
SG24-5386-00

International Technical Support Organization

http://www.redbooks.ibm.com

Using the MQSeries Integrator Version 1.0

Dieter Wackerow, Jorgen Becker-Hansen, Ken Palmer, Morton Saetra

Using the MQSeries Integrator Version 1.0

May 1999

SG24-5386-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 1999)

This edition applies to Version 1.0 of IBM MQSeries Integrator, Program Number 5801-AAR.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 175.

Take Note!

Contents

Figures . vii

Tables .xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Overview . 1
1.1 Business Integration . 1
1.2 What the MQSeries Integrator Can Do for You 2
1.3 The MQSI Architecture . 3
1.4 How to Use the MQSI. 4
1.5 Literature . 7

Chapter 2. Installation and Setup . 9
2.1 Windows NT Installation . 9

2.1.1 Preparing for the Installation. 10
2.1.2 Installing MQSeries . 10
2.1.3 Installing DB2 Universal Database . 10
2.1.4 Installing MQSeries Integrator for DB2 . 11
2.1.5 Setting Up the MQSI Database. 11
2.1.6 Installing the Database Schema . 15
2.1.7 The Database Connection File . 15
2.1.8 Verifying the Installation . 16
2.1.9 Editing the Makefile . 20

2.2 AIX Installation . 21
2.2.1 Preparing for the Installation. 21
2.2.2 Installing MQSeries . 22
2.2.3 Installing the AIX DB2 Universal Database 22
2.2.4 Installing MQSeries Integrator for DB2 . 23
2.2.5 Creating the MQSI Database on AIX . 24
2.2.6 Verifying the Installation . 24

Chapter 3. Getting to Know the MQSI - A Tutorial 27
3.1 Working with the MQSI Format Administrator 28

3.1.1 How to Define a Field . 30
3.1.2 How to Define an Input Control . 31
3.1.3 How to Define an Input Format . 32
3.1.4 How to Define an Output Control . 35
3.1.5 How to Define an Output Format . 37
© Copyright IBM Corp. 1999 iii

3.2 Working with Rules. 39
3.2.1 How to Add a Message Type to an Application 41
3.2.2 How to Define a Rule . 41
3.2.3 How to Specify Actions for a Rule. 43

3.3 Testing Formats and Rules with the Visual Tester 45
3.3.1 How to Test If the Input Message Is Defined Correctly 46
3.3.2 How to Test If the Output Message Is Defined Correctly 48
3.3.3 How to Test If the Rules Work Properly 49

3.4 Using the Rules Processor . 51
3.4.1 How to Set Up the Environment . 52
3.4.2 What the Rules Processor Configuration File Is For 53
3.4.3 How to Start the Rules Processor . 55

Chapter 4. Tools That Help with Development 57
4.1 Using msgtest to Test If a Message Reformats Correctly 58
4.2 Using ruletest to Evaluate Rules. 59
4.3 Debugging Rules Using NNRTrace . 61
4.4 Using MQSIputdata to Create Messages with RFH Header 63
4.5 Displaying Messages with MQSIgetdata . 69
4.6 Importing and Exporting Formats . 72

4.6.1 How to Export a Format . 74
4.6.2 How to Import a Format . 74

4.7 Importing and Exporting Rules . 74
4.7.1 How to Export Rules . 75
4.7.2 How to Import Rules . 76

4.8 The Visual Tester . 77
4.8.1 Installing the Visual Tester . 78
4.8.2 Logging On to the Visual Tester . 80
4.8.3 Loading a Message into a Queue . 81
4.8.4 Testing an Input Format . 82
4.8.5 Testing Reformat . 84
4.8.6 Testing Rules . 86

Chapter 5. Formatting Examples . 87
5.1 Using Delimited Fields . 89

5.1.1 Defining an Input Format with Delimited Fields 90
5.1.2 Defining an Output Format with Fields and Literals 96

5.2 Using Fields with Prefixes and Suffixes . 99
5.2.1 Adding Fields and Literals . 101
5.2.2 Creating a Prefix and a Suffix . 101
5.2.3 Attaching Prefixes and Suffixes to Fields 102

5.3 Output Operation Collections . 104
5.3.1 How to Define an Output Operation Collection 106
iv Using the MQSeries Integrator Version 1.0

5.3.2 How to Assign an Output Operation Collection to a Field 107
5.4 Substituting Field Values . 108

5.4.1 How to Define Substitution Values . 110
5.4.2 How to Define Substitutions for a Field 112

5.5 Using Fields Containing Length and Data. 112
5.5.1 Parsing Input Fields with Length and Data 113
5.5.2 Putting Fields with Length and Data . 115

5.6 Using Fields Containing a Tag (Field ID) . 118
5.6.1 Parsing Input Fields with Tag and Data 119
5.6.2 Parsing Input Fields with Tag, Length and Data 121
5.6.3 Putting Fields with Tag and Data . 122
5.6.4 Putting Fields with Tag, Length and Data 125

5.7 Messages with Date and Time Fields . 125
5.7.1 Parsing a Date Field . 127
5.7.2 Putting a Date Field into a Message . 128

5.8 Adding Fields with Calculated Values . 129
5.9 Compound Formats . 131

5.9.1 Objects for the Compound Example . 132
5.9.2 Defining an Input Compound Format . 132
5.9.3 Defining an Output Compound Format 134

Chapter 6. Writing Rules . 135
6.1 About Rules . 135
6.2 Techniques for Creating Rules . 136

6.2.1 Creating a New Application Group . 137
6.2.2 Creating a Rule . 138
6.2.3 Creating a Subscription and Action. 140
6.2.4 Testing a Rule . 141

6.3 Adding Rules and Subscriptions . 142
6.4 Multiple Rules . 143
6.5 Changing MQMD Fields . 146

6.5.1 The MQSI Header . 147
6.5.2 About Conversion . 148
6.5.3 Get and Put Options . 149

6.6 Management API . 150

Chapter 7. MQSI As an Intelligent Router . 153
7.1 Data Entry and Message Routing . 154
7.2 Warehouse Application. 156
7.3 Re-Composition of the Message. 158
7.4 Route Depending on Message Contents . 159

Chapter 8. Some Comments about Security . 163
8.1 Adding a Database User . 164
v

Chapter 9. The MQSeries SAP Link . 165

Appendix A. Check Reply C Program . 167

Appendix B. Special Notices . 175

Appendix C. Related Publications . 177
C.1 International Technical Support Organization Publications 177
C.2 Redbooks on CD-ROMs . 177
C.3 Other Publications . 178

How to Get ITSO Redbooks . 179
IBM Redbook Fax Order Form . 180

List of Abbreviations . 181

Index . 183

ITSO Redbook Evaluation . 189
vi Using the MQSeries Integrator Version 1.0

Figures

1. MQSeries Integrator Components . 5
2. Client Configuration Assistant . 13
3. DB2-Related Information in the sqlsvses.cfg File 16
4. Formatter GUI for IVP . 17
5. Rules GUI for IVP . 18
6. Rules Daemon Configuration File mqsiruleng.mpf for the IVP 19
7. Using the IVP . 20
8. AIX Installation . 23
9. Tutorial: Input and Output Messages. 27
10. MQSI Formatter Window . 28
11. Tutorial: Creating Input Fields . 30
12. Tutorial: Creating an Input Control. 31
13. Tutorial: Creating a Flat Input Format . 32
14. Tutorial: Input Flat Format . 32
15. Tutorial: Add Fields to a Format. 33
16. Tutorial: Select Fields for a Format . 33
17. Tutorial: Input Format with Fields. 33
18. Tutorial: Assign an Input Control to a Field . 34
19. Tutorial: Creating an Output Control (2). 35
20. Tutorial: Creating an Output Control (2). 36
21. Tutorial: Output Control Example. 36
22. Tutorial: Creating a Flat Output Format . 37
23. Tutorial: Output Format with Fields . 37
24. Tutorial: Assign an Output Control to a Field . 38
25. MQSI Rules Window . 39
26. Tutorial: Creating a Message Group . 41
27. Tutorial: Adding a Rule . 41
28. Tutorial: Defining a Rule . 42
29. Tutorial: Creating a Subscription . 43
30. Tutorial: Defining a Reformat Action . 44
31. Tutorial: Defining a Put Message Action . 44
32. Tutorial: Test Input Format Using the Visual Tester 46
33. Tutorial: Test Reformatting Using the Visual Tester 48
34. Tutorial: Test Rules Using the Visual Tester . 50
35. Tutorial: Rules Daemon Configuration File tutorial.mpf 54
36. Tools: Parameters for msgtest. 58
37. Tools: Example of Using msgtest . 59
38. Tools: Parameters for ruletest . 60
39. Tools: Example of Using ruletest . 61
40. Tools: Example of Using NNRTrace . 62
© Copyright IBM Corp. 1999 vii

41. Tools: How MQSIputdata Works . 63
42. Tools: mqsiputdata.mpf . 65
43. Tools: Starting MQSIputdata . 66
44. Tools: Message With NEON Header (MQRFH). 67
45. Tools: Message Reformatted by the Rules Daemon 69
46. Tools: How MQSIgetdata Works . 69
47. Tools: mqsigetdata.mpf . 70
48. Tools: Starting MQSIgetdata . 71
49. Tools: Output of MQSIgetdata. 71
50. Tools: Parameters for NNFie (Import and Export Formats) 72
51. sqlsvses.cfg for Use with DB2 . 73
52. Tools: Parameters for NNRie (Import and Export Rules). 75
53. Tools: Export Example. 76
54. Tools: Import Example . 77
55. Visual Tester Install: Select Database and Queuing 79
56. Visual Tester Install: OCX Registration Failure . 79
57. Visual Tester Logon Window . 80
58. Visual Tester: Load Queue . 82
59. Visual Tester: Test Format. 83
60. Visual Tester: Test Reformat . 84
61. Visual Tester: Test Rules. 85
62. Formatter Window . 88
63. Delimited Fields Example: Input Objects . 90
64. Defining the Literal Semicolon . 91
65. Example of Defining a Field . 92
66. Example of Defining an Input Control . 93
67. Example of Creating a Format . 94
68. Example of Associating Fields with Input Control Names 95
69. Delimited Fields Example: Output Objects . 96
70. Defining an Output Control for a Field with a Literal Value 97
71. Assigning an Output Control to a Field . 98
72. Mapping Input to Output Fields . 99
73. Prefix/Suffix Example: Input Objects . 100
74. Prefix/Suffix Example: Output Objects. 101
75. Defining a Prefix. 102
76. Output Control with Suffix . 103
77. Assigning an Output Control Name to a Field . 104
78. Output Operation Collections Example: Objects 105
79. Defining an Output Operation Collection . 106
80. Output Operations Available for Collection . 107
81. List of Output Operations . 108
82. Substitution Example: Objects . 109
83. Defining a Substitution . 110
viii Using the MQSeries Integrator Version 1.0

84. Specifying Substitution Values. 111
85. Length and Data Example: Input Objects . 113
86. Input Control for Fields with Length and Data . 114
87. Test Input Format with Length and Data . 115
88. Length and Data Example: Output Objects . 116
89. Output Control for a Field with Length and Data 117
90. Test Output Format with Length and Data. 118
91. Tag and Data Example: Input Objects . 119
92. Input Control for Fields with Tag and Data . 120
93. Input Control for Field with Tag, Length and Data 121
94. Tag and Data Example: Output Objects . 122
95. Output Control for a Field with Tag (from Input) and Data. 124
96. Output Control for a Field with Tag and Data . 124
97. Conversion of a Date Field . 126
98. Input Control for a Custom Date and Time Field 128
99. Output Control for a Custom Date and Time Field. 129
100.Objects for Input Compound . 132
101.Objects for Output Compound. 132
102.Rules Hierarchy. 135
103.Adding a New Application Group . 137
104.Rules Window with Simple Expression . 138
105.Rule Security . 140
106.Subscription - Simple Put Action . 140
107.Using Two Rules and Reformatting. 143
108.Test of Multiple Rules . 146
109.Fruit Salad Example - Overview . 153
110.Fruit Salad Example - Fields . 155
111.Fruit Salad Example - Formats . 155
112.Fruit Salad Example - Rule Expression. 157
113.Fruit Salad Example - Subscription . 157
114.Fruit Salad Example - Rule Test . 158
115.Fruit Salad Example - Fields for Reply Messages 160
116.Fruit Salad Example - Rule Expression for Second MQSI Instance 161
117.Security for a Rule. 163
118.Sample SAP IDoc Loaded in Formatter GUI. 165
ix

x Using the MQSeries Integrator Version 1.0

Tables

1. MQSI Database Naming Conventions . 12
2. Tutorial: Formatter Objects to Define. 29
3. MQSI Tools . 57
4. MQSIputdata Input Parameters . 64
5. MQSI Header (MQHRF) . 68
6. Substitution Example: Table for Countries. 109
7. Fields in the MQRFH . 147
8. Fruit Salad Example - Message Format for FruitIn Queue 154
9. Fruit Salad Example - Reformatted Message for AppleQ 156
10. Fruit Salad Example - Message Format for FruitStandIn Queue. 156
11. Fruit Salad Example - Message Format for FruitStandOut Queue 159
12. Fruit Salad Example - Message Format for FruitSalad Queue 159
© Copyright IBM Corp. 1999 xi

xii Using the MQSeries Integrator Version 1.0

Preface

The application integration market is rapidly emerging, driven by
organizations’ business need and the availability of a new class of software,
known as message brokers.

The MQSeries Integrator is the first product available in the MQSeries
Integrator layer of IBM’s Business Integration with MQSeries. It is message
brokering software that ensures business-critical applications and processes
can understand each other. Based on MQSeries' messaging and queuing
capabilities, the MQSeries Integrator is a real-time, intelligent, rules-based
message routing and dynamic message content transformation and
formatting system that allows you to integrate all types of applications and
systems into robust, flexible and scalable information networks.

This redbook explains how and for what you can use the MQSeries Integrator
in your enterprise. It gives you a broad understanding of the product and its
features that increase productivity in application integration. It describes:

• How to integrate applications where one program produces output in a
different format from what the partner program needs as input. Examples
that show how the MQ Series Integrator can add information to a message
are also included.

• How to use the product for intelligent routing, that is, sending a message
to one or more different programs according to information within the
message. Examples explain how you can forward a complete message or
different parts of a messge to several partners.

• How to use the graphical user interface provided with the MQSeries
Integrator to perform integration tasks quickly and easily.

Persons who have no knowledge of the MQSeries Integrator can use this
publication as a textbook.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Dieter Wackerow is the MQSeries expert at the International Technical
Support Organization, Raleigh Center. His areas of expertise include
application design and development for different industries, performance
evaluations, capacity planning, and modelling of computer systems and
© Copyright IBM Corp. 1999 xiii

networks. He writes extensively and teaches IBM classes worldwide on all
areas of application development with MQSeries.

Morten Saetra is an IBM Certified MQSeries Specialist in Norway. He has
five years of experience in MQSeries and 13 years with CICS. During this
time he has advised and supported customers in various MQSeries and CICS
projects. Besides that he also teaches MQSeries classes for IBM Learning
Services.

Ken Palmer is a Certified I/T Specialist in the United States. He has 9 years
of experience in the transaction system arena. He has worked at IBM for 12
years. His areas of expertise include MQSeries, which he implemented at the
1996 Atlanta Olympic Games.

Jorgen Becker-Hansen has worked with middleware for over six years,
recently joining MQSeries Strategic Support as a consultant in the UK. He
holds a Computer Science degree from the University of Westminster.

Thanks to the following people for their invaluable contributions to this project:

Bashar Kilani
Mark Swinson
IBM Hursley, England

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 189
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com

• Send your comments in an internet note to redbook@us.ibm.com
xiv Using the MQSeries Integrator Version 1.0

Chapter 1. Overview

Conducting business globally and electronically becomes more and more
complex. With the rapid growth of business on the Internet, the wave of
mergers and acquisitions, and industry deregulation, companies can no
longer afford isolated IT systems that can't talk to each other.

With MQSeries, IBM provides middleware that allows customers to reliably
interconnect heterogeneous platforms and environments using asynchronous
messaging. Customers have used the base MQSeries product to reliably
interconnect their applications and systems within their enterprise, and also
across enterprises.

