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Using the FFT on Sigma-Delta 
ADCs

by: Ludek Slosarcik
1 Introduction
This application note deals with two topics in digital 
signal processing and metering, namely the Fast Fourier 
Transform (FFT) and sigma delta Analog-to-Digital 
Converters (SD ADCs).

First, the FFT is a mathematical technique for 
transforming a time-domain digital signal into a 
frequency-domain representation of the relative 
amplitudes of the different frequency regions in the 
signal. The FFT is extremely important in the area of 
frequency (spectrum) analysis. Second, SD ADCs are 
high resolution, high integration, and low-cost ADCs for 
applications such as metering, process control, and 
monitoring.

Both topics are outlined in depth in this application note, 
and some interested parties may find more details on 
relevant web pages or reference sources. The main 
purpose of this application note is to describe some 
methods for properly using the FFT in cooperation with 
the SD ADCs, especially in power metering applications.
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Basic problem description
2 Basic problem description
Using the FFT in power (energy) metering applications has some specific requirements, which are 
described in FFT-Based Algorithm for Metering Applications (document AN4255). The basic requirement 
is to have a power-of-two number of input samples during one input signal period. To fulfill this 
requirement, know the input signal frequency to be able to compute the correct period of time between the 
neighboring samples. This is due to having the power-of-two number of samples during the signal period. 
This assumes that the time between each ADC sample may be slightly adjusted by a Programmable Delay 
Block (PDB) or by another special timer which is able to provide a controllable interval tick to the 
hardware trigger of the ADC used. Strictly speaking, we need to synchronize the input signal frequency 
with the ADC sampling rate. For example, this technique may be simply used on the ADCs based on the 
Successive Approximation Register (SAR), which may be hardware-triggered by the PDB. On the other 
hand, there are also other types of ADCs and applications where this described technique cannot be used. 
This problem appears in the sigma-delta ADCs, whose sampling interval cannot be modified slightly. 
There are some use cases for bypassing this issue. Therefore, the current application note is a logical 
continuation of the original AN4255, which doesn’t resolve this issue.

3 Use case 1 _ synchronous processing
The simplest way to get the power-of-two samples from the SD ADC for a subsequent FFT computation 
is to synchronize both processes; the signal frequency and the ADC sampling rate. This process is 
described in AN4255. It requires knowledge of the frequency of the measured signal and being able to run 
the SD ADC in the single conversion mode too. The detection of the signal frequency (period) may be 
performed by the Zero-Crossing Detection (ZCD) technique, described in AN4255, Section 3.2.1. 
Although the SD ADCs are not very suitable for the single-conversion configuration due to a longer 
start-up time, we may use this AD conversion mode in some cases. The main limiting factor in using the 
SD ADCs in this mode is the start-up time, which may be several times higher than the time for normal 
AD conversion. This is due to a latency of the decimation filter. For example, the start-up time for the SD 
ADC used in the Freescale MKM34Z128 MCU (ARM Cortex-M0+ core)[2.] is typically three times 
higher in comparison to its normal conversion time. This feature limits the use of this mode to higher 
output sample rates (OSR) in cooperation with the subsequent FFT computation.

4 Use case 2 _ asynchronous processing
The other way to resolve the issue with using the FFT on the SD ADCs is to use an oversampling. In 
practical terms, the SD ADC collects more samples during the signal period than are really needed. The 
next step of this process is to use some type of re-computing technique, which transforms the original 
non-power-of-two ADC samples into the power-of-two samples required by the FFT. We may simply term 
this whole process as an interpolation of the input signal. This process is graphically represented in 
Figure 1. For simplification, there are only eight FFT points used and 12 measured samples (ratio is 1.5). 
Theoretically, it would be possible to use an undersampling method with the same subsequent process 
(interpolation to the power-of-two samples), but practically it is better to have a higher number of input 
samples than the FFT really needs. This is due to having a minimum computation error of the interpolated 
signal. Therefore, the ratio between the number of input samples and the power-of-two samples should be 
higher than 1. The upper bound of this ratio is limited by the power of the MCU used. The general rule is: 
a higher ratio, a lesser interpolation error, but a higher MCU (ADC) workload.
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Use case 2 _ asynchronous processing
Figure 1. FFT oversampling use case

Generally, this computing technique supposes that both processes, the signal frequency, and the ADC 
sampling rate, are mostly purely asynchronous. Thanks to this computing technique we may let the SD 
ADC run in a continuous conversion mode, which is much more natural for this type of ADCs than the 
single conversion mode (see Section 3, “Use case 1 _ synchronous processing,” on page 2).

