t (p̂t), p̂t)− Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}∣∣. Combining the four cases, we

obtain

|ek
t (xt, p̂t)| ≤ max

{∣∣ḟt(rk
t (p̂t), p̂t)− Ek

{
ek
t+1(r

k
t (p̂t), pk

t+1)
}∣∣,

Ek

{|ek
t+1(r

k
t (p̂t), pk

t+1)|
}
, Ek

{|ek
t+1(xt, p

k
t+1)|

}}
.
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