Now IBM announced additional products and capabilities to address larger
business integration needs. These new capabilities not only will provide value
added services to assist in applications and information integration, but will
also support integration of their business processes. Furthermore, customers
will be able to do such integration within their enterprise and across their
customer/supplier/third-party enterprises.

1.1 Business Integration

IBM provides a solution for business integration. IBM Business Integration
with MQSeries consists of three offerings which can be used together or
separately, in any combination:

• MQSeries , IBM's industry-leading, messaging-oriented middleware,
enables diverse applications to communicate securely and reliably, with
enterprise-level performance, over a wide range of platforms. MQSeries
leads the market with over 4000 customer sites and has broad partner
support.

• MQSeries Integrator (MQSI) software enables integration of applications
and systems into robust, flexible and scalable information networks. Based
on MQSeries messaging and queuing capabilities, the MQSeries
Integrator is a real-time, intelligent rules-based message routing and
dynamic message content transformation and formatting system. Along
with this functionality, preconfigured templates for major packaged
applications and e-business extensions will also be provided.

• MQSeries Workflow is a workflow management system that automates
business processes involving applications and/or people to give
enterprises more control of their business activities. It helps align and
integrate resources, accelerate process flow, optimize costs, eliminate
© Copyright IBM Corp. 1999 1

errors and improve productivity, by capturing and automating a business's
processes. MQSeries Workflow is the next generation (V3) of IBM's
FlowMark product.

MQSeries Integrator and MQSeries Workflow rely on MQSeries. MQSeries
Integrator intercepts MQSeries messages transforming and routing the
message contents based upon information stored in a rules database.
MQSeries Workflow uses MQSeries messaging for the communication
between the MQSeries Workflow clients and servers.

This redbook provides detailed information on how to use the MQSeries
Integrator for message reformatting and routing.

1.2 What the MQSeries Integrator Can Do for You

The MQSeries Integrator extends messaging capabilities into the business
arena. The integration of new and existing applications is consuming more
and more management time. Estimates show that 40-60% of IS development
and maintenance costs go to integration and communication programming for
heterogeneous systems and applications.

The MQSeries Integrator, is a real-time, application-to-application, message
transformation and routing program that offers:

• Flexibility and ease-of-use for rapidly adding, extending, or replacing
applications

• Intelligent routing for seamless integration of applications, databases, and
networks according to conditions set by the business

Some highlights of the features of the MQSeries Integrator follow:

• It forms the first product in the message brokering layer of the IBM
Business Integration framework.

• It makes adding, extending, or replacing applications in an MQSeries
network simple and easy.

• it applies intelligent routing to seamlessly integrate applications,
databases, and networks.

• It enables application-to-application message transformation.

• It supports custom built and predefined application libraries.

• It supports PeopleSoft GL, SAP R/3, and S.W.I.F.T. templates from New
Era of Networks Inc. (NEON).
2 Using the MQSeries Integrator Version 1.0

The MQSeries Integrator is optimized for high-volume, in-storage
transformation of messages. It is very useful in environments where many
applications exchange information, each requiring slightly different message
formats.

The MQSI graphical user interface allows users to perform integration tasks
quickly and easily. Preconfigured templates for major packaged applications
and e-business extensions will also be available. This product is now
available under IBM terms and conditions worldwide.

The MQSI is Year 2000 ready. When used in accordance with the associated
documentation, it is capable of correctly processing, providing, and/or
receiving date data within and between the twentieth and twenty-first
centuries, provided that all products (for example, hardware, software, and
firmware) used with the product properly exchange accurate date data.

MQSeries Integrator is message brokering software that ensures
business-critical applications and processes can understand each other.
Based on MQSeries' messaging and queuing capabilities, the MQSeries
Integrator is a real-time, intelligent rules-based message routing and dynamic
message content transformation and formatting system that allows you to
integrate all types of applications and systems into robust, flexible and
scalable information networks.

1.3 The MQSI Architecture

MQSI is an anonymous publish/subscribe architecture that essentially
contains three parts:

• Transport:
Message & Queuing middleware provides the heart of most enterprise’s
transport. With over 50 % market share, and the widest product platform
coverage, MQSeries is the de facto standard for message oriented
middleware. MQSeries has achieved popularity with customers because it
enables you to develop applications that deal with messages and queues
through a common API and it frees you from needing to worry about the
underlying operating system or network. The MQSeries Integrator
integrates to practically any type of transport.

• Formatter:
The meta-data formatting engine allows the translation of "anything to
anything." It allows for field-by-field translation of data and information. It
is a dynamic translator. Once a set of transaction/file formats are defined,
Overview 3

they can be reused over and over again. As an adjunct to the formatter,
we offer format libraries for applications like SAP and Peoplesoft.

• Rules/Routing Engine:
The rules/routing engine allows for a huge number of business rules to be
evaluated. In working with the formatting engine, we can translate at the
message layer to move information from system to system, or from one
system to multiple systems at the same time. What makes the rules
processor so unique is that we can process the same number of
messages against 1,000 rules, 10,000 rules, 100,000 rules or more with
no degradation in performance. The rules and formatting engine has been
benchmarked at over 1000 messages per second (medium sized Solaris
server used for benchmark).

MQSI is the only rules processor in the industry that does not generate code
in any way. It is a metadata-based engine; this is part of the reason it scales
so well.

1.4 How to Use the MQSI

For the user, the main components of the MQSeries Integrator are:

• A database

• Formatter GUI

• Rules GUI

• The Rules Daemon (also called rules processor or rules engine)

• Configuration files

• Various tools/utilities

• Queues managed by MQSeries

These components and their functions and many examples on how to use
them are described in this book.

Figure 1 on page 5 elucidates the components and when they are used. In
the center is the MQSeries Integrator database. It contains input and output
formats and rules on how they are used to map data from an incoming
message to one or more outgoing messages.

At development time you define formats and rules. This is done with two
programs (graphical user interfaces):

• Formatter GUI
• Rules GUI
4 Using the MQSeries Integrator Version 1.0

Both programs require a database connection file (sqlsvses.cfg) to access
the database. What this file contains is explained later.

Figure 1. MQSeries Integrator Components

You use the Formatter GUI to define input and output formats, that is, how
input and output messages are structured. Fields in a message can be fixed
or variable in length, they can be separated with delimiters or contain the field
length. Fields may also be tagged; that is, they can be identified by a unique
field ID.

With the Rules GUI you define how input formats are mapped to output
formats and to what queue they are put. You can specify many rules for a
single message, and each rule can create a different message with different
contents.

You can also add fields to a message using literal values or values you
calculate from fields in the input message. It is also possible to substitute
values in the input message with different ones in the output message.

MQSI Database

Formatter GUI Rules GUI
Database

Connection
File

Rules Daemon
(mqsiruleng.exe)

Rules Daemon
Configuration

File

Development

Runtime

NoHitQFailQInputQ OutputQ
OutputQ

OutputQ

Log
Overview 5

At run time, when in production the NEON Rules Daemon, also known as
rules processor, uses the information in the database to process incoming
messages. The rules processor needs information provided in a rules
processor configuration file. You can have several instances of the rules
processor running, each using a different configuration file.

The rules processor configuration file is important. It contains, for example,
the name of the default application group and message type. Notice that this
is the MQSI message type and not the MQSeries message type in the
message header MQMD.

An application group is a container for messages. For example, all messages
regarding payroll applications can belong to one application group and
messages concerning sales to another. Message types are input formats
defined with the Formatter GUI.

Each instance of the rules processor works with one application group; and
for each application group you can have one default message. Also, in
Version 1.0, you can have only one input queue per rules processor instance.

How does the MQSI process (input) messages other than the default one?

The application group and the message type must be specified in the
message. To do this the MQSI header is added to the message. That means,
a message the rules processor processes, can have one of two formats:

• MQSeries Header + Data
• MQSeries Header + MQSI Header + Data

Of course, the program that sends the message must provide the MQSI
header. How this header looks is described later in this book.

One more important fact has to be noted here. In Version 1.0, the MQSI can
handle only datagram messages, no requests or replies. Information in
ReplyToQ and ReplyToQMgr in the MQSeries message descriptor are lost.

Figure 1 on page 5 also shows some queues. This means of course, that you
must have a queue manager running. MQSI relies on it services.

As said before, each rules processor instance can have only one input queue.
However, there may be multiple output queues it routes messages to. Into
what queue (and consequently to which application) a message is put
depends on the rule(s) associated with the input format (message).

If the message does not match the input format it is put on the FailQ (you may
choose a different name). This queue name and also the name of the queue
6 Using the MQSeries Integrator Version 1.0

the message is put when none of the rules matches (no hit) is specified in the
rules processor configuration file. The reason for the exception is written to
the rules processor’s log file.

There are also several utilities provided that help with debugging of the
definitions you enter into the database. The most valuable is the Visual
Tester, an MQSeries SupportPac. This and other tools are described later,
too.

In the next chapters of this book you will read:

• How to install and configure the MQSeries Integrator and related software,
such as a DB2 database

• A tutorial that gets you started with the product

• Several examples on how to define formats and how to reformat messages

• How to define rules to map input to output messages

• An example that demonstrates the abilities of MQSI to perform as an
intelligent router

• Some comments about security

1.5 Literature

Literature about the MQSeries Integrator is available in the form of PDF files
on the product CD. The books are:

• Application Development Guide

• Installation and Configuration Guide

• Programming Reference for NEON Formatter

• Programming Reference for NEON Rules

• System Management Guide

• User’s Guide

These books are not available as hardcopy.
Overview 7

8 Using the MQSeries Integrator Version 1.0

Chapter 2. Installation and Setup

In this chapter we will explain how to install, configure and run the installation
verification procedure (IVP) for MQSeries Integrator Version 1.0 (MQSI). We
will also set up the database used by MQSI.

The following platforms will be covered: Windows NT and AIX. All platforms
require that a database is installed before you can use the MQSI. We will use
DB2; however, most of the popular databases are supported.

The administration graphical user interface (GUI) for the Formatter and Rules
components will run on Windows NT only.

2.1 Windows NT Installation

MQSeries Integrator Version 1.0 is supported by MQSeries Version 5.0 or
later. We recommend that you apply MQSeries CSD3 or higher. The MQSI
product package comes with MQSeries V5.0 and CSD3. However, if Version
5.0 or 5.1 is already installed on your machine you will not need to remove it
and install it again.

For our project, we are using IBM DB2 Universal Database (UDB) Version 5.
Both DB2 UDB Personal Edition (PE) and the full server version can be used.
Most installations will probably use the Server version. If DB2 UDB PE is
chosen, you should also install DB2 Connect Personal Edition. The tools and
utilities used to administer the database use the DB2 client which connects to
the server with ODBC (open database connectivity). It is possible to connect
directly to the database if the database is on the same machine as the GUI
interface; however, in this case we have chosen to use the DB2 client with
ODBC in all cases. After the database is installed we install the MQSI product
and configure it.

The installation steps are:

1. Prepare for the installation.

2. Install in any order:

• MQSeries
• MQSeries Integrator
• DB2 UDB

3. Set up the database.

4. Install the database schema.
© Copyright IBM Corp. 1999 9

5. Edit the database connection file.

6. Verify the installation.

7. Edit the Makefile (optional).

2.1.1 Preparing for the Installation
It is important that we collect and read all relevant information prior to starting
the installation. In addition, the different software releases and levels have to
be checked and possibly upgraded.

The MQSeries Integrator Installation and Configuration Guide is a good place
to start. This document is available as softcopy. You find it on the CD in the
directory \Books and the filename is mqi_in_40.pdf.

In order to create the MQSI database you should read the appropriate
readme file for the database software you are using. You can find the readme
files on the product CD in the directory \IVP. We used readme.db2. This file
provides assistance in setting up the DB2 V5.0 environment for use with the
MQI.

2.1.2 Installing M QSeries
For our project we installed the complete V5.0 product consisting of:

• MQSeries Server for Windows NT
• MQSeries Clients
• MQSeries Toolkit
• MQSeries Online Documentation
• MQSeries Bindings for Java
• MQSeries Internet Gateway

Simply place the MQSeries CD in the CD-ROM drive and follow the
instructions. After the product is installed we applied CSD3. This is also
self-starting. After installation you have an \mqm directory on the drive where
you have chosen to install the product.

2.1.3 Installing DB2 Universal Database
If a database is not already available you can install DB2 on your own system.
For this project, we installed:

• DB2 Universal Database Personal Edition V5.0
• DB2 Connect Personal Edition V5.0
10 Using the MQSeries Integrator Version 1.0

You may select from three installation types: typical, compact and custom. We
selected custom which uses the same disk space as the typical installation.
We installed the following functions:

• Graphical tools
• DB2 ODBC driver
• Integrated SNA support
• Documentation

Furthermore, we chose to automatically start the DB2 instance at boot time.

Next you have to enter a user ID and password for the database. You may
choose the same ID you use on your NT system. You will become the owner
of the database. After installation you will see three new directories: \Db2Log,
\IMNNQ_NT and \SQLLIB.

2.1.4 Installing M QSeries Integrator for DB2
Just follow the InstallShield Wizard. If you have MQSeries already installed
on your machine, be sure to give the correct directory names in the
installation screens. Read the ReadMQI.txt file for hints and take note about
what database you are using. You find this file on the product CD in the
directory \Books.

The installation program requests that you confirm three installation folders:

• MQI for the MQSeries Integrator
• MQM for the MQSeries program files
• MQM for the MQSeries data files

If you choose the custom installation you may select the following features:

1. Program files
2. SDK files
3. Online documentation and help files

The installation program will not overwrite the MQSeries version already
installed on your system.

Note: You cannot install the MQSI on a FAT-formatted disk.

2.1.5 Setting Up the MQSI Database
There are three steps required in the configuration of DB2 before the MQSI
can use it. These are:

1. Create a new database to contain the formats and rules.
Installation and Setup 11

2. Configure a client connection to the new database.

3. Create tablespace within the database for the MQSI tables.

2.1.5.1 Creating the MQSI Database
We have to create the MQSI database and an alias. We access the database
from the MQSI GUI via the ODBC driver. For this we use the database alias.

We have chosen the MQSI database name to be MQSITDB and the database
alias to be MQSITDBA. This leads to the naming convention shown in Table 1
on page 12.

Table 1. MQSI Database Naming Conventions

Notes: Environment: T = Test, P = Production, ...
System: DB = DB2, ...
Function: A = Alias

To create the MQSI database we need to bring up a DB2 Command Line
Processor (DB2 CLP) window. From the start menu select:

Programs
DB2 for Windows NT

Command Line Processor

This window shows the DB2 => prompt.

You create the database with the following command:

create database MQSITDB

Note: To exit the DB2 command line program type quit at the DB2 => prompt.

2.1.5.2 Creating an Alias for the MQSI Database
To connect to a DB2 database, there must be a database alias set up. DB2
automatically creates an alias to the database on the server when it creates
the database. This alias has the same name as that of the database. To
connect to the database via an NT client, an alias needs to be made on the
client machine. If the server is already on the NT machine, a new database
alias must still be made because the default one does not have an ODBC

Application Environment System Function Comment

MQSI T DB MQSI test database

MQSI T DB A Alias to MQSI test
database
12 Using the MQSeries Integrator Version 1.0

driver associated with it. An ODBC driver is required for connecting to the
database using the MQSI GUI. This can be done using the DB2 program
called Client Configuration Assistant.

To create the alias click Start and then select:

Programs
DB2 for Windows NT

Client Configuration Assistant

This brings up the window shown in Figure 2. The Client Configuration
Assistant is a smartguide that helps you with your database configuration.

Note: In this example we use a local database.

Figure 2. Client Configuration Assistant

• Click Add .

• Now a window with six tabs appears. The following list explains what you
have to do. To switch from one tab to the next click Next or the next tab.

1. Source Check the radio button to Manually configure a
connection to a DB2 database.
Installation and Setup 13

2. Protocol Select what type of connection you have, that is Local
if the database is on the same machine.

3. Local The radio button Database in the same instance is
already marked.

4. Target Database Type the name of the database, here MQSTIDB.

5. Alias Specify the name of the database alias name,
MQSITDBA.

6. ODBC Check the box Register this database for ODBC and
mark the radio button As a system data source.
Then click the Done button.