As mentioned above, the key point for this use case is the interpolation. In the mathematical field of 
numerical analysis, interpolation is a method of constructing new data points within the range of a discrete 
set of known data points. With respect to Figure 1, the new data points are on its right-hand side (red data 
set), whereas the known data points are on its left-hand side (blue data set). While the known data points 
are measured by the ADC, the new data points are computed by the MCU. Therefore, the interpolation 
provides a means of estimating the function at intermediate known (for example measured) points.

There are plenty of known interpolation methods, some of which are described below. These methods were 
tested practically on the two-phase metering reference design based on the MKM34Z128 MCU.

4.1 Linear interpolation
Linear interpolation is the simplest method of getting values at positions in between the data points. The 
points are simply joined by straight line segments. Each segment (bounded by two neighboring data points) 
can be interpolated independently. With respect to the example in Figure 1, we will have the set of data 
points (x0,y0), (x1,y1),...,(x11,y11). Linear interpolation on this set of data points is defined as the 
concatenation of linear interpolants between each pair of data points. A linear interpolant is the straight 
line between neighboring points. The detail of the interpolation of one segment is pictured in Figure 2. The 
color representation is the same as in Figure 1, that is the blue points are measured values, whereas the red 
points are computed values.
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Use case 2 _ asynchronous processing
Figure 2. Example of linear interpolation

For a value x in the interval (x0,x1), the value y along the straight line is given by the following equation: 

Eqn. 1

Solving this equation for y, which is the unknown value at x, gives:

Eqn. 2

Where a and b are linear coefficients; a is the gain, while b is the offset.

Linear interpolation is a special case of a polynomial interpolation with the degree of one. It is quick and 
easy, but it is not very precise, especially when there are higher harmonics in the input signal and a low 
ratio between the input samples and the computed points. We may resolve this issue by extending this ratio, 
if possible.

4.2 Polynomial interpolation
Polynomial interpolation is the interpolation of a given data set by a polynomial. Let us assume that we 
have n+1 discrete data points (x0,y0), (x1,y1),....,(xn,yn) with different x-coordinates. The main objective is 
to find a polynomial function of degree n that passes through these n+1 points. This polynomial is called 
an interpolating polynomial. There are plenty of known methods for solving this assignment. One of the 
simplest solution methods is using the Lagrange interpolating polynomial. This is a well-known technique 
in numerical analysis. The general equation for the Lagrange interpolating polynomial is:

Eqn. 3

Where n is the degree of the polynomial, and Li(x) are Lagrange basic polynomials, expressed as:
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Use case 2 _ asynchronous processing
Eqn. 4

The basic polynomial Li(x) has the property that:

Eqn. 5

Polynomial interpolation is a generalization of linear interpolation, but it is more precise than the linear 
interpolation. Its precision depends on the degree of the polynomial (n-size in Equation 3). It gives a better 
accuracy for functions with larger variations. On the other hand, calculation of the interpolating 
polynomial is computationally expensive compared to linear interpolation, mainly for real-time 
applications (for example power metering). Due to this, the following text focuses only on the polynomial 
interpolation with a maximum degree of three. In other words, we will not compute one interpolating 
polynomial of degree n, but we will divide this task by finding several elementary interpolating 
polynomials of a lower degree (n=2 or n=3 at maximum). In practical terms, we will compute the y value, 
which is the unknown value at x, using three or four neighboring data points. The same process will be 
repeated for each pair of (x,y) values using several new neighbouring data points (xi,yi). This process is 
described in the following subheads.

4.2.1 Lagrange quadratic interpolation

Solving the basic Equation 3 of the Lagrange form of the interpolating polynomial for n=2 for general 
value y, which is the unknown value at x, gives:

Eqn. 6

Where Li(x) are basic Lagrange quadratic polynomials.

