

This presentation is intended as a

 quick summary, and not a comprehensive resource. If you want to learn Land Navigation in detail, either buy a book; or get someone, who has the knowledge and skills, to teach you in person.

To get the ideas across presented on

 these slides, many figures, pictures, and calculations may not be to scale and may be exaggerated for clarity.Prior to being issued any training *equipment, you will be required to sign a "statement of liability" agreeing to pay for anything you damage or lose.

All items will be inspected and inventoried prior to your signature and at the end of the training day too.

If you do not intend to sign this statement, then you may be denied training.

[^0]

LAND NA VIGATION

 PRESENTATION PART 2 Module 12 Measure Route Distance
. . . and now on with the . . .

LAND NAVIGATION

Why Learn Land Navigation? Training and practicing land navigation on foot provides the following everyday navigation (how not to get lost) benefits;

- Tracking present location (Where am I ?)
- Determining Distance (How far is it and am I there yet ?)
- Sense of direction (Where do I want to go and where am I actually going ?)
- How to read a topographic map (Do I understand the map ?)
-Terrain and map association (What hill or river am I looking at ?)
- Spatial skills (Can I mentally visualize the landscape in 3D ?)
- Planning safe, practical routes (Take a long safe route or a short risky route ?)
- And more Navigational skills

The best way to learn LAND NAVIGATION is to get "dirt time", that is, get out there with a map and compass!
Navigation is not about finding yourself after you are lost (although that's what happens sometimes); it's about keeping track of your position as you move away from a known point. As you move you have to remain cognizant of the terrain you are leaving, of the terrain you are passing, and of the terrain that is ahead.
Navigation in the wilderness means knowing your starting point, your destination, and your route to get there.
These skills will allow you to venture farther off the beaten path than you ever thought before.

THIS PRESENTATION IS DIVIDED INTO FOUR PARTS

PART 1 Basic Land Navigation
> The Lensatic Compass
> The Topographic Map
> The Land and Map Association
PART 2 Intermediate Land Navigation
> Making Sense of Direction
$>$ Tracking Present Location
> Determining Travel Distance
PART 3 Advance Land Navigation
> Navigation Methods to Stay On Course
> Additional Skills of Land Navigation
> Planning to Navigate
PART 4 Expert Land Navigation
$>$ Navigation in different types of Terrain
$>$ Night Navigation
$>$ Sustainment
module 18
module 1
modules 2, 3, 4,
modules 5, 6
module 7
modules $8,9,10,11$
modules 12, 13, 14
module 15
module 16
module 17
module 19
module 20

Module $1 \quad$ Lensatic Compass - parts and features, and how to sight the compass by two different methods.
Module 2 Topo Map Margin - what map margin data represents, map care, and how to properly fold a map.
Module 3 Topo Map Scale - map sizes and how it affects amount of detail that will be shown.
Module 4 Topo Map Symbols - you must understand them; to read and speak map language to others.
Module 5 Terrain Relief - shows elevation, indicates terrain features and heights of natural features.
Module 6 Map Information - what a protractor is for and how a map provides four kinds of information.
Module $7 \quad$ Sense of Direction - lateral drift, current bearing, obstacles, back azimuth, deliberate offset.
Module 8 Resection - locate position with map only. Modified resection is with a map or compass.
Module 9 Intersection \& Triangulation - two methods to locate position by compass.
Module 10 Map Speaks Compass Language - there is no need to orient the map to find your position.
Module 11 Plotting Position Coordinates - exact positioning, used to communicate to others with a map.
Module 12 Route Measure - mapping straight-line distance, curvature distance, and slope distance.
Module 13 Pace Count - using ranger pacing beads and estimating hiking speed.
Module 14 Travel Distance Estimation - estimating by 100 meter rule, rule-of-thumb, and by time.
Module 15 Plan to Navigate - in a group or alone, equipment, safety, responsibilities, route selection.
Module 16 Stay on Course - advance reference points and advance baselines.
Module 17 Additional Land Navigation Skills - estimate daylight, conserve energy, blisters, weather insight.
Module 18 Navigating Different Terrain - special environments, featureless terrain, visibility, dense foilage.
Module 19 Night Navigation - night adaptation, protecting night vision, navigate with lensatic compass.
Module 20 Sustainment - maintaining skills, training others, setting up a land navigation course.

PART 2

INTERMEDIATE LAND NAVIGATION

 MODULE 12- Determine Travel Distance
- Measuring Route Distance

DETERMINING TRAVEL DISTANCE
 DESCRIPTION

Determining travel distance is the most common error encountered while moving. There may be circumstances where you are unable to determine travel distance using your map. It is therefore essential to learn methods by which you can accurately measure, pace, or estimate distances on the ground.

How far is that mountain? An ability to judge distances accurately is not a natural gift, but it is a skill worth developing. Judging distances accurately can help to identify features and avoid wrong assumptions that could lead to trouble; ("We should have reached camp by now... that's got to be Eagle Mountain, I think?")