• Next you will see a pop-up window that you can test. Click the Test
Connection button to check if the database connection works. In the
subsequent window you have to enter your user ID and password.

• When you go back into the CCA the result should be something similar to
Figure 2.

2.1.5.3 Creating Table Space for the MQSI Database
For a DB2 database we now have to create the table spaces used by MQSI.
The table spaces needed are:

• NNF for the NEON Formatter

• NNR for the NEON Rules

• NNP for the NEON Product

Remember to grant administrator (DBADM) privilege on the MQSI database to
the user who will perform the installation.

Before you can work with the database you have to connect to it. If you work with
a local database type the following command at the db2 => prompt:

connect to MQSITDB

If you work with a remote database use the database alias. Type the following
command at the db2 => prompt:

connect to MQSITDBA user (username) using (password)

DB2 will respond with a message like the one below:

 Database Connection Information
 Database product = DB2/NT 5.0.0
 SQL authorization ID = USERABC
14 Using the MQSeries Integrator Version 1.0

 Local database alias = MQSITDB

The create table space commands have to be run from a DB2 prompt, that is,
bring up the DB2 CLP window. The commands are:

create tablespace NNF managed by system using (’NNF’)
create tablespace NNR managed by system using (’NNR’)
create tablespace NNP managed by system using (’NNP’)

2.1.6 Installing the Database Schema
Now the database is ready for the installation of the Formatter and Rules
tables. You can find more information in the Installation and Configuration
Guide.

The procedure inst_db.bat in the directory \mqi\install.sql installs the
MQSeries Integrator database schema. This procedure will take between 10
and 45 minutes, depending on the server's processor speed and current
activity.

You are still in the DB2 CLP window. Exit the CLP program by typing:

db2 => quit

Next change directories and run the bat file:

d:\SQLLIB\BIN\ cd \
d:\ cd mqi\install.sql
d:\MQI\install\ inst_db.bat userid password database

Use the database alias name, MQSITDBA, for the database. You will be
prompted several times to verify information. You should also look for any
error messages in the file c:\TEMP\inst_db2.log.

2.1.7 The Database Connection File
Once the Formatter and Rules tables are created, the MQSI GUIs can
connect to the database using the ODBC option. Some MQSeries Integrator
executables connect to the database using the database connection file
sqlsvses.cfg in the directory \MQI\bin.

This file contains information for the database sessions that describe the
server name, user ID, password, and database name that a particular session
uses. Executables search the sqlsvses.cfg file for a given session name and
attempt to connect to the MQSeries Integrator database.
Installation and Setup 15

You must edit the sample file and update it with your own installation specific
information. For more information, refer to the MQSeries Integrator System
Management Guide. Uncomment the section that applies to your database
type. The changes for DB2 are shown in Figure 3 on page 16.

Figure 3. DB2-Related Information in the sqlsvses.cfg File

2.1.8 Verifying the Installation
The steps needed to run the IVP are:

1. Create a queue manager named QAQM with the command:
crtmqm QAQM

2. Start the queue manager with the command
strmqm QAQM

3. Use runmqsc to define the IVP queues. The define commands are in
member mqs.txt in the CD-ROM \IVP directory.

runmqsc QAQM < e:\ivp\mqs.txt

You may copy the IVP directory from the installation CD-ROM to the hard
disk for easier use later. The file contains the commands to create four
queues:

define qlocal('RulesIn') replace
define qlocal('RulesNoHit') replace
define qlocal('RulesFail') replace
define qlocal('Output') replace

4. Edit the database connection file sqlsvses.cfg in \mqi\bin so that there is a
session entry with the name "new_format_demo" as shown in Figure 3 on
page 16. Make sure that the entries for the database name or alias, user
name and password match your environment.

Example SessionNames (uncomment the SessionNames needed):
#
DB2 database (final colon required on each line):
new_format_demo:MQSITDBA:Userid:Password:
rules:MQSITDBA:Userid:Password:
import:MQSITDBA:Userid:Password:
(change Database, Userid, Password above)
16 Using the MQSeries Integrator Version 1.0

5. Import the test format and rules files. Use the following commands from
the drive:\mqi\bin directory:
nnfie -i d:\IVP\formats.fie -s new_format_demo
nnrie -i d:\IVP\rules.rie -s new_format_demo

6. Now start the Formatter GUI to see what is defined in the IVP sample. Do
not change either format if you want to run the IVP successfully.

To start the Formatter GUI, select from the Start button:

Programs
MQSeries Integrator

Formatter

In the logon window enter:

• Your user ID and password

• For DBMS select ODBC-DB2 (ODBC)

• For driver select the database alias MQSITDBA

After awhile the window shown in Figure 4 appears.

Figure 4. Formatter GUI for IVP

You cannot import from the CD. The NNFIE and NNRIE programs try to
write to the IVP directory. Therefore, copy the IVP directory from the CD
on your hard drive, for example, d:\mqi\ivp.

Important
Installation and Setup 17

7. Now start the Rules GUI to see what rules the IVP sample uses. Again, do
not change anything.

To start the Rules GUI, select from the Start button:

Programs
MQSeries Integrator

Rules

In the Logon window enter:

• Your user ID and password

• For DBMS select ODBC-DB2 (ODBC)

• For driver select the database alias MQSITDBA

After a while the window shown in Figure 5 appears. Double-click
defaultApp to expand the tree.

Figure 5. Rules GUI for IVP

8. Change the rules processor configuration file mqsiruleng.mpf in \mqi\bin
directory to match your environment. The file verify.txt in the \ivp directory
states what must be changed.

Note: The field Servername is used by DB2. Other databases use the field
Databaseinstance. The connection file also names queue manager and
queues used by the IVP. There should be no need to change them.

Figure 6 on page 19 shows the file mqsiruleng.mpf for the IVP.
18 Using the MQSeries Integrator Version 1.0

Figure 6. Rules Daemon Configuration File mqsiruleng.mpf for the IVP

[Queues]
Parameters related to queues, MQSeries control, and rules engine control

Alternate User Authority Flag
CredentialsEnabled = 0

MQSeries queue manager name
QueueManagerName = QAQM

retry limit
MaxBackoutCount= 0

these three queue names are mandatory!
InputQueueName = RulesIn
NoHitQueueName = RulesNoHit
FailureQueueName = RulesFail

rules default application group and message type values (mandatory)
DefaultAppGroup = defaultApp
DefaultMsgType = defaultMsg

[Logging]
Log levels:
#3 - log only fatal errors
#2 - log errors, and fatal errors
#1 - log warnings, errors, and fatals
#0 - log informationals, warnings, errors, and fatals
LogFileName = mqsiruleng.log
LogLevel = 0

[Rules Database Connection]
all fields are mandatory)
ServerName = MQSITDBA
UserId = userabc
Password = password
DatabaseInstance = MQSITDBA
#
DatabaseType is a numeric with these values:
SYBASE = 1 MQSQL = 2 ORACLE = 3
DB2 = 4 ODBC = 5
#
DatabaseType = 5
Installation and Setup 19

9. Now start the rules processor, MQSI’s run-time program. From a DOS
prompt in the \mqi\bin directory issue the command:

mqsiruleng -p mqsiruleng.mpf

You may minimize the window.

10.Use the MQSeries sample program amqsput to put some messages on
the queue RulesIn as shown in Figure 7.

Note: The format of the message is "string;string;", such as hotdog;fries;.

Figure 7. Using the IVP

11.Get the messages from the Output queue after the rules processor has
processed them. Use the MQSeries sample program amqsget to get the
messages. You will notice in Figure 7 that the two input fields are reversed.

Note: If you made a typing error the rules processor will not find a matching
rule and the message ends up in the RulesFail queue.

2.1.9 Editing the Makefile
This step is optional. An example Makefile, demonstrating how to rebuild the
MQSeries Integrator executables is supplied in the \mqi\examples directory.
Edit this Makefile before you use it.

C:\>amqsput RulesIn QAQM
Sample AMQSPUT0 start
target queue is RulesIn
hotdog;fries;
cat;mouse;

Sample AMQSPUT0 end

C:\>amqsget Output QAQM
Sample AMQSGET0 start
message < FRIES HOTDOG>
message < MOUSE CAT>
no more messages
Sample AMQSGET0 end

C:\>
20 Using the MQSeries Integrator Version 1.0

2.2 AIX Installation

As with the Windows NT installation, MQSeries Integrator for AIX Version 1.0
is supported by MQSeries Version 5.0 or later. The product comes with
MQSeries V5.0. However, if Version 5.0 or 5.1 is already installed you will not
need to remove it and install it again.

For this project we used IBM DB2 UDB Enterprise Edition with the DB2 Client
Application Enabler. We can also have the Windows NT DB2 Client
Application Enabler installed on a Windows NT machine in order to
administer the database via an ODBC connection to the server. This ODBC
connection under Windows NT must be in place in order for us to use the
Formatter and Rules GUI tools.

It is important to collect and read all the relevant information prior to starting
the AIX installation.

The installation steps are:

1. Prepare for the AIX installation.

2. Install in any order:

• MQSeries

• MQSeries Integrator

• DB2 UDB

3. Set up the database.

4. Install the database schema.

5. Edit the database connection file.

6. Verify the installation.

7. Edit the Makefile (optional).

2.2.1 Preparing for the Installation
This step involves collecting and reading all the relevant MQSI manuals and
readme files. In addition to the MQSeries Integrator Installation and
Configuration Guide you should look at the readmqi.txt in the root directory of
the CD and the readme file for the database you will be using in the IVP
directory. For DB2 this would be readme.db2. Additional release notes can be
found in the READMES subdirectory. The MQSeries Integrator Installation
and Configuration Guide and other documentation files can be found on the
CD under the /Books directory in three subdirectories, HTML, PDF and PS in
these three formats.
Installation and Setup 21

2.2.2 Installing M QSeries
To install MQSeries on AIX you should follow the instructions in the manual
MQSeries for AIX Version 5.0 Quick Beginnings, GC33-1867. You have to
create a user ID and make it a member of the mqm group before installing the
product. The user ID will own the files and directories once installed. Even
when installing MQSeries as part of the MQSeries Integrator installation this
should be done first.

To mount the CD-ROM to an appropriate directory you should see the
instructions in the chapter on AIX Installation of the MQSeries Integrator
Installation and Configuration Guide. This tells you how to use the System
Management Interface Tool (SMIT) GUI to do this. Alternatively, if familiar with
command line commands you may want to simply issue some commands to
do this, such as:

mkdir /cdrom
chmod 777 /cdrom
/etc/mount -rv cdrfs /dev/cd0 /cdrom

This would mount the CD-ROM to a directory called /cdrom and make it
accessible to all users.

MQSeries will be installed in a directory /var/mqm. This cannot be altered.
Read the preparation instructions in the MQSeries for AIX Quick Beginnings
Version 5.0, GC33-1867 regarding disk space requirements and how to
create new directories or file systems if required.

2.2.3 Installing the AIX DB2 Universal Database
If the database is not already installed you could choose to install DB2. For
instructions on how to do this you may wish to read the chapter on installing
the DB2 products in DB2 UDB for UNIX Quick Beginnings V5R2, S10J-8148.
You will need to mount the DB2 for AIX CD-ROM as before and then run the
command:

./db2setup

You should also read the readme.txt on this CD before installing.

From the menu presented when you run the dbsetup command we chose to
install DB2 UDB Enterprise Edition and the DB2 Client Application Enabler.
We used the defaults for the instance name (db2inst1) and password
(ibmdb2) leaving the communications defaults also, using TCP/IP with a port
number of 50000.
22 Using the MQSeries Integrator Version 1.0

DB2 Version 5 by default will install all the software to a directory
/usr/lpp/db2_05_00. It will also create the DB2 instance in a directory
/home/{db2 instance name}. This would be /home/db2inst1 using the default
instance name. The first step you will need to do once installed is to log on as
the instance owner (db2inst1) and add the following to the profile:

$. ./home/{db2 instance name}/sqllib/db2profile

Once this .profile is run this sets up the path correctly to be able to run the
db2 command and at the prompt create the database:

Db2=>create database MQSITDB

This is exactly as described in 2.1.5.1, “Creating the MQSI Database” on
page 12 for the Windows NT installation, including the naming convention.

2.2.4 Installing M QSeries Integrator for DB2
To install MQSeries Integrator we can use the System Management Interface
Tool (SMIT) GUI. From the System Management menu select:

Software Installation and Maintenance
Install and Update Software

Install and Update from LATEST Available Software .

You can then change the installation options to match those in Figure 8:

Figure 8. AIX Installation

This will result in the MQSI software being installed to a directory /usr/lpp/mqi
containing a number of subdirectories.

* INPUT device / directory for software /cdrom
* SOFTWARE to install [_all_latest] +
 PREVIEW only? (install operation will NOT occur) no +
 COMMIT software updates? yes +
 SAVE replaced files? no +
 AUTOMATICALLY install requisite software? yes +
 EXTEND file systems if space needed? yes +
 OVERWRITE same or newer versions? no +
 VERIFY install and check file sizes? no +
 Include corresponding LANGUAGE filesets? yes +
 DETAILED output? no +
 Process multiple volumes? yes +
Installation and Setup 23

2.2.5 Creating the MQSI Database on AIX
Having already created the database on the AIX server machine from the db2
prompt as described in 2.2.3, “Installing the AIX DB2 Universal Database” on
page 22, we can continue the process on the Windows NT machine using it
as a client.

We use the Client Configuration Assistant described in 2.1.5.2, “Creating an
Alias for the MQSI Database” on page 12 to manually configure a connection
to the AIX DB2 database using the TCP/IP protocol rather than Local. We
type in the host name or IP address of the AIX machine and the port number
(default 50000).

We then continue creating the NNF, NNR and NNP table spaces as described
in 2.1.5.3, “Creating Table Space for the MQSI Database” on page 14.

Next we install the database schema using the inst_db.bat batch file as
shown in 2.1.6, “Installing the Database Schema” on page 15. Alternatively,
you may create the table spaces and run the inst_db.sh script from the
/usr/lpp/mqi/bin directory on the AIX machine.

2.2.6 Verifying the Installation
The installation verification process is similar to that described for Windows
NT in 2.1.8, “Verifying the Installation” on page 16. The steps needed to run
the Installation Verification Program (IVP) using AIX are:

1. Create a queue manager named QAQM on the server AIX machine.

2. Start the queue manager.

3. Use runmqsc to define the IVP queues. The define commands are in the
member MQS.txt in the CD-ROM /IVP directory. You may wish to copy this
directory to the hard disk for later use. For example, copy them to
/usr/lpp/mqi/bin/IVP.

4. Edit the database connection file sqlsvses.cfg in /usr/lpp/mqi/bin so that
there is a session entry with the name "new_format_demo". You will also
need to change the entries for the database name or alias, user name and
password to match your installation.

5. You can now import the test format and rules files. From /usr/lpp/mqi/bin
type in the following, remembering that AIX commands are case-sensitive:

 •$./NNFie -i /IVP/formats.fie -s new_format_demo

 •$./NNRie -i /IVP/rules.rie -s new_format_demo
24 Using the MQSeries Integrator Version 1.0

Note: Steps 4 and 5 could be done via the client ODBC connection from
Windows NT.

6. If you now bring up the Formatter and Rules GUI tools on the Windows NT
client machine you will be able to see the IVP sample.

7. Change the rules processor configuration file MQSIruleng.mpf in
/usr/lpp/mqi/bin to reflect your environment. To determine what needs to
be changed read the verify.txt file in the /IVP directory. For DB2 you will
need to change the Servername parameter rather than the
Databaseinstance parameter.

8. Make /usr/lpp/mqi/bin the current directory.

9. To start the rules processor issue the command:

$./MQSIruleng -p MQSIruleng.mpf

10.Put the messages on the RulesIn queue with the sample program. Use
amqsput RulesIn QAQM.

11.Note that the format of the messages is "string;string;"; for example,
hotdog;fries; or cat;mouse;. Get the messages from the output queue after
the rules processor has processed them. Use the sample program
amqsget to retrieve the messages. You will see that the two fields are now
in a reversed order.