There is supposed to be three pairs (generally, n+1) of input data points (x0,y0),(x1,y1), and (x2,y2) for 
solving this equation. The new x-value should be between one of these values, x0 - x1 or x1 - x2. This new 
x-value is in fact a recalculated value (see also Figure 1 for new xi’ values). It is the multiple of the ratio 
between the number of the ADC values to the number of the power-of-two FFT points.

The example of the interpolation for n=2 is pictured in Figure 3. The three input points (measured values) 
are shown in blue. The interpolating function passing through them is the red parabola. Generally, the 
Lagrange basic polynomials Li(x) of degree two are quadratic functions. Their curve is a parabola.
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Use case 2 _ asynchronous processing
Figure 3. Example of quadratic interpolation

In general, the three x-values do not need to be spaced evenly (x0 - x1 may differ from x1 - x2). However, a 
uniform distribution of points is a typical use case for ADC periodic sampling intervals, that is, for 
metering applications. Thanks to this simplification, we may rewrite Equation 6 to the following form:

Eqn. 7

4.2.2 Lagrange cubic interpolation

Solving the basic Equation 3 of the Lagrange form of the interpolating polynomial for n=3 for general 
value y, which is the unknown value at x, gives:

Eqn. 8

Where Li(x) are basic Lagrange cubic polynomials.

Given four discrete input data points (x0,y0),(x1,y1),(x2,y2), and (x3,y3), we can find each individual cubic 
polynomial Li(x). The new x-value should be between one of these three intervals, x0 - x1, x1 - x2, or x2 - 
x3. This new x-value is in fact a recalculated value (see also Figure 1 for new xi’ values). It is the multiple 
of the ratio between the number of the ADC values to the number of the power-of-two FFT points.

The example of the interpolation for n=3 is pictured in Figure 4. The four input points (measured values) 
are shown in blue. The interpolating function passing through them is the red cubic curve. Generally, the 
Lagrange basic polynomials Li(x) of degree three are cubic functions.
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Practical implementation
Similarly to the previous example, we assume an uniform distributions of x-points in the metering 
applications. Therefore, the Equation 8 may be rewritten in the following form:

Eqn. 9

Figure 4. Example of cubic interpolation

5 Practical implementation
This chapter describes the implementation of the FFT resampling and interpolation techniques used in 
the C-code, and the simulation of these techniques in Excel®. It contains a description of the application 
programming interface (API) of three C-functions (for most frequent power meter topologies) for 
interpolation of the measured AD samples before the final FFT computation. The API for the subsequent 
FFT computation is described in a separate application note AN4255[1.]. The interpolation functions are 
part of the FFT-based metering library called METERLIBFFT, which is used for the power computation 
in some of Freescale electricity meter reference designs [4.] and [5.].

5.1 METERLIBFFT_Interpolation
These three functions are used for interpolation of the original input curve given by unsigned integer 
samples to the curve given by power-of-two samples, required by the FFT function. The source C-code for 
each type of algorithm is included in the fft.c file of the METERLIBFFT library. These functions support 
both oversampling and undersampling. The example of using the interpolation function in the main C-code 
is in the Section Appendix A, “Example of using the interpolation function in the single-phase user code.” 
There are also other functions used in this example. These functions, whose API is described in the 
AN4255[1.], are also part of the metering library, and are used for power computation based on the FFT.
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Practical implementation
5.1.1 Syntax
#include “meterlibfft.h”
long METERLIBFFT1PH_Interpolation (tMETERLIBFFT1PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);
long METERLIBFFT2PH_Interpolation (tMETERLIBFFT2PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);
long METERLIBFFT3PH_Interpolation (tMETERLIBFFT3PH_DATA *p, unsigned long u_ord, unsigned long 
i_ord, unsigned long samples_inp);

5.1.2 Arguments

Table 2. Interpolation order defines

5.1.3 Return

These functions return one of the following error codes valid only for undersampling use, for input samples 
lower than FFT samples:

• FFT_ERROR (positive) – FFT samples are higher than input samples, and FFT samples are higher 
than 128.

• FFT_OK (zero) – undersampling ratio is correct.

5.1.4 Calling order

These functions should be used only if the interpolation processing is required. In that case, these functions 
should be called periodically in a defined interval, which depends on the line frequency. These functions 
should be called closely before the main (FFT) calculation processing. The one-shot mandatory parameter 
initialization must be performed before calling these functions. Apart from other things, this parameter 
initialization function sets the number of required FFT points and also initializes all pointers to the input 
buffers used by the interpolation functions.