- There are several techniques to measure distance on a map.
- STRAIGHT LINE DISTANCE - measuring from point A to point B on a map (horizontal distance).
- CURVATURE DISTANCE - measuring a trail or other curved line on a map (horizontal distance).
- SLOPE DISTANCE - measuring the planned route terrain slope on a map (vertical distance).
- There are several techniques to determine distance on the ground.
- SPEED - estimating your travel speed, how many miles per hour.
- PACE COUNT - count the number of steps you have taken and translate to ground distance.
- ESTIMATION - visualizing a set ground distance.
- TIME - Make it a habit of keeping your map and compass handy and refer to them every hour or so to locate your position (more often in low visibility). Keep track of your starting time, rest breaks and hiking pace. This will also give you an idea of how far you have traveled over a period of time.

DETERMINING TRAVEL DISTANCE MEASURE STRAIGHT LINE DISTANCE

1. To determine straight-line distance between two points on a map, lay a straight-edged piece of paper on the map so that the edge of the paper touches both points and extends past them. Make a tick mark on the edge of the paper at each point.
2. To convert the map distance to ground distance, move the paper down to the graphic bar scale, and align the right tick mark with a printed number in the primary scale so that the left tick mark is in the extension scale.
3. Measure (add) the bar scale miles or kilometers.

DETERMINING TRAVEL DISTANCE MEASURE CURVATURE DISTANCE

Measuring distance along map features that are not straight is a little more difficult. One technique that can be employed for this task is to use a number of straight-line segments. The accuracy of this method is dependent on the number of straight-line segments used.

Another method for measuring curvature map distances is to use a device called a map wheel. This device uses a small rotating wheel that records the distance traveled. The distance is measured by placing the device wheel directly on the map and tracing the trail or planned route with the wheel, it measures either in centimeters or inches.

DETERMINING TRAVEL DISTANCE MEASURE CURVATURE DISTANCE

To measure distance along a road, stream, or other curved line, the straight edge of a piece of paper is used. Place a tick mark on the paper and map at the beginning point from which the curved line is to be measured. Align the edge of the paper along a straight portion and make a tick mark on both map and paper where the edge of the paper leaves the straight portion of the line being measured. Repeat for each straight segment of the road, stream, or other curved line. When completed, measure distance from first tick mark to last tick mark on map scale.

DETERMINING TRAVEL DISTANCE MEASURE SLOPE DISTANCE (percentage or degree)

1. Determine elevation of point (A) (3240 feet) and (B) (2800 feet).
2. Vertical Distance (VD) is subtracting the lowest slope point (B) from the highest point (A), (440 feet) is VD.
3. Measure Horizontal Distance (HD) between points (A) and (B).
4. Compute the slope percentage by using the formula below. (HD) + (Slope\%) = total distance

Example $5280 \mathrm{ft}(1 \mathrm{mile})+\mathbf{2 5 \%}$ slope $=5280 \mathrm{ft}+1320 \mathrm{ft}(25 \%$ of 5280$)=6600 \mathrm{ft}(11 / 4 \mathrm{mile})$

* * 25% slope (14°) = every 100 ft traveled forward is 25 ft traveled up (4 ft forward is 1 ft up) * *

NOTE: the higher the percentage \% or degree ${ }^{\circ}$, the steeper the slope and the longer the distance.

Slopes above 12% is a concern for a hiker. Slopes above 25% and a hiker is climbing.

CURVATURE DISTANCE IS $31 / 2$ MILES $=18480$ FEET
Slope $\%=\underline{440 \mathrm{ft} \times 100}=2 \%(+370 \mathrm{ft})[1 \xlongequal{\circ}$ slope $]$ 18480

Total distance $18480+370=18850$ feet
STRAIGHT LINE DISTANCE IS $3 / 4$ MILE $=3960$ FEET
Slope $\%=440 \mathrm{ft} \times 100=12 \%(+443 \mathrm{ft})\left[6^{\circ}\right.$ slope $]$ 3960 Total distance $3960+443=4403$ feet

DETERMINING TRAVEL DISTANCE MEASURE SLOPE DISTANCE (slope profile)

Curvature Trail route vs. Straight Line route.
The (long distance) trail slope profile is gentle and easy to walk.

DETERMINING TRAVEL DISTANCE SLOPE DISTANCE (slope profile)

Curvature Trail route and slope steepness.

Even though this route is longer, it is obvious that this is a gentle and easy route to walk.

Prior to being issued any training *equipment, you will be required to sign a "statement of liability" agreeing to pay for anything you damage or lose.

All items will be inspected and inventoried prior to your signature and at the end of the training day too.

If you do not intend to sign this statement, then you may be denied training.

[^1]

\qquad

\qquad
\qquad

$+$
1

\qquad
\qquad
\qquad
\qquad
\qquad

 \qquad

THE END OF

 LAND NA VIGATION PRESENTATION PART 2 Module 12 Measure Route Distance
[^0]: You may use your own equipment.

[^1]: You may use your own equipment.