12.Optional: An example Makefile, demonstrating how to rebuild the
MQSeries Integrator executables, is supplied in /usr/lpp/mqi/examples. To
use this you must edit it appropriately.
Installation and Setup 25

26 Using the MQSeries Integrator Version 1.0

Chapter 3. Getting to Know the MQSI - A Tutorial

This chapter helps you to do your first steps with the MQSeries Integrator. We
describe a short example that touches all important features of the product. In
this walkthrough, we show how the MQSI takes an input message consisting
of two fields, first and last name, and swaps the order of the fields along with
converting any lower-case letters to upper-case. This is shown in Figure 9.

In this quick-start example we create definitions through the Formatter GUI
and Rules GUI. We explain how the Visual Tester, a supporting utility, can be
used to test message reformatting, and how the rules daemon, MQSI’s
run-time program, processes the messages in a real environment.

For this walkthrough we will choose the following order:

1. Create the definitions for the Formatter.

2. Define the Rules.

3. Test the formats and rules using the Visual Tester.

4. Run the Rules Daemon against the test data, formats and rules.

Note: We assumed that MQSI has been installed properly on a Windows NT
platform as described in Chapter 2, “Installation and Setup” on page 9.

Figure 9. Tutorial: Input and Output Messages

FirstName LastName

LastName FirstName

K a r l O t t o

O t t o K a r lNamesIn

NamesOut
© Copyright IBM Corp. 1999 27

3.1 Working with the MQSI Format Administrator

In this section we will create the appropriate definitions for our sample
formats. First, let’s bring up the Formatter GUI. Click the Start button and
select:

Programs
MQSeries Integrator

Formatter

This will bring up the logon window where you have to enter the following:

User ID: Your User ID
Password: Your password
DBMS: Select ODBC - DB2(ODBC) from the drop-down list
Driver: Select the alias database name, here MQSITDBA
Qualifier: For DB2, leave this field blank

Click OK to log on. Next, you will see the Formatter window:

.

Figure 10. MQSI Formatter Window
28 Using the MQSeries Integrator Version 1.0

Note: The Formatter window shown in Figure 10 on page 28 does not contain
any objects. All objects used by the IVP have been deleted.

Figure 9 on page 27 shows the formats for the input and output messages.
Both messages contain the same fixed length fields, however, in a reversed
order. Now we have to determine what objects we have to define. Table 2 lists
the object names, their types and describes what they are used for.

Table 2. Tutorial: Formatter Objects to Define

The MQSI is an object-oriented product. We create the objects from the
bottom up starting with the fields in this order:

Object Type Object Name Description

Input Format NamesIn Name of input format

Output Format NamesOut Name of output format

Input Controls String5 Used to parse the input fields;
here both fields are five-byte
long strings

Output Controls String5 Used to format the output fields;
both fields are fixed five bytes

Output Operation Collections - Not used

Output Operations UPPER_CASE Used to make the output fields
upper-case; referenced by the
output controls

Fields FirstName
LastName

Field names used in both
formats

Literals - Not used

User Defined Data Types - Not used

I n p u t F o r m a t

In p u t C o n t r o l s

O u t p u t O p e r a t i o n s

O u t p u t F o r m a t

O u t p u t C o n t r o l s

F i e l d N a m e sF ie l d N a m e s
Getting to Know the MQSI - A Tutorial 29

3.1.1 How to Define a Field
We create two fields, FirstName and LastName. Both names are used in the
input format and in the output format. Names are case-sensitive.

Note: Here you specify only the field names and not any of their attributes.
You do this in the input and output controls.

Figure 11. Tutorial: Creating Input Fields

1. In the Formatter window,

2. Then click New.

right-click Fields.

3. Change NewField_1 in
FirstName and press Enter.

4. Create the field LastName in the
same manner.

Note that the Formatter displays
the field names in alphabetical
order.
30 Using the MQSeries Integrator Version 1.0

3.1.2 How to Define an Input Control
Since all fields are fixed five characters long we need only one input control to
tell the Formatter how to parse the input record. We will give this input control
the generic name String5. You can use the same input control for several
input fields.

Figure 12. Tutorial: Creating an Input Control

1. Right-click Input Controls.

2. Click New in the pop-up.

3. Change the name of the
input control to String5.

4. Press Enter.

5. On the right side of the window,
fill in the properties as shown
below.

6. The fields contains only
data; no delimiter or

length field.

7. The field contains only
characters.

8. The field length is fixed.

9. The length is 5.

10. Click the Apply
button at the bottom
right in the window.
Getting to Know the MQSI - A Tutorial 31

3.1.3 How to Define an Input Format
For the input we use a flat format, that is, a format that contains fields only.
The figure below shows another choice, a compound format. Such a format
contains other formats. Right-click Formats and select the choices shown
below.

Figure 13. Tutorial: Creating a Flat Input Format

Change NewFormat_1 to NamesIn and press Enter. Next, you will see the
window below. Leave the default for format termination and click on Apply .

Figure 14. Tutorial: Input Flat Format
32 Using the MQSeries Integrator Version 1.0

Next, we have to associate the input fields with the input format.

Figure 15. Tutorial: Add Fields to a Format

Figure 16. Tutorial: Select Fields for a Format

When you highlight NamesIn in the Formatter window and click the Fields tab
you will see the list of fields in the format. Since in our message the first name
is followed by the last name, we don’t have to re-order the fields.

Figure 17. Tutorial: Input Format with Fields

1. Right-click NamesIn.

2. Click Add Field Components.

This brings up the Field window
shown below.

3. Select the names
in the window.

4. Click the
Accept Selection
button at the
bottom of the
window.
Getting to Know the MQSI - A Tutorial 33

To re-order, click an item in the fields list, drag it upward and drop it on
another field. The field will be inserted before the field you dropped it on. You
cannot move a field from the top of the list to the bottom.

So far we have defined the two fields and specified where they are located
within the input format (message). For the Formatter to parse the message it
has to know how the fields looks. In this case, both fields have the attributes
defined in the input control String5.

To assign the input format String5 to an output field, highlight the field under
the format. This brings up a window that shows the cutoff you see in Figure
18. Select String5 from the Input Control Name list and click Apply . Repeat
this for LastName, too.

Figure 18. Tutorial: Assign an Input Control to a Field

Note: We found that you must select the name from the tree view on the left
side of the window. Choosing it from Field Name on the right side and then
assigning an input control to it did not work.

This completes the definition of the input format. At this point you could use
the Visual Tester and check if your definitions are correct. How to do this is
explained in 3.3.1, “How to Test If the Input Message Is Defined Correctly” on
page 46.
34 Using the MQSeries Integrator Version 1.0

3.1.4 How to Define an Output Control
For the output format we use the same fields as for the input. We defined the
field names in 3.1.1, “How to Define a Field” on page 30.

For the Formatter to re-format the message we also have to specify an output
control. There are some predefined output operations. They are:

• CENTER_JUSTIFY
• LEFT_JUSTIFY
• RIGHT_JUSTYFY
• LOWER_CASE
• UPPER_CASE
• NONE

Since we use one of the predefined output operations we don’t need to define
one.

Figure 19 shows part of the Formatter window that explains how to create a
new output control.

Figure 19. Tutorial: Creating an Output Control (2)

Figure 20 on page 36 shows what you will see next on the right side of the
Formatter window.

Change the output control type from NONE to UPPER_CASE and then click
Apply at the bottom of the window.

1. Right-click Output Controls.

2. Select New from the pop-up.

3. Change the name of the object to
String5.

4. Press Enter.
Getting to Know the MQSI - A Tutorial 35

Figure 20. Tutorial: Creating an Output Control (2)

Figure 21 shows what you see when you expand the Output Controls tree. It
clearly states that the output operation UPPER_CASE is used in the output
control String5.

You can display the output operations when you click in the drop-down box in
the window shown in Figure 20 or Output Operations on the left side on the
Formatter window.

Figure 21. Tutorial: Output Control Example
36 Using the MQSeries Integrator Version 1.0

3.1.5 How to Define an Output Format
The output format is a flat format that contains the same two fields as the
input format, however in reversed order. Right-click on Formats and then
select what’s highlighted in Figure 21.

Figure 22. Tutorial: Creating a Flat Output Format

Then give the new object the name NamesOut and press Enter. This causes
an entry to be made in the MQSI database.

Right-click NamesOut and select Add Field Components as shown in
Figure 15 on page 33. This brings up the Field window shown in Figure 16 on
page 33. Highlight FirstName and LastName and click Accept Selection. In
this case, there should be only those two fields in the list.

Next, you have to order the fields as they have to appear in the output
message, last name first and then the first name. Highlight FirstName, drag it
upwards over LastName and then drop it.

Figure 23. Tutorial: Output Format with Fields
Getting to Know the MQSI - A Tutorial 37

So far we have defined that the message consists of two fields and we also
specified the order of the fields. What we have to do now is to tell the
Formatter what to do with fields when it re-formats the message.

We have to assign the output control String5 to both fields. This control
includes the output operation that converts all characters to upper-case. Click
LastName and you see the properties shown in Figure 24. The names of the
input and output fields are already set. When you click the Output Control
Name list two choices are displayed:

• NONE
• String5

Select String5 and click Apply .

Repeat this scenario for FirstName.

Figure 24. Tutorial: Assign an Output Control to a Field

This concludes the definition of the output format. At this point you could use
the Visual Tester and check if your definitions are correct. How to do this is
explained in 3.3.2, “How to Test If the Output Message Is Defined Correctly”
on page 48.
38 Using the MQSeries Integrator Version 1.0

3.2 Working with Rules

In this section, we will create the rule that tells the MQSI run-time program,
the rules processor, to get a message, parse and reformat it, and then put it
on an output queue. To bring up the Rules GUI click the Start button and
select from the menu:

Programs
MQSeries Integrator

Rules

This will bring up the logon window where you have to enter the following:

User ID: Your User ID
Password: Your password
DBMS: Select ODBC - DB2(ODBC) from the drop-down list
Driver: Select the alias database name, here MQSITDBA
Qualifier: For DB2, leave this field blank

Click on OK to log on. Next, you will see the Rules window:

Figure 25. MQSI Rules Window
Getting to Know the MQSI - A Tutorial 39

Note: The left pane in the Rules window shown in Figure 25 on page 39
contains only one object, the default application group "defaultApp". This
group is always there.

When you click the New Message tab you will see a list of all input formats in
the database. In our case, that is our only input message, NamesIn.

The steps to create a rule for an input message are:

• The MQSI database can contain definitions for several application groups.
For this exercise, we use the default application group.

• An application group may have many messages. For example, the
programs that comprise the payroll application may process messages
that contain personal data changes, overtime payments and payroll
deductions, to name some. Each of these messages is referred to as a
message type.

Note: Don’t confuse the MQSI message type with the MQSeries message
type (request, reply, datagram).

• Each message type has at least one rule associated with it. Rules
determine what happens to the message, for example, which output
format is associated with which input format.

• Each rule is associated with a subscription. A subscription defines one or
more actions, such as put a message on a queue.

To complete the definitions for this tutorial, we have to do the following:

1. Add the message (type) NamesIn to the default application.

2. Define the rule NamesRule.

3. Add and define the subscription NamesSub to the subscription list.

4. Associate the subscription with the rule.

Add a Rule

Add an Application Group

Add a Message Type

Add an Action

Add a Subscription
40 Using the MQSeries Integrator Version 1.0

3.2.1 How to Add a Message Type to an Application
You see in Figure 25 on page 39 that the database contains only one
message, NamesIn. To add this message to the application group defaultApp,
click NamesIn in the Available panel and drag it into the Current panel to its
right.

Figure 26. Tutorial: Creating a Message Group

Note: To remove a message from the application group (Current list),
highlight it by clicking the name and pressing the Delete key.

3.2.2 How to Define a Rule
In the Rules window, right-click the message NamesIn and then click New.

Figure 27. Tutorial: Adding a Rule

Then overwrite NewRule1 with the rule name and press Enter. We chose to
name the rule NamesRule. Next, you will see the window in Figure 28 on
page 42.

Note: Names of rules are only to help you organize and potentially for export
and inport. They are nor used at run-time, except for diagnostic purposes.
Users rarely need to care about rule names.
Getting to Know the MQSI - A Tutorial 41

Figure 28. Tutorial: Defining a Rule

We want to define a rule that checks if both fields in the message, FirstName
and LastName, are present, that is, if both fields have been properly parsed.
You can type the rule in the Expression box or use the functions provided to
build the expression. Let’s do the latter:

1. Double-click And expression in the Expression Components list. In the
Expression box you will now see the text:

(Exp A & Exp B)

2. Exp A is highlighted. Press the Delete key to erase this text.

3. Click the Field List tab. You will notice our two fields in the list.
Double-click FirstName . The Expression box now shows:

(’FirstName’ & Exp B)

4. Click the Operators tab to display the operators MQSI provides.
Double-click EXISTS. The Expression box now contains:

(’FirstName’ EXISTS & Exp B)

5. Delete Exp B, click the Field List tab and double-click LastName . In the
Expression box you will now see:
42 Using the MQSeries Integrator Version 1.0

(’FirstName’ EXISTS & ’LastName’)

6. Click the Operators tab again and double-click EXISTS. The expression is
now complete:

(’FirstName’ EXISTS & ’LastName’ EXISTS)

7. Click Verify. The MQSI will inform you that the syntax is OK.

8. Click Apply .

The rule is now defined.

3.2.3 How to Specify Actions for a Rule
In the Rules window, right-click Subscription List and select New. Then
overwrite NewSubscription1 with a name of your choice, for example,
NamesSub and press Enter.

Figure 29. Tutorial: Creating a Subscription

In this example, we want two actions applied to the message: reformat it and
put it on a queue. In Figure 29 you see three actions. We are only concerned
with the first two.These actions have to be placed in the action list:

1. Click Reformat and drag it into the Action List. The window changes now
to what you see in Figure 30 on page 44.

2. Click the drop-down box to the right of INPUT_FORMAT. In our case, the
list contains only one message, namely NamesIn . Select it.

3. Click somewhere in the field next to TARGET_FORMAT and then display
the list of output formats available. Since we have only one, click
NamesOut .

4. Click Put Message and drag it into the Action List field.

drag
Getting to Know the MQSI - A Tutorial 43

Figure 30. Tutorial: Defining a Reformat Action

Figure 31. Tutorial: Defining a Put Message Action

5. You are required to enter the name of the queue where the MQSI shall put
the output message. We use the queue Output. You must specify a put
message action or the message is lost.

Note: Queue names are case-sensitive.

6. To associate the subscription with the rule NamesRule click NamesSub
under Subscription List and drag it on top of the rule. This completes the
rules definition. The defaultApp tree shows the following objects:

click for selection
44 Using the MQSeries Integrator Version 1.0

3.3 Testing Formats and Rules with the Visual Tester

We found the Visual Tester, a Support Pack, a valuable tool to test input and
output formats during definition time. In this section we explain how to use the
product to check out the previously defined input and output formats,
NamesIn and NamesOut.

It is assumed that this program is installed and usable. Detailed information
on how to install and use this product can be found in 4.8, “The Visual Tester”
on page 77. Before you start the Visual Tester create a default queue
manager and start it, for example:

crtmqm /q QAQM
start qmgr

Note: You may have done this already for the IVP (see 2.1.8, “Verifying the
Installation” on page 16).

Start the Visual Tester from the Start menu, usually by selecting:

Programs
Visual Tester

Visual Tester

When the logon window appears, type the following:

• Your user ID
• Your password
• The name of the database alias, here MQSITDBA, in the Driver field
• Leave the field Queue Session Name unchanged

Then click OK . This causes the Visual Tester window to appear. This window
has four tabs:

1. Load Q
2. Test Format
3. Test Reformat
4. Test Rule

For this exercise, we will walk through the last three functions:

• Validate the definitions for the input format (test format).

• Use the reformatting function to see if the output message looks as
expected.

• Find out how the rules processor processes our messages.
Getting to Know the MQSI - A Tutorial 45

3.3.1 How to Test If the Input Message Is Defined Correctly
Figure 32 on page 46 shows the Visual Tester window with the tab Test
Format selected. You see that the two input fields are parsed correctly.

The input message can be in a queue, a file, or you can type it in the
Message field. Here, we selected Screen as the data source and typed the
message.