Table 1. METERLIBFFT_Interpolation functions arguments

Type Name Direction Description

tMETERLIBFFT1PH_DATA p in Pointer to the one-phase metering library data structure 

tMETERLIBFFT2PH_DATA p in Pointer to the two-phase metering library data structure 

tMETERLIBFFT3PH_DATA p in Pointer to the three-phase metering library data structure 

unsigned long u_ord in Voltage interpolation order _ see Table 2

unsigned long i_ord in Current interpolation order _ see Table 2

unsigned long samples_inp in Input samples number can be higher or lower than the required 
power-of-two FFT samples

Define name Description

ORD1 The 1st order (linear) interpolation

ORD2 The 2nd order (quadratic) interpolation

ORD3 The 3rd order (cubic) interpolation
Using the FFT on Sigma-Delta ADCs, Rev. 2, 07/2015
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Summary
NOTE
The original values in the input buffers (ADC values) will be rewritten by 
the new (interpolated) values after calling these functions.

5.1.5 Performance

Table 4. METERLIBFFT_Interpolation functions performance for the CM0+ core with MMAU

5.2 Simulation results
The results of the simulation for four examples are in the Appendices B, C, D, and E. These are typical 
cases of metering use. All examples were simulated in Excel. Each example has its own parametric table 
that describes the conditions of simulation. This is followed by two signal curves for a practical 
demonstration of how both the input and interpolated output signals look like. Finally, there are three error 
curves, each for a particular interpolation method. These error curves represent a percentage computational 
error between the ideal (non-interpolated) and the interpolated signal for each point during one period.

6 Summary
This application note describes several types of interpolation techniques for proper use of the FFT 
algorithm in special types of metering applications where the ADC periodic sampling intervals cannot be 
simply modified, for example, on the sigma-delta ADCs. The described interpolation techniques, which 
are not the only techniques, were selected with respect to their effective computing in a real-time 
application. The Lagrange quadratic interpolation method with ratio between two and three seems to be a 
good compromise with respect to its computing performance and precision. The best interpolation method 
(with regards to precision) supported by this library is the cubic interpolation, especially when used for the 

Table 3. METERLIBFFT_Interpolation functions performance for the CM0+ core

Function name
Code size [B] Stack size 

[B]1

1 Due to the undersampling use case (input samples < FFT samples)

Clock cycles2

2 Number of input samples = 120, number of required FFT points = 64, the same interpolation order for both channels

1st order 2nd order 3rd order 1st order 2nd order 3rd order

METERLIBFFT1PH_Interpolation 506 842 1654

512

12521 35260 76996

METERLIBFFT2PH_Interpolation 586 922 1734 24946 70519 153991

METERLIBFFT3PH_Interpolation 682 1018 1830 37418 106019 231227

Function name
Code size [B] Stack size 

[B]1

1 Due to the undersampling use case (input samples < FFT samples)

Clock cycles2

2 Number of input samples = 120, number of required FFT points = 64, the same interpolation order for both channels

1st order 2nd order 3rd order 1st order 2nd order 3rd order

METERLIBFFT1PH_Interpolation 940 1116 1560

512

7388 15543 28304

METERLIBFFT2PH_Interpolation 1020 1196 1640 14728 30942 56607

METERLIBFFT3PH_Interpolation 1116 1292 1736 22067 46533 84911
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current signal interpolation, due to its possibly bigger distortion. There are plenty of other known 
interpolation methods commonly used in math that can be used for this purpose. The limiting factor in their 
use in metering applications is computing performance and final precision.
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Appendix A  Example of using the interpolation function in 
the single-phase user code
/********************************************************************************************
 * (c) Copyright 2015, Freescale Semiconductor Inc.
 * ALL RIGHTS RESERVED.
********************************************************************************************/
#include "fraclib.h"           /* fractional library header */ 
#include "meterlibfft.h"       /* metering library header */   
#include "inputdata.h"         /* library of a typical periodic signals (LUT) */ 

/********************************************************************************************
 * Buffers definitions                                                                          *
********************************************************************************************/ 
/* multiplexed mandatory buffers (time domain / frequency domain in the Cartesian form) */
Frac24 u_re[120];     /* U-ADC output buffer/FFT real part output buffer */   
Frac24 i_re[120];     /* I-ADC output buffer/FFT real part output buffer */   