Note: There is a blank at the end of the message to make it exactly 10
characters long.

Figure 32. Tutorial: Test Input Format Using the Visual Tester
46 Using the MQSeries Integrator Version 1.0

The fields for which you have to provide values are:

Application Group Specify "defaultApp" as for the IVP. Actually, to test the
input message you can enter any value or leave the field
blank.

Message Type This field is mandatory; specify NamesIn. The program
displays an error message when a message with this
name cannot be found in the database.

Screen When this radio button is selected, you can type your input
messages in the Message field.

Message Type the input message as defined in the format. Be
careful and type exactly 10 characters.

Note: Since we defined a fixed length message, you must type blanks at the
end of the name if it is shorter than five characters.

If you make an input error, the program cannot parse the message and
displays an error message, such as:

• Mandatory input field "FirstName" not found

• Mandatory input field "LastName" not found

• n trailing characters "abc..." after message parse

As the result of the test, the components or fields of the input message are
displayed in the white area at the bottom of the window.

If you correct your definitions you have to have to refresh the Formatter and
rules data stored in the Visual Tester’s cache:

• Click Options

• Check Recache Rules/Formatter

• Click OK

If You Make Corrections
Getting to Know the MQSI - A Tutorial 47

3.3.2 How to Test If the Output Message Is Defined Correctly
Figure 33 on page 48 shows the Visual Tester window with the tab Test
Reformat selected. You see that the two input fields are parsed correctly and
then reversed and translated to upper-case.

As in the previous example, the input message can be in a queue, a file, or
you can type it in the Message field.

Note: There is a blank at the end of the input message to make it exactly 10
characters long.

Figure 33. Tutorial: Test Reformatting Using the Visual Tester
48 Using the MQSeries Integrator Version 1.0

The fields for which you have to provide input are:

Application Group Specify "defaultApp" as for the IVP. Actually, for this
test you can enter any value or leave the field blank.

Message Type This field is mandatory; specify the name of the input
format, here NamesIn.

Output Message Type This field is mandatory, too. Type the name of the
output format, here NamesOut.

Data Source Select the Screen radio button which allows you to
type the input message into the Message field.

Output Destination Select the Screen radio button so that the Formatter
output appears in the Result field.

The error messages are the same as for testing the input field.

As the result of the test, the components or fields of the output message are
displayed in the white area at the bottom of the window.

3.3.3 How to Test If the Rules Work Properly
Figure 34 on page 50 shows the Visual Tester window with the tab Test Ruled
selected. You see the fields of the input message and the rule test results.

First, the program parses the input message. If you don’t type the correct
number of characters, here 10, it displays an error message. After the
message is parsed correctly, the program checks if there is a rule that
matches the input. In this case, we have only one rule defined. Therefore, we
will always have a "hit".

Note: In the example, the rules are only tested when exactly 10 characters
have been entered.

The fields you have to enter are:

Application Group The name of the application group the input message
belongs to, here defaultApp. We decided to use this
name in 3.2, “Working with Rules” on page 39.

Message Type This field is mandatory; specify NamesIn. We decided
on this name in 3.2.1, “How to Add a Message Type to
an Application” on page 41.

Data Source Select the Screen radio button which allows you to
type the input message into the Message field.
Getting to Know the MQSI - A Tutorial 49

Figure 34. Tutorial: Test Rules Using the Visual Tester

Message Enter here the fields of the input message. Since it
contains fixed length fields, type exactly 10 characters,
otherwise you see a pop-up window telling you that the
rules processor failed parsing the message. The error
50 Using the MQSeries Integrator Version 1.0

message tells you the name of the format it used and
the number of characters you typed.

As a result of the test, you see the following tree structure:

The tree structure shows:

• That we hit a rule; in this case we have only one

• What expression was used (first and last name must exist)

• The subscription name and the actions associated with it:

1. The message has been reformatted

2. The message is destined for the queue Output

• No rules were missed (since we have only one and that one matched)

Note: You can specify a queue or a file as a data source. However, the
function to test the rules will not write an output message to a queue or file.

3.4 Using the Rules Processor

To test our application in a real life environment using the MQSI rules
processor we have to do the following:

1. Prepare the environment.

2. Create the rules processor configuration file (mpf file).

3. Start the rules processor.
Getting to Know the MQSI - A Tutorial 51

3.4.1 How to Set Up the Environment
Before we can start the rules processor we have to set up the MQSeries
environment:

1. Create a queue manager. You create the default queue manager QAQM
with this command:

crtmqm /q QAQM

The advantage of creating a default queue manager is that you don’t have
to type a queue manager name for any of the MQSeries commands or
utilities.

1. Start the (default) queue manager with the command: strmqm

2. If not already done so for the IVP, start runmqsc and create the following
queues:
define qlocal('RulesIn') replace
define qlocal('RulesNoHit') replace
define qlocal('RulesFail') replace
define qlocal('Output') replace

3. Use runmqsc to verify that the queues are empty:
display ql(*) curdepth

You should see the following output:
QUEUE (RulesIn) CURDEPTH (0)
QUEUE (RulesNoHit) CURDEPTH (0)
QUEUE (RulesFail) CURDEPTH (0)
QUEUE (Output) CURDEPTH (0)

4. Use amqsput to put some messages into the input queue:
C:\>amqsput RulesIn
Sample AMQSPUT0 start
target queue is RulesIn
abc
Karl Otto
JesseJames
King Arthur
<=== enter a blank line

Sample AMQSPUT0 end

The queue RulesIn now contains four messages, two have the correct
length while the first one is too short and the last one too long.
52 Using the MQSeries Integrator Version 1.0

3.4.2 What the Rules Processor Configuration File Is For
The rules processor needs a configuration file that describes what queues to
use, to what queue manager to connect, and what default application to use,
to name three.

The rules processor configuration file MQSIruleseng.mpf comes with the
product. For this test, we make a copy of it, name it tutorial.mpf and modify it.
The file is shown in Figure 35 on page 54.

Following are some notes to the fields in the file:

1. The name of the queue manager the rules processor connects to is
QAQM. It is expected that the queue manager is running before the rules
processor starts. This queue manager owns all queues the rules
processor uses.

2. Here we define the three default queues required by the rules processor:

• RulesIn contains the input messages.

Note: In Version 1.0 of the MQSI, the rules processor accepts only one
input queue.

• If an input message does not match any of the rules it will be written to
the RulesNoHit queue.

• If a rule fails, the wrong message is written to the RulesFail queue. For
example, this is the case when we provide a message with the wrong
length.

Note: The output queue is not specified in this file. It is defined in the rule.
The rules processor is able to write messages to more than one queue.

3. The rules processor requires that we specify a default application group
and a default message type. In this example, we use the same application
group as the IVP. The default message type for the application group
defaultApp is NamesIn. We decided this when we created the rule in 3.2.1,
“How to Add a Message Type to an Application” on page 41.

These defaults are used when the message itself does not contain an
MQSI header that specifies application and (MQSI) message type. This
subject is discussed later.

4. The rules processor has to know where to get the input, output and rules
definitions. For DB2 we specify the database alias MQSITDBA.

5. Since we use DB2, the database type is set to 5.
Getting to Know the MQSI - A Tutorial 53

Figure 35. Tutorial: Rules Daemon Configuration File tutorial.mpf

[Queues]
Parameters related to queues, MQSeries control, and rules engine control

Alternate User Authority Flag
CredentialsEnabled = 0

MQSeries queue manager name
QueueManagerName = QAQM

retry limit
MaxBackoutCount= 0

these three queue names are mandatory!
InputQueueName = RulesIn
NoHitQueueName = RulesNoHit
FailureQueueName = RulesFail

rules default application group and message type values (mandatory)
DefaultAppGroup = defaultApp
DefaultMsgType = NamesIn

[Logging]
Log levels:
#3 - log only fatal errors
#2 - log errors, and fatal errors
#1 - log warnings, errors, and fatals
#0 - log informationals, warnings, errors, and fatals
LogFileName = mqsiruleng.log
LogLevel = 0

[Rules Database]
all fields are mandatory)
ServerName = MQSITDBA
UserId = userabc
Password = password
DatabaseInstance = MQSITDBA
#
DatabaseType is a numeric with these values:
SYBASE = 1 MQSQL = 2 ORACLE = 3
DB2 = 4 ODBC = 5
#
DatabaseType = 5

2

3

4

5

1

54 Using the MQSeries Integrator Version 1.0

3.4.3 How to Start the Rules Processor
When the MQSeries environment is set up and a rules processor
configuration file is present, we are ready to start the rules processor. In a
command prompt window, issue the command:

mqsiruleng -p tutorial.mpf

The rules processor will never end unless you send a shutdown message or
kill it yourself. It constantly checks the input queue for messages. You may
minimize the window.

Now let us find out what happened to the four messages we put in the input
queue RulesIn (see page 52).

In another command prompt window, start runmqsc and check how many
messages are in the queue. The mqsc command you type is:

display ql(*) curdepth

The output should tell you the following:

• The queue RulesIn is empty, all messages have been processed.

• The queue Output contains two messages, namely the one with the
correct length.

• The queue RulesFail contains two messages, the one that is too short and
the one that is too long.

You can use amqsget to retrieve the messages from the queues:

C:\>amqsget Output QAQM
Sample AMQSGET0 start
message < Otto Karl >
message < JamesJesse>
no more messages
Sample AMQSGET0 end

C:\>amqsget RulesFail QAQM
Sample AMQSGET0 start
message < abc>
message < King Arthur>
no more messages
Sample AMQSGET0 end

C:\>
Getting to Know the MQSI - A Tutorial 55

56 Using the MQSeries Integrator Version 1.0

Chapter 4. Tools That Help with Development

The MQSeries Integrator consists of three main parts:

• The Formatter GUI, a program to develop format defintions

• The Rules GUI, a program to develop rules

• The Rules Daemon, the MQSI’s run-time program

In addition, the product provides a number of tools to test if the definitions
entered into the MQSI database work with the real data as intended. The
tools allow you to quickly test your MQSeries Integrator formats and rules
using input and output messages without the need to code programs.

You may also have the need to export and import definitions. This chapter
describes a number of tools provided with the MQSl. We also include the
Visual Tester which at the time of writing this book is available as a Support
Pack. The tools we write about are listed in Table 3:

Table 3. MQSI Tools

Of course, you may also use some of the utilities supplied with MQSeries,
such as runmqsc, amqsput. amqsget, and amqsgbr.

Program Name What It Does

msgtest Tests message reformatting; input and output messages in files

ruletest Tests rules; input message in file, output on screen

NNRTrace Tests actions for a specific rule

MQSIputdata Puts messages in a queue to be processed by the Rules daemon;
can add MQSI header (RFH) and application type and message
type; needs parameter file MQSIputdata.mpf

MQSIgetdata Gets message from a queue put there by the Rules daemon;
needs parameter file MQSIgetdata.mpf

NNFie Imports and exports formats

NNRie Imports and exports rules

Visual Tester Tests formats, reformatting and rules; input can come from a
queue, a file or it can be typed
© Copyright IBM Corp. 1999 57

4.1 Using msgtest to Test If a Message Reformats Correctly

A simple tools to test formats is the msgtest program. It is in the Windows NT
directory \mqi\bin. You can use it to test your input and output formats defined
with the Formatter GUI.

To find out what parameters you can specify, open a command prompt
window, change the directory to \mqi\bin and type the command msgtest /? .
The output is shown below.

Figure 36. Tools: Parameters for msgtest

Notes:

• The -li, -lo and -lf parameters are used to echo the input, output and
format elements back to the screen for checking.

• The -d, -dcp, -dcm and -dco debug parameters give more details about the
data type, length and content of the individual elements.

• In the case of -dco the output controls are used.

Example:

1. If you want to check the format defaultMsg provided with the IVP, create a
small file called defaultMsg.txt in the \mqi\bin directory. Then type in the
message text hello;world; and save.

D:\MQI\bin>msgtest /?
 Formatter Reformatting Test Tool (msgtest)
 NeoNet Version 4.01
 Version 1.23.2.2.2.3, last changed on 1998/04/14 21:23:33
 Copyright (C) 1996-198, New Era Of Networks, Inc.
 All Rights Reserved.

usage: msgtest [-li] [-lo] [-lf] [-nv] [-d [<file name>] [-dcp] [-dcm] [-dco]]
 -li: loud input
 -lo: loud output
 -lf: loud formatted value
 -nv: no validation
 -d: debug on (debug parse only if -dcp and -dcm and -dco not specified)
 -dcp: debug parse on
 -dcm: debug map on
 -dco: debug output on

D:\MQI\bin>
58 Using the MQSeries Integrator Version 1.0

Notes: Do not add a carriage return at the end of the text as this will count
as another character in your message.
The file can contain only a single message.

2. To test the defaultMsg format, at the command prompt type the command
msgtest with no parameters and press Enter. You will then be prompted for
the input file name, output file name, input format and output format. For
our example this would appear as shown in Figure 37. The bold text
indicates your input.

Figure 37. Tools: Example of Using msgtest

Note: Format names are case-sensitive.

To end the program press Return and then Ctrl-C. You will find that you have
an output file called defaultOut.txt in the \mqi\bin directory that contains your
reformatted output text message WORLD HELLO.

4.2 Using ruletest to Evaluate Rules

This tool is used to test which rules and subscriptions would be executed and
to evaluate which actions would take place for a specific input message. This
program does not actually execute subscriptions using the formatter.

The ruletest utility gets the input message from a file. You have to provide the
application group and the message type.

This program resides in the \mqi\bin directory. To find out what input
parameters you can use, type on a command line the command ruletest -? .

D:\MQI\bin>msgtest
Enter the input file name:
defaultMsg.txt
Enter the output file name:
defaultOut.txt
Enter the input format name:
defaultMsg
Enter the output format name:
defaultOut
Message count: 1

Success. Hit return.
Tools That Help with Development 59

Figure 38. Tools: Parameters for ruletest

You can run the program interactively. The example shown in Figure 39 on
page 61 uses the formats and rules from the IVP. The input you have to
provide is shown in bold.

Notes:

1. Use your favorite editor to create the input file. The file can contain only a
single message.

2. Do not add a carriage return at the end of the text in the input file as this
will count as another character in your message.

3. The names of the application group and message type are case-sensitive.

4. When prompted for the session name press Enter to use the default. This
name is specified in the database connection file, sqlsvses.cfg. For more
information refer to 2.1.7, “The Database Connection File” on page 15.

5. If you set the -v parameter on, the ruletest program logs to the screen, for
example:

Opening input file named defaultMsg.txt
File opened successfully
New message
hello;world;
End of message

D:\MQI\bin>ruletest /?

Rules evaluation test program (ruletest)
 NeoNet Version 4.01
Version 1.11.6.3, last changed on 1998/05/07 19:01:01
Copyright (C) 1996-1998, New Era Of Networks, Inc.
All Rights Reserved.

Usage:
 ruletest
 -i <Input-File-Name>
 -a <Application-Group>
 -m <Message-Type Format-Name>
 [-s <Session-Name>] (default = "rules")
 [-v (Verbose)]

D:\MQI\bin>
60 Using the MQSeries Integrator Version 1.0

6. You have to reload the rule set after you have made changes to the
database that relate to the example your are testing.

7. Use Ctrl-C to end the program.

Figure 39. Tools: Example of Using ruletest

4.3 Debugging Rules Using NNRTrace

Similarly to ruletest, we can use NNRTrace to test and debug rules. This
program shows us whether a rule will hit or not, and what actions will be
performed based on the subscriptions of the rule. The main difference
between NNRTrace and ruletest is that for NNRTrace you specify the rule you
want to test by name. Figure 40 on page 62 shows an example. The input is
shown in bold.

D:\MQI\bin>ruletest
Enter the session name (default = "rules"):

Enter the input file name:
defaultMsg.txt
Enter the application group name:
defaultApp
Enter the message type name:
defaultMsg
Verbose on [y/n]:
n
Do you want to reload the rule set? [y/n]:
n

New message
hello;world;
End of message

NO HIT RULES - Rule Name (Id)

HIT RULES - Rule Name (Id)
 defaultRule(4)

ACTIONS
 Action(Id): reformat(2)
 1 : INPUT_FORMAT - defaultMsg
 2 : TARGET_FORMAT - defaultOut
 Action(Id): putqueue(2)
 1 : OPT_TARGET_QUEUE - Output
Tools That Help with Development 61

NNTrace runs a message through a specified rule. The message comes from
an input file. The program displays each argument with its appropriate field
value derived from the message.

Figure 40. Tools: Example of Using NNRTrace

Enter the input file name:
defaultMsg.txt
Enter the application group name:
defaultApp
Enter the message type name:
defaultMsg
Enter the rule name:
defaultRule
Enter the session name (default 'rules'):

Enter the output file name (default none):

Verbose on [y/n]:
n
APPLICATION GROUP: defaultApp
MESSAGE TYPE: defaultMsg
RULE NAME: defaultRule

EXPRESSION: defaultfield1 EXIST & defaultfield2 EXIST

INPUT MESSAGE:
hello;world;

FIELD NAME: defaultfield1
VALUE 1: hello
OPERATION: EXIST

FIELD NAME: defaultfield2
VALUE 1: world
OPERATION: EXIST

RULE WOULD HIT
SUBSCRIPTIONS:
 Subscription: defaultSub

Action: reformat
 1 : INPUT_FORMAT - defaultMsg
 2 : TARGET_FORMAT - defaultOut
 Action: putqueue
 1 : OPT_TARGET_QUEUE - Output
62 Using the MQSeries Integrator Version 1.0

The mandatory parameters for NNRTrace are:

-i <Input-File-Name>
-a <Application-Group>
-m <Message-Type/Format-Name>
-r <Rule-Name>

Optional parameters are:

-s <Session-Name> Default = rules
-o <Output-File-Name> Default = Standard output
-v (Verbose) Y = log to screen

4.4 Using MQSIputdata to Create Messages with RFH Header

At one time during the development process you have to test your formats
and rules with real data from a queue. You can obtain messages from the
production program that creates them or, if this program is not available yet,
use the MQSIputdata tool. This program allows you to put one or more
messages in a specific queue. You can also alter certain fields in the
message descriptor (MQMQ) and add an MQSI Rules Format Header
(MQHRF). This is useful if you don’t want to use the default application and
default message type defined in the rules processor configuration file but the
ones specified in the RFH header of the incoming message. Also, your target
application may expect this header information.

The MQSIputdata tool is used in conjunction with:

• A parameter file, such as mqsiputdata.mpf, that is used to create the
message header

• A flat file that contains the message data (one message only)

Figure 41. Tools: How MQSIputdata Works

Queue

MQSIputdataputdata.input mqsiputdata.mpf
Tools That Help with Development 63

The file putdata.input in Figure 41 on page 63 contains data of a single input
message. The file mqsiputdata.mpf is used to set the following parameters:

Table 4. MQSIputdata Input Parameters

Figure 42 on page 65 shows the file mqsiputdata.mpf as it is supplied with the
product. You start the program from the command line as shown (in bold) in
Figure 43 on page 66. The statistics show that one message has been put.

Note: The queue manager must be running.

What you can specify Values you can enter

inputFileNname Name of file that contains data for a single message

queueName Name of queue that will contains message(s)

queueManagerName Name of queue manager MQSIputdata connects to

maxUserDataLength Default =10,000 bytes of user data in a message

messageCount Number of messages to put; the default is 1; you may
replicate as many messages as you like

showStatistics Whether to show statistics (1) or not (0)

MQMD fields that can be changed

format Value MQSIputdata puts in MQMD.Format, such as
MQHRF (the default) or MQSTR

expiry Value for MQMD.Expiry; the default is -1,
MQEI_UNLIMITED

persistence Value for MQMD.Persistence; the default is 0,
MQPER_NOT_PERSISTENT

messageType Value for MQMD.MsgType; the default is 8,
MQMT_DATAGRAM
(That’s the only type supported)

MQSI Header

includeHeader Whether to include the RFH (1) or not (0)

dataFormat

Only when includeHeader=1

The name to put in MQHRF.Format, for example,
MQSTR (default); rules processor will put this in the
MQMD.

putOptions

Only when includeHeader="1"

Names of message group and message type:
OPT_APP_GROUP = name
OPT_MSG_TYPE = name
64 Using the MQSeries Integrator Version 1.0

Figure 42. Tools: mqsiputdata.mpf

[Put Control]
 #Name of the file which contains the message data
 inputFileName = putdata.input
 #Name of the queue where the message will be put
 queueName = RulesIn
 #Name of the queue manager that owns the queue
 queueManagerName = QAQM

 #Maximum message size
 maxUserDataLength = 10000
 #Number of messages to put
 messageCount = 1
 #Binary value indicating whether of not statistics information shoud
 #be output. 1 indicates yes, 0 indicates no.
 showStatistics = 1

[Put Message]
 # Populate the format field of the message descriptor with this value.
 format = MQHRF
 # Populate the expiry field of the message descriptor with this value.
 expiry = -1
 # Populate the persistence field of the message descriptor with this value.
 # Valid values for persistence
 # MQPER_PERSISTENT 1
 # MQPER_NOT_PERSISTENT 0
 # MQPER_PERSISTENCE_AS_Q_DEF 2
 persistence = 0
Populate the message type field of the message descriptor with this value.
Valid values for message type:
 # MQMT_REQUEST 1
 # MQMT_REPLY 2
 # MQMT_REPORT 4
 # MQMT_DATAGRAM 8
 messageType = 8

 # Specify whether or not to include the RF header
 # with the inbound message 1 = yes, 0 = no
 includeHeader = 1
 # Specify how to populate the MQRFH.Format field.
 # This parameter only takes effect if includeHeader == 1.
 dataFormat = MQSTR

[Put Options]
 #This group defines the options which will be attached to the
 #to the message before it is sent. The parameters in this
 #group only take effect if includeHeader == 1.
 OPT_APP_GRP = mqsiAG
 OPT_MSG_TYPE = mqsiIF

spelling!
Tools That Help with Development 65

Figure 43. Tools: Starting MQSIputdata

The following two examples demonstrate what messages MQSIputdata
creates. If you want to do this on your own, make sure that the rules daemon
is not running. It would process the messages you put on the queue
immediately.

Example 1

Let’s start with a simple example. In mqsiputdata.mpf, change the following
three parameters:

messageCount = 3
format = MQSTR
includeHeader = 0

If you display the messages in the queue with amqsbcg, you will see that they
look as if you had used amqsput to put them there.

Example 2

Now let us create a message that contains the RFH header and see how it
looks. The parameters we have to specify in the .mpf file are as follows:

messageCount = 1
format = MQHRF <------- note the spelling!
includeHeader = 1
dataFormat = MQSTR
OPT_APP_GRP = mqsiAG
OPT_MSG_TYPE = mqsiIF

The RFH becomes part of the message data. Since it contains binary data
you cannot display the messages with amqsget or amqsgbr. Use amqsbcg
instead; it displays the MQMD header, too. An example is in Figure 44 on
page 67. You could use MQSIgetdata, but we will discuss this tool later.

D:\MQI\bin> strmqm
MQSeries queue manager started.

D:\MQI\bin> mqsiputdata -p mqsiputdata.mpf
-Statistics-

Messages Put : 1

D:\MQI\bin>
66 Using the MQSeries Integrator Version 1.0

Figure 44. Tools: Message With NEON Header (MQRFH)

In this example, data is 10 characters, following the RFH header. Table 5 on
page 68 shows the structure of the header.

MQGET of message number 1
****Message descriptor****

 StrucId : 'MD ' Version : 2
 Report : 0 MsgType : 8
 Expiry : -1 Feedback : 0
 Encoding : 546 CodedCharSetId : 437
 Format : 'MQHRF '
 Priority : 0 Persistence : 0
 MsgId : X'414D5120514D31202020202020202020F7290A3713700000'
 CorrelId : X'00'
 BackoutCount : 0
 ReplyToQ : 'RulesIn '
ReplyToQMgr : 'QAQM '

** Identity Context
 UserIdentifier : 'wackerow '
 AccountingToken :
 X'013100'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '11'
 PutApplName : 'D:\MQI\bin\MQSIputdata.exe '
 PutDate : '19990406' PutTime : '16475121'
 ApplOriginData : ' '

 GroupId : X'00'
 MsgSeqNumber : '1'
 Offset : '0'
 MsgFlags : '0'
 OriginalLength : '80'

**** Message ****

 length - 80 bytes

00000000: 5246 4820 0100 0000 4600 0000 2202 0000 'RFHF..."...'
00000010: 0000 0000 4D51 5354 5200 0000 0000 0000 '....MQSTR.......'
00000020: 4F50 545F 4150 505F 4752 5020 6D71 7369 'OPT_APP_GRP mqsi'
00000030: 4147 204F 5054 5F4D 5347 5F54 5950 4520 'AG OPT_MSG_TYPE '
00000040: 6D71 7369 4946 6161 6161 6162 6262 6262 'mqsiIFaaaaabbbbb'

RFH=70 + Data=10

Length

Note: HRF and RFH
Tools That Help with Development 67

Table 5. MQSI Header (MQHRF)

If the Rules daemon is not running, start it now with the following command:

mqsiruleng -p mqsiruleng.mpf

The rules processor will now process the messages in the queue RulesIn
according to the formats and rules in the MQSeries Integrator database. The
application ID and the message type must be in the database.

The MQSI header will be stripped off. The resulting messages are in the
Output queue.

If you display the message in this queue with amqsbcg, you will see that the
new MQMD.Format is now set to MQSTR. The rules processor got this
information from the MQSI header. Figure 45 on page 69 shows some of the
information displayed by amqsbcg for the message processed by the rules
processor.

Field Name Field Length Contents

StructId MQCHAR4 Structure ID = RFH

Version MQLONG Version number = 1

StructLength MQLONG Length of the RFH header plus the length of the
options string

Encoding MQLONG Default = MQENC_NATIVE

CodedCharSet MQLONG Default = zero

Format MQCHAR8 Format of the data following the RFH
The default = MQSTR

Flags MQLONG For future use

NEON Option Buffer

Application Group variable OPT_APP_GRP followed by the application
group name and a blank

Message Type variable OPT_MSG_TYPE followed by the message
type
68 Using the MQSeries Integrator Version 1.0

Figure 45. Tools: Message Reformatted by the Rules Daemon

4.5 Displaying Messages with MQSIgetdata

MQSIgetdata displays messages that are in a queue. The messages may or
may not carry the MQSI header. The program treats the header as data.

Figure 46. Tools: How MQSIgetdata Works

The functions of this tool are controlled through an mpf file, such as
mqsigetdata.mpf supplied with the product. This file is shown in Figure 47 on
page 70.

 MQOPEN - 'Output'

 MQGET of message number 1
****Message descriptor****

 StrucId : 'MD ' Version : 2
 Report : 0 MsgType : 8
 Expiry : -1 Feedback : 0
 Encoding : 546 CodedCharSetId : 437
 Format : 'MQSTR '
 Priority : 0 Persistence : 0
- -
OriginalLength : '10'

**** Message ****

 length - 10 bytes

00000000: 414E 544F 4E48 494C 4C20 'ANTONHILL '

Q u e u e M Q S Ig e td a ta

g e td a ta .o u tp u t

m q s ig e td a ta .m p f
Tools That Help with Development 69

Figure 47. Tools: mqsigetdata.mpf

[Get Control]
 #Name of the file to put the message in.
 outputFileName = getdata.output
 #Name of the queue to get the message from.
 queueName = RulesIn
 #Name of the queue manager that owns the queue.
 queueManagerName = QAQM

 #Maximum message size that the application can get.
 maxUserDataLength = 10000

 #ID of the message to get. If this value is not defined
 #and correlID is not defined, the application gets the next
 #available message from the queue. Notice that this field uses
 #an encoded hex representation for the messageId.
 #messageId = 414D51205141514D202020202020202034EA17130000030D

 #Correlation ID of the message to get. If this value is not
 #defined and messageID is not defined, the application gets the
 #next available message from the queue. The correlID field uses
 #an encoded hex representation of a binary value.
 #correlId =

 #Maximum number of messages to get. The application will run until
 #messageCount messages have ben dequeued or until the queue is empty.
 messageCount = 1000

 #Maximum amount of time to wait for a message to arrive before the
 #application reports a queue empty and exits. As of MQSeries Version 5,
 #the units of this timeout value are milliseconds.
 getTimeout = 0

 #The following entries are binary attribute indicators
 # 1 indicates that the feature should be enabled. 0 indicates that
 # the feature should be disabled.

 #Show statistics about dequeued messages.
 showStatistics = 1

 #Should the output be sent to a file. 0 indicates that output
 #should be sent to stderr.
 outputToFile = 1
 #Should the message descriptor data be output.

showDescriptor = 1
 #Should the message data be output.
 showData = 1

 #Should the messages be rolled back after the get operation.
 rollback = 0
70 Using the MQSeries Integrator Version 1.0

The output is similar to the output of amqsbcg; however, MQSIgetdata does
not recognize the Version 2 header introduced with MQSeries Version 5. If
you don’t have the need to get a message with a specific correlation ID or
message ID you may just as well use amqsget. But note that amqsbcg limits
the message size to 100 bytes and that is not very large. You start
mqsigetdata as shown below in bold:

Figure 48. Tools: Starting MQSIgetdata

The output file is shown in Figure 49.

Figure 49. Tools: Output of MQSIgetdata.

D:\MQI\bin>mqsigetdata -p mqsigetdata.mpf
Operation Complete.
-Statistics-
 Messages Got : 1

D:\MQI\bin>

 StrucId :'MD '
 Version :1
 Report :0
 MsgType :8
 Expiry :-1
 Feedback :0
 Encoding :546
 CodedCharSetId :437
 Format :'MQSTR '
 Priority :0
 Persistence :0
 MsgId :'414D51205141514D2020202020202020898BC13613A00000'
 CorrelId :'00'
 BackoutCount :0
 ReplyToQ :' '
 ReplyToQMgr :'QAQM '
 UserIdentifier :'jorgen '
 AccountingToken :'1601051500000090722146F95F7B22C51DA912EF03000000000000000000000B'
 ApplIdentityData :' '
 PutApplType :11
 PutApplName :'D:\MQI\bin\MQSIputdata.exe '
 PutDate :'19990210'
 PutTime :'20332797'
 ApplOriginData :' '

 WORLD HELLO

-Statistics-
Messages Got : 1
Tools That Help with Development 71

4.6 Importing and Exporting Formats

NNFie is provided for the purpose of importing and exporting formats to and
from the MQSeries Integrator database. This is useful if you need to transfer
or re-create format definitions in another MQSI database or on another
machine.

You invoke this tool from the command prompt. If you type nnfie without
parameters, NNFie displays all possible parameters as shown in Figure 50.

Figure 50. Tools: Parameters for NNFie (Import and Export Formats)

If you worked through 2.1.8, “Verifying the Installation” on page 16, you have
already used this command to import the defaultMsg and defaultOut formats
used in the IVP. Remember, the command was:

nnfie -i d:\IVP\formats.fie -s new_format_demo

You specified the name of the file that contains the (previously exported)
format and a session name specified in the database connection file,
sqlsvses.cfg. Figure 51 on page 73 shows the entries relevant to DB2 in this
file. The session names are highlighted.

D:\MQI\bin>NNfie
 Formatter Import / Export utility (NNfie)
 NeoNet Version 4.01
 Version 1.6.2.9.2.2, last changed on 1998/04/01 21:53:45
 Copyright (C) 1996-198, New Era Of Networks, Inc.
 All Rights Reserved.

 usage:
 NNfie ((-C <command file name>
 (-i <import file name> [-T]|-e <export file name>
 [-m <format name>+]
 [-s <session name>]))

 -C = Alternate command file: default file is NNFie.cmd
 if this option is given, NNFie will read command-line
 options from a file instead of the command line.
 -i = import: <import file name>: default file NNFie.exp
 -T = load import file as one transaction
 -e = export: <export file name>: default file NNFie.exp
 -s = session name: default is nnfie
 -m = message type/format: default results in export of all formats
72 Using the MQSeries Integrator Version 1.0

Figure 51. sqlsvses.cfg for Use with DB2

#
Sqlsvses.cfg - Defines sessions to be used to access the Rules & Formatter
database. The format of each line depends on the database
in which the NEON Rules and NEON Formats are to be stored.