/* dedicated mandatory buffers (frequency domain in the Cartesian form) */
Frac24 u_im[SAMPLES64];     /* U-FFT imaginary part output buffer */   
Frac24 i_im[SAMPLES64];     /* I-FFT imaginary part output buffer */   

/********************************************************************************************
 * Variables definitions                                                                        *
********************************************************************************************/
tMETERLIBFFT1PH_DATA ui;              /* 1-PH main metering structure */ 
long fcn_out;                         /* metering function output or function error state */
long *pu,*pi;                         /* pointers to LUTs */

/********************************************************************************************
 * Main                                                                                         *
********************************************************************************************/
void main (void)
{
    /* Mandatory initialization section - for main FFT calculation */
    fcn_out = METERLIBFFT1PH_InitParam(&ui, SAMPLES64, SENS_PROP, IMP5000, IMP5000, EN_RES10);
    METERLIBFFT1PH_InitMainBuff(&ui, u_re, i_re, u_im, i_im, NULL);
    fcn_out = METERLIBFFT1PH_SetCalibCoeff(&ui, 325.27, 141.422, NULL, 0, 0);

    /* ADC sampling simulation (function fills-up both U and I buffers) */  
    pu = sin_120s_6e6_5h_10p; /* set pointer to the beginning of U-LUT */
    pi = sin_120s_4e6_5h_40p; /* set pointer to the beginning of I-LUT */
    for (unsigned long cnt = 0; cnt < 120; cnt++) 
    {
        u_re[cnt] = (*pu++);        /* copy U-binary values from LUT to the U-output buffer */
        i_re[cnt] = (*pi++);        /* copy I-binary values from LUT to the I-output buffer */
    }    
    
    /* performs interpolation only for asynchronous processing */    
    METERLIBFFT1PH_Interpolation(&ui, ORD2, ORD2, 120); 
    
    /* main calculation (FFT, I-signal conditioning, scaling, averaging) */
    METERLIBFFT1PH_CalcMain(&ui); 
    while (1);
} 
/********************************************************************************************
 * End of module                                                                                *
********************************************************************************************/
Freescale Semiconductor, Inc. 11



Revision history
Appendix B  Results of simulation _ Example 1
Table 6. Parameter table for example 1

Input signal sinus 1st harmonics only

Input samples 120

Reguired FFT samples 32

Interpolation ratio 120/32 = 3.75

Equivalent metering use case fADC = 6.144 MHz, OSR = 1024, sampling rate = 6144000/1024 = 6KHz, fINP = 50 Hz
Using the FFT on Sigma-Delta ADCs, Rev. 2, 07/2015
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Appendix C  Results of simulation _ Example 2
Table 7. Parameter table for example 2

Input signal sinus 1st harmonics + sinus 5th harmonics with 10% depth of modulation

Input samples 120

Reguired FFT samples 32

Interpolation ratio 120/32 = 3.75

Equivalent metering use case fADC = 6.144 MHz, OSR = 1024, sampling rate = 6144000/1024 = 6KHz, fINP = 50 Hz
Using the FFT on Sigma-Delta ADCs, Rev. 2, 07/2015
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Appendix D  Results of simulation _ Example 3
Table 8. Parameter table for example 3

Input signal sinus 1st only

Input samples 101

Reguired FFT samples 32

Interpolation ratio 101/32 = 3.15625

Equivalent metering use case fADC = 6.144 MHz, OSR = 1024, sampling rate = 6144000/1024 = 6KHz, fINP = 59.4Hz
Using the FFT on Sigma-Delta ADCs, Rev. 2, 07/2015
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Appendix E  Results of simulation _ Example 4
Table 9. Parameter table for example 4

Input signal sinus 1st harmonics + sinus 5th harmonics with 40% depth of modulation

Input samples 100

Reguired FFT samples 32

Interpolation ratio 100/32 = 3.125

Equivalent metering use case fADC = 6.144 MHz, OSR = 1024, sampling rate = 6144000/1024 = 6KHz, fINP = 60 Hz
Using the FFT on Sigma-Delta ADCs, Rev. 2, 07/2015
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