Format of lines for the various supported database types:

DB2:
SessionName:dBaseName_or_Alias:dBaseUserid:dBasePassword:
(note that the fifth field is blank, so the last colon is required)

#
SessionNames required to run specific utilities:

The SessionName "new_format_demo" is required to run the test programs:
'apitest' and 'msgtest'.
The SessionName "rules" is required to run the test programs:
'ruletest'
Any SessionName may be used for the Import/Export utilities, NNFie and
NNRie, and is specified by the '-s SessionName' option. For example,
a SessionName of "import" and/or "export" could be used.
#

#
Example SessionNames (uncomment the SessionNames needed):

DB2 database (final colon required on each line):
 new_format_demo:MQSITDBA:wackerow:a1rich:
 rules:MQSITDBA:userid:password:
 import:MQSITDBA:userid:password:
(change Database, Userid, Password above)

---------------- (End of File) --
Tools That Help with Development 73

4.6.1 How to Export a Format
For example, let us export a format we have created called testMsg to a file
with the name testMsg.fie. The command, executed from the \mqi\bin
directory is as follows:

NNFie -e d:\temp\testMsg.fie -m testMsg -s new_format_demo

The parameters are as follows:

• new_format_demo is the session name for access to the MQSeries
Integrator database as defined in the sqlsvses.cfg configuration file.

• NNFie will look in the database for a format with the name testMsg and
export it.

• NNFie creates the file testMsg.fie in the directory d:\temp directory that
will hold the exported format.

4.6.2 How to Import a Format
If you now delete the just exported format testMsg in the database (using the
formatter GUI), you can re-create it with this command:

NNFie -i c:\temp\testMsg.fie -s new_format_demo

Alternatively, we could use this file on another machine running the MQSeries
Integrator to import the identical Message Type/Format into its format
database

4.7 Importing and Exporting Rules

With the NNRie tool you can import and export rules to and from the
MQSeries Integrator database. It is useful if you need to re-create rules or
transfer them between MQSI databases. You can replicate the entire rules
database or part of it, such as the rules for a specific application group or just
for a specific message type.

During the export/import process you may see the following error message:

"ERROR NNFie.err file already exists"

Before you look for any errors, simply delete the error file in the \mqi\bin
directory and try again.

In Case of an Error
74 Using the MQSeries Integrator Version 1.0

You invoke the program from the command prompt. If you type nnfie without
any parameter, NNFie displays what you can specify as shown in Figure 52.

Figure 52. Tools: Parameters for NNRie (Import and Export Rules)

4.7.1 How to Export Rules
Let us assume we have the rule testRule with the subscription testSub. We
want to export this rule and the subscription with it. To export to the file
testMsg.rie on the A-drive we issue this command:

NNRie -e a:\testMsg.rie -a defaultApp -m testMsg -r testRule -s new_format_demo

The parameters are as follows:

D:\MQI\bin>nnrie
Rules Import / Export utility (nnrie)
 NeoNet Version 4.01
Version 1.19.2.3.2.2, last changed on 1998/04/01 22:00:18
Copyright (C) 1996-1998, New Era Of Networks, Inc.
All Rights Reserved.

usage:
nnrie ((-C [<command file name>] |
 -V |
 (-i <import file name>|-e <export file name>
 [[[-a <appname> [...]] [-m <msgname>] [...]][-r <rulename>] [...]]
 [-s <session name>]
 [-o]
 [-c <database configuration file name>])))

-C = Alternate command file: default file is NNRie.cmd
 if this option is given, NNRie will read command-line
 options from a file instead of the command line.
-V = return version information only (do no processing)
-i = import: <import file name>: default file NNRie.exp
-e = export: <export file name>: default file NNRie.exp
-o = overwrite file (export) or overwite data (import): default is off
-c = database configuration file: default is sqlsvses.cfg
-s = session name: default is nnrmie
-a = specific app name (export only): no default
-m = specific message name, requires -a (export only): no default
-r = specific rule name, requires -a and -m (export only): no default
No -a, -m or -r options means export entire database.

D:\MQI\bin>
Tools That Help with Development 75

• new_format_demo is the session name for access to the MQSI database
as defined in the database connection file sqlsvses.cfg. This file, shown in
Figure 51, allows us to use one of three session names.

• testRule is the name of the rule we want to export.

• testMsg is the message the rule is for.

• defaultApp is the name of the application group to which testMsg belongs.

• testMsg.rie is the file that holds the exported rule.

The output from this command is as follows:

Figure 53. Tools: Export Example

To export all the rules associated with testMsg (or if this is the only rule) you
can omit the -r parameter. Similarly, to export all the rules in the database
omit the -a, -m and -r parameters. To export all rules that belong to a specific
application group use just the -a parameter.

4.7.2 How to Import Rules
You may have already imported a set of rules when you verified the
installation. Refer to 2.1.8, “Verifying the Installation” on page 16. Remember,
the command was:

nnrie -i d:\IVP\rules.rie -s new_format_demo

D:\MQI\bin>NNRie -e a:\testMsg.rie -a defaultApp -m testMsg -r testRule -s new_format_demo
Rules Import / Export utility (NNRie)
 NeoNet Version 4.01
Version 1.19.2.3.2.2, last changed on 1998/04/01 22:00:18
Copyright (C) 1996-1998, New Era Of Networks, Inc.
All Rights Reserved.

Import / export is set to "exporting"
Import / export file is "a:\testMsg.rie"
Configuration file is "sqlsvses.cfg"
Database session tag is "new_format_demo"
Export list contains 1 entries
Export node number 1
Application group name is "defaultApp"
Message type name is "testMsg"
Rule name is "testRule"
AMRnnnneSCPPCPnnnn
All done.
76 Using the MQSeries Integrator Version 1.0

With the above command you imported all rules in the file rule.rie into the
MQSI database.

To import the rule testMsg into another database, issue the command as
shown, in bold, in Figure 54.

Figure 54. Tools: Import Example

In the above example, there is only one rule in the file testMsg.rie. If the input
file contains more than the rules you want to import, use the -a, -m and -r
parameters.

4.8 The Visual Tester

We found that the Visual Tester is the most useful tool available for testing
both MQSI formats and rules. This tool is available as an MQSeries
SupportPac from the World Wide Web:

D:\MQI\bin>NNRie -i a:\testMsg.rie -s new_format_demo
Rules Import / Export utility (NNRie)
 NeoNet Version 4.01
Version 1.19.2.3.2.2, last changed on 1998/04/01 22:00:18
Copyright (C) 1996-1998, New Era Of Networks, Inc.
All Rights Reserved.

Import / export is set to "importing"
Import / export file is "a:\testMsg.rie"
Configuration file is "sqlsvses.cfg"
Database session tag is "new_format_demo"
Importing from file to database
AMRnnescppcpSCPPCPnn
All done.

MDI1: MQSeries Integrator - Visual Tester

This SupportPac has been updated to include fixes to the Visual Tester
code and to include a User’s Guide in Adobe Acrobat format.

IBM MQSeries SupportPacs may be accessed at the following URL:

http://www.ibm.com/software/mqseries/txppacs

How to Get It
Tools That Help with Development 77

The Visual Tester allows us to test both, formats and rules, in a GUI tool that
is both visual and intuitive using queues, files or the screen as inputs and/or
outputs.

Note: Some information on how to use this product is described in 3.3,
“Testing Formats and Rules with the Visual Tester” on page 45.

4.8.1 Installing the Visual Tester
The code comes as a single self-extracting executable, visualtester.exe. To
install it follow these steps:

1. Find the executable using the Windows NT Explorer and double-click on it.
This starts the extraction process.

2. You will be asked, in a message box, if you wish to install the Visual Tester
now. Click Yes to continue.

3. You are then asked where the installation files should be unpacked.
Provided there is enough disk space on the C drive, accept the default of
C:\TEMP\Visual Tester and click Finish.

4. Another prompt tells you: The specified folder does not exist. Create It ?
Click Yes to continue.

5. When the Welcome window appears, click Next to carry out the
installation.

6. You will then be presented with a dialogue asking you for the destination
location. You can accept the default C:\NEON\Visual Tester or use the
Browse button to change the location, for example, to D:\MQSI\VT. Then
click Next to continue.

7. Next the window shown in Figure 55 on page 79 appears. Select the
following:

• The type of the MQSI database you are using, here DB2.

• The queuing method being used, here MQSeries with a local queue
manager installed (server).

Then click Next .

8. If you are installing the Visual Tester with an MQSeries Integrator
installation that uses MQSeries Version 5.1 you may see the message in
Figure 56 on page 79.

You have to manually register the OCX files. You can do this afterward.
How to do this is described on page 80.

Click Yes to continue.
78 Using the MQSeries Integrator Version 1.0

Figure 55. Visual Tester Install: Select Database and Queuing

Figure 56. Visual Tester Install: OCX Registration Failure

9. Select a name for the program folder, for example, the default Visual
Tester, and click Next .

10.The install program then copies the files and finishes with a dialog box,
telling you that the installation has completed successfully. Click Finish .
Tools That Help with Development 79

Manually registering the OCX files:

If you are installing the Visual Tester with MQSeries 5.1 you need to manually
register the OCX files used by Visual Tester, NNObjs.ocx and NNMgrs.ocx. To
do this bring up a command prompt and type the following:

regsvr32 /s /c NNObjs.ocx

regsvr32 /s /c NNMgrs.ocx

Your Visual Tester installation is now complete.

4.8.2 Logging On to the Visual Tester
Selecting the Visual Tester from the programs folder brings up the logon
window in Figure 57.

Note: Make sure that the queue manager is running.

Figure 57. Visual Tester Logon Window

You have to enter your user ID and password as well as a Driver name. For
DB2, this is the ODBC System Data Source name you created during the
installation of the MQSeries Integrator, MQSITDBA.
80 Using the MQSeries Integrator Version 1.0

Leave the Queue Session Name unchanged, provided the queue manager
you use is the default queue manager. You have to click OK to start the Visual
Tester.

As the four tabs in Figure 58 on page 82 indicate, the program lets you
execute four functions:

• Load a message into a queue

• Test if an input format parses correctly

• Test if the reformatting (output format) works

• Test if the rules definitions are correct

4.8.3 Loading a Message into a Queue
The first tab in the Visual Tester is used to invoke a function that loads a
message into a queue. The message data can come from another queue, a
file or you may type it in the window.

If specified, the program puts the application group and message type in front
of the data.

Figure 58 on page 82 demonstrates how to create a message for the IVP and
put it into a queue. We specify the following values:

• The application group is defaultApp.

• The message type is defaultMsg.

• RulesIn is the name of the queue that will hold the message.

• The radio button Screen is selected to indicate the message data will be
typed in the dialog box, here "hello;world;".

If you click Load the following message will be displayed:

Successfully put 1 message(s) to queue RulesIn.

If you do not enter an application group and/or a message type, a pop-up
window will appear telling you that you didn’t. However, you may continue and
create a message that contains only the message data.
Tools That Help with Development 81

Figure 58. Visual Tester: Load Queue

4.8.4 Testing an Input Format
The second tab in the window, Test Format, lets you check out the input
format definitions you entered into the MQSI database with the Formatter
GUI. Let us use the message we just created with the Load Q function and
parse it:

• Click on Test Format tab.

• Select the Queue radio button for the data source.

• Enter the queue name, RulesIn
82 Using the MQSeries Integrator Version 1.0

• Enter the application group defaultApp and the message type defaultMsg.

• Click Test .

Alternatively, you can select Screen as the data source rather than a queue
and type in the message in the dialog box. Clicking Test shows the test
results in Figure 59.

Figure 59. Visual Tester: Test Format

Note: If you make any changes to the format you are testing while the Visual
Tester is running, you will need to open the Options window and mark the
check box for Recache Rules/Formatter under General Options for the
Tools That Help with Development 83

changes to take effect. On occasion it has been found that you may need to
do this several times when making several changes at a time.

4.8.5 Testing Reformat
The function behind the Test Reformat tab lets you check out your output
format definitions.

Figure 60. Visual Tester: Test Reformat

If you want to test the IVP output format defaultOut, drag the test message in
the Test Format window onto the Test Reformat tab and drop it. To do this,
place the cursor on the Message clipboard icon, hold down the left mouse
84 Using the MQSeries Integrator Version 1.0

button and drag the contents onto the Test Message tab. When you then click
the Test Reformat tab you will find that the message text box is already filled
in, as is the application group and the message type. You can use this drag
and drop technique between any of the tabs to reduce typing.

Continuing with your reformatting example, enter defaultApp as application
group and defaultOut as output message type. The output application group
defaults to the same as that for the input message. Click on Test and you see
the result shown in Figure 60 on page 84.

Figure 61. Visual Tester: Test Rules
Tools That Help with Development 85

4.8.6 Testing Rules
The fourth tab lets you test the rules you have entered into the MQSI
database. To use the IVP message as an example, enter the application
group and message type, and then type the message in the dialog box. Of
course, the Screen radio button must be selected if you type the message.

In the Test Result window, you can see how the Rules Daemon evaluates the
rules and expressions.

Refer also to 3.3.3, “How to Test If the Rules Work Properly” on page 49.
86 Using the MQSeries Integrator Version 1.0

Chapter 5. Formatting Examples

The Formatter dynamically transforms and translates messages based on the
requirements of the business and applications. The product has three basic
functions:

• Parse a message

• Reformat the message

• Link the input to the output

In this chapter, we show some examples of those basic functions. We discuss
the objects used to format and reformat messages. We also try to use a
consistent technique when creating both input and output formats. Since this
product was created with an object oriented design, it allowed us to use a
technique that builds from the bottom up. Remember the order in which to
create the objects for an input and output format:

How some of the objects are created is described in 3.1, “Working with the
MQSI Format Administrator” on page 28. In the following sections, we discuss
these objects and their properties in more detail.

The formatting examples will start with creating simple input and output
formats. We expand this example to include new MQSI features and end with
more involved examples, but not too complex so that the reader can easily
understand what to do. We describe the different objects, then position them,
and demonstrate their use with a reasonable example.

Input Format

Field Names

Input Controls

Literals

Output Format

Field Names

Output Controls

Literals

Output Operation Collections

Output Operations
© Copyright IBM Corp. 1999 87

Now start the Formatter to bring up the GUI shown in Figure 62 on page 88.
To show only the relevant information in the following screen captures we
start with a clean database.

Figure 62. Formatter Window

In the following sections, we explain the following:

• How to process delimited fields and how to use literal values

• How to add prefixes and suffixes to fields for identification and better
readability

• How to group output operations and form an output collection

• How to substitute values in the input message with values stored in the
formatter

• How to process fields that contain field length and data

• How to process fields that are identified by tags (field IDs)

• How to manipulate date and time fields

• How to work with formats that contain other formats (compounds)
88 Using the MQSeries Integrator Version 1.0

5.1 Using Delimited Fields

This section describes how the Formatter uses delimiters. We will also show
an example of how delimiters can be used.

Basically, a delimiter is used to separate the data or fields in a message.
There are several ways to locate fields in a message, by using spaces or
symbols to separate them, or by using an exact length. The formatter can
easily parse input when delimiters are used. Delimiters come in handy when
the message contains variable length fields.

As an example on how to use delimiters let’s parse a message that contains
two variable length fields, such as:

Skye;Otto;

The message contains a last name and a first name, separated by a
semicolon and ending with a semicolon. In this case, both semicolons are
delimiters. A delimiter can be any literal that is definable. A delimiter allows
the formatter to look at the message and separate the fields because it knows
where to stop looking. Whether the field is two or 32 characters long, the
formatter can distinguish it because it ends with a semicolon.

In this example, we read an input message containing a last name and a first
name. Then we swap the names and replace the semicolon between them
with a blank, for example:

The objective of this exercise is to define an input format containing the fields
LastName and FirstName, and an output format that swaps the fields and
inserts separators.

F ir s tN a m e L a s tN a m e

L a s t N a m e F ir s tN a m e

O t t o S k y e ;

S k y e ; O t t o ;

blank
Formatting Examples 89

5.1.1 Defining an Input Format with Delimited Fields
We are going to construct the input format Taxes_In with the following
objects:

Figure 63. Delimited Fields Example: Input Objects

We create the literal first and then the two fields. After that we define the input
control and assign it to the fields. At the end, we create the format definition
and add the fields to it.

5.1.1.1 Defining a Semicolon Delimiter
The input message contains one delimiter, a semicolon. We define it in the
following way:

1. Right-click Literals and then click New.

2. Type the literal name, Semicolon and press Enter. This will create the
literal. Figure 64 on page 91 shows what you see next. Now you have to
customize the properties.

Note: If at any time a mistake is made, complete the process to define the
literal. Then right-click the literal name and choose Delete from the
subsequent menu.

3. After the literal has been created click on the Properties tab. You will see
the name of the Literal in ASCII or EBCDIC and its hexadecimal
representation.

4. Highlight the text Semicolon, delete it and replace it with the semicolon
character ";". The hex value will change to "3b".

5. Click on Apply .

Literal :
Semicolon

Fields:
LastName
FirstName

Input Control:
CharToSemicolon

Format:

Taxes_In
90 Using the MQSeries Integrator Version 1.0

Figure 64. Defining the Literal Semicolon

5.1.1.2 Defining Fields
Figure 63 on page 90 shows that we have to create two fields, FirstName and
LastName. We described how to create fields, in detail, in 3.1.1, “How to
Define a Field” on page 30.

1. Right-click Fields and select New from the menu.

2. Type LastName in the field and press Enter.

3. You may add a comment in the Comment dialog box and then click Apply .

4. Perform the same actions for FirstName.
Formatting Examples 91

Figure 65. Example of Defining a Field

5.1.1.3 Defining Input Controls
An input control tells the Formatter how to parse the input message. In this
example, we want the Formatter to extract string data that ends with a
semicolon.

1. Right-click Input Controls and select New from the menu.

2. Type the name CharToSemicolon and press Enter.

3. On the right side in the window you will see two panels. In the left panel
there are three changeable fields:

• Control Type
• Data Type
• Data Termination

For this example, we will leave the defaults for Control Type (data only)
and Data Type (string).

4. Expand the Termination drop-down list and select Delimiter .

5. Click Apply .

6. Now the Delimiter field becomes available to be changed. Expand this
drop-down list and select Semicolon .

Note: If Semicolon is not part of the selection then the literal semicolon
has not been defined correctly.

Figure 66 on page 93 shows the significant parts of the Input Control window.
92 Using the MQSeries Integrator Version 1.0

Figure 66. Example of Defining an Input Control

5.1.1.4 Creating the Input Format
Now we have to create the input format, specify what fields belong in it (and
in which order), and define how the fields have to be parsed. A detailed
description on how to create an input format is in 3.1.3, “How to Define an
Input Format” on page 32.

1. Right-click Formats and select from the menu New, then Flat and Input .

2. Type the format name, Taxes_In, and press Enter.

3. You will see now the Properties for Taxes_In as shown in Figure 67 on
page 94. Make no changes here.
Formatting Examples 93

Figure 67. Example of Creating a Format

4. Right click Taxes_In and select the Add Field Components from the
menu. You can now select the fields that belong in the message.

5. From the list of fields, select the appropriate fields, here LastName and
FirstName. If you see only these two fields in the list, you can click Select
All . Then click Accept Selection .

6. Depending on the way the fields were selected, they may not be in the
correct order for our message. In our message, the last name is in front of
the first name while the format shows these fields reversed.

Left-click Taxes_In and make sure that the Fields tab is selected.
94 Using the MQSeries Integrator Version 1.0

7. Click a field and drag it into its right place. You can only drag fields
upwards! The order for our message is LastName followed by FirstName.

8. Next, click LastName in the panel on the left side of the window (under
Taxes_In). Now the Properties tab as shown in Figure 68 on page 95 will
appear on the right side of the window.

9. Expand the Input Control Name drop-down list and select the name
CharToSemicolon .

10.Click Apply .

11.Repeat the above steps for FirstName.

Figure 68. Example of Associating Fields with Input Control Names

At this point you should use the Visual Tester and check your definitions.
Remember that the queue manager must be running when you start this
program. Use any two names of any length, with a semicolon between them
and one at the end. The names may contain blanks.
Formatting Examples 95

5.1.2 Defining an Output Format with Fields and Literals
Now let us create the objects for the output format. This is a very simple
format. Since we don’t do anything to the fields, we don’t need output
operations. The objects needed are shown below:

Figure 69. Delimited Fields Example: Output Objects

The two names fields and the semicolon have already been defined for the
input format; we simply reuse them. To separate the first and last names in
the output message we insert a space. This is a field which is not mapped
from an input field. Its value comes from the literal Space. The
end-of-message indicator (EOM) is another field with the literal value
semicolon.

Here are the tasks to perform in order to create the output format:

5.1.2.1 Defining the Literal "Space"
We need a single space to insert between the first and last names. We create
it in the same fashion as the semicolon in the previous section.

1. Right-click Literals and then click New.

2. Type the literal name, Space, and press Enter.

3. In the ASCII window, erase the word Space and replace it with a blank by
pressing the Spacebar. The hex value will change to ’20’.

5.1.2.2 Adding the Separator Fields
Let’s create the fields Blank (containing one space) and the end-of-message
indicator EOM (containing a semicolon).

1. Right-click Fields and select New from the menu.

2. Type Blank (or EOM) and press Enter.

Literal :
Semicolon
Space

Fields:
FirstName
Blank
LastName
EOM

Output Control:
Char_Out
Space_Out
EOM_Out Format:

Taxes_Out
96 Using the MQSeries Integrator Version 1.0

5.1.2.3 Defining the Output Controls
Each field you output must be associated with an output control. In this
example, we have two kinds of fields:

• Fields that are mapped from an input format, such as Char_Out
• Fields that get their values from one of the defined literals, such as

Space_Out and EOM_Out

You define these objects as follows:

1. Right-click Output Controls and select New from the menu.

2. Enter the name Char_Out and press Enter. Leave the values in the
Properties window as they are.

The output control type is "Data Field (Name Search)" which means that
the input field will be mapped to the output field by field name. There is no
output operation associated with this control.

This is a simple output control that puts the characters into the output field
as they come from the input. Later we will examine ways to add spaces or
other literals to the output controls to make the output more readable.

3. Again, right-click Output Controls and select New from the menu.

4. Type the name Space_Out and press Enter. Then change the values in the
Properties panel as shown in Figure 70 on page 97 and click Apply .

5. Next, create EOM_Out with Semicolon as Field Value.

Figure 70. Defining an Output Control for a Field with a Literal Value
Formatting Examples 97

5.1.2.4 Creating the Output Format
Now we have to define the output format and add the fields to it. Also we have
to associate the fields with the appropriate output control. This process is
described, in detail, in 3.1.5, “How to Define an Output Format” on page 37.

1. Right-click Formats and select New, Flat and then Output from the menu.

2. Type the format name Taxes_Out (or any other name you like).

3. Right-click Taxes_Out and select Add Field Components .

4. In the right side of the window, select the four fields and click Accept
Selection .

5. You may have to reorder the fields by dragging them into their correct
position as shown in Figure 69 on page 96. Remember: first name, space,
last name, semicolon.

6. On the left side of the window, under Taxes_Out, select FirstName. Pull
down Output Control Name and select Char_Out from the list. Also,
make sure the input field name is correct. It has to be FirstName. Then
apply the changes.

7. Assign the output control to LastName in the same way.

Figure 71. Assigning an Output Control to a Field
98 Using the MQSeries Integrator Version 1.0

8. Now we have to assign the output controls to the two literal fields. On the
left side of the window, under Taxes_Out, select Blank . Pull down Output
Control Name and select Space_Out from the list. The input field name is
also Blank. Then click Apply .

9. Assign the output control EOM_Out to EOM in the same way.

10.Click Taxes_Out and then Field Map to see how the fields are mapped.
You see that two fields come from the input format Taxes_In while two
fields are created by the formatter using literal values.

Figure 72. Mapping Input to Output Fields

This concludes the exercise about delimiters. Now use the Visual Tester to
test the reformatting of some messages. For example:

"Skye;Otto;" becomes "Otto Skye;"

5.2 Using Fields with Prefixes and Suffixes

In this section we work with more literals and show examples of how to use
them as a prefix and a suffix.

A literal (actually, literal value) is a single character or string. It is used:

• To mark the end of a piece of data

• As a prefix or suffix

• As a pad character

• As substitute value

• As tag or field identifier
Formatting Examples 99

Two good examples of using literals are prefixes and suffixes. Prefixes are
literals that are added to the beginning of an output field, while suffixes are
added to the end of a field. For example:

• The prefix "$" can be associated with a dollar amount, as in $12.56.

• The suffix "%" can be associated with a percentage, as in 12%.

Note: In the previous example, we separated the first and last name with a
blank and added a semicolon at the end of the message. We actually added
two fields to the message. Now we replace them with suffixes added to both
first and last name. The fields Blank and EOM as well as their output controls
can be deleted.

The output format below shows that we have to create, both prefix and suffix
literals. We will learn how the formatter treats them in the output control. For
this example we add a salary field to the message.

.

For the input format we need to add only one object, the salary field.

Figure 73. Prefix/Suffix Example: Input Objects

FirstName LastName Salary

LastNam e FirstNam e Salary

O t t o S k y e : $ 3 7 0 0 0

S k y e ; O t t o ; 3 7 0 0 0 ;

Input

Output

Literal :
Semicolon

Fields:
LastName
FirstName
Salary

Input Control:
CharToSemicolon

Format:

Taxes_In
100 Using the MQSeries Integrator Version 1.0

The output message contains the first and last name, separated by a space.
The space is a suffix to FirstName. To LastName we add a colon suffix. The
salary is prefixed by a dollar sign. Here we don’t use an end-of-message
indicator.

Figure 74. Prefix/Suffix Example: Output Objects

Some of the objects are already in the database. The good thing is that they
appear in alphabetical order what makes them easy to find.

5.2.1 Adding Fields and Literals
1. Add the literals Colon and DollarSign as described in 5.1.2.1, “Defining the

Literal "Space"” on page 96. Remember to change the ASCII value in the
properties section to the correct hex value.

2. Add the field Salary. To parse the salary we use the existing input control
CharToSemicolon.

3. Update the format Taxes_In by adding the field component Salary. Make
sure the fields are in the correct sequence. Customize the properties of
the field Salary with the proper input control name, CharToSemicolon.

Note: Even though salary consists of numbers, we can still treat this field as
character data.

At this point you can use the Visual Tester to test the input format. Input

5.2.2 Creating a Prefix and a Suffix
The literal values for the prefix and suffix are already defined. Now let us
create the output operations PfxDollar and SfxSpace.

1. Double-click Output Operations and right-click Prefix/Suffix .

2. Select New and give the prefix the name PfxDollar.

Format:

Taxes_Out

Literals :
Space
Colon
DollarSign

Fields:
FirstName
LastName
Salary

Output Controls:
CharToSpace
CharToColon
DollarAndChar

Output Operations:
SfxSpace
SfxColon
PfxDollar
Formatting Examples 101

Figure 75. Defining a Prefix

3. In the Properties panel, select Prefix .

4. Expand the Value list and select DollarSign . As you can see in Figure 75,
this list contains all defined literals.

5. Then click Apply .

6. Create the entries SfxSpace and SfxColon in the same fashion, but
remember to create them as suffixes instead of prefixes.

5.2.3 Attaching Prefixes and Suffixes to Fields
We know that every field in an output format must be associated with and
output control. So we use an output control to attach a prefix or a suffix to a
field.

1. Right-click Output Controls and select New.

2. Type in the name CharToSpace. This is a simple output control that
outputs the characters and then adds a space (suffix).

3. Don’t change the output control type and the data type.

Select a literal
102 Using the MQSeries Integrator Version 1.0

Figure 76. Output Control with Suffix

4. Expand the list of output operations and select SfxSpace .

5. Click Apply .

6. Define the output controls CharToColon and DollarAndChar using the
appropriate output operations, SfxColon and PfxDollar.

Now it is time to assign the output control names to the fields of the output
formats:

7. Double-click Formats to list the formats and then double-click Taxes_Out
to expand the list of fields in this format.

8. Delete the fields Blank and EOM by right-clicking the field name and then
selecting Delete from the menu.

9. Add the field Salary as you did for the input format above.

10.Click FirstName and change the Output Control Name from Char_Out to
CharToSpace. This will produce a space after the name. Apply the
change.

11.Next click LastName , change the Output Control Name to CharToColon
and apply the change.
Formatting Examples 103

12.Click Salary and assign the output control name DollarAndChar to it.

Figure 77. Assigning an Output Control Name to a Field

Now we can use the Visual Tester to test if this example reformats correctly.

Note: There is no delimiter after the salary field.

5.3 Output Operation Collections

Output Operation Collections allow you to group and sequence a series of
output operations and/or other operation collections. In other words, we can
perform more than one action on one field, such as change it to all capital
letters, left-justify it, and then add a colon to the end of the field.

Let us add a tax bracket to the input of our example and then show it in the
output precedes with a blank and with a percent sign at the end. To do this we
need an output collection that consists of two output operations:

• Add a suffix percentage to the end of the tax bracket field.

• Add a prefix space to the beginning of the tax bracket field.

Also, add a second prefix, a space to the beginning of the salary field.
104 Using the MQSeries Integrator Version 1.0

The objects we need to construct the output format are as follows:

Figure 78. Output Operation Collections Example: Objects

Before we define the output operation collections we have to define some
prerequisites:

1. To the input format we have to add the field IncomeBracket which uses the
input control CharToSemiolon.

2. Add the literal Percent.

Input

LastName FirstName Salary Inc. Bracket

S k y e ; O t t o ; 3 7 0 0 0 ; 2 8 ;

Output

FirstName LastName Salary Income Bracket

O t t o S k y e : $ 3 7 0 0 0 2 8 %

Format:

Taxes_Out

Literals :
Space
Colon
DollarSign
Percent

Fields:
FirstName
LastName
Salary
IncomeBracket

Output Controls:
CharToSpace
CharToColon
DollarAndChar*
SpaceCharPercent

Output Operations:
SfxSpace
SfxColon
SfxPercent
PfxDollar
PfxSpace

Output Operation
Collections:

Space_Char_Percent
Space_Dollar_Char
Formatting Examples 105

3. Add the suffix SfxPercent to the output operations. Make sure that suffix is
selected; prefix is the default.

4. Add the prefix PfxSpace to the output operations.

5.3.1 How to Define an Output Operation Collection
We have to create two collections, one for the salary field and one for the
income bracket.

1. Right-click Output Operation Collections and select New.

2. Type in the name Space_Char_Percent and press Enter.

Figure 79. Defining an Output Operation Collection

3. Right-click Space_Char_Percent and select Add Output Operations
from the menu.

4. This brings up the window shown in Figure 80 on page 107 from which you
select two options, PfxSpace and SfxPercent. Hold the Control key down
while selecting. Then click Accept Selection .
106 Using the MQSeries Integrator Version 1.0

Figure 80. Output Operations Available for Collection

5. Verify that the operations are in the right sequence. In this case, PfxSpace
must be performed before SfxPercent.

6. Create another collection, Space_Dollar_Char. The order for the two
output operations in this collection is PfxDollar followed by PfxSpace.

5.3.2 How to Assign an Output Operation Collection to a Field
First, we have to define an output operation that references the collection.
Then we assign the operation to the field IncomeBracket.

1. Create a new output operation under the name SpaceCharPercent and
select the output operation with the same name. Figure 81 on page 108
indicates that this operation is a collection.

2. Add the field IncomeBracket to the output format.

3. Space_Char_Percent as the Output Control Name in the properties of the
field IncomeBracket.

4. For the salary field, change in the properties of the output control
DollarAndChar the name of the output operation to SpaceDollarChar. This
causes two prefixes to be added, a space and a Dollar sign.

We have just shown an example of output operation collections by creating a
group of operations under one collection and assigning that collection to an
output control.

You can use the Visual Tester and verify the exercise.
Formatting Examples 107

Figure 81. List of Output Operations

5.4 Substituting Field Values

Output Operations provide the different actions that can be performed on an
output field. For example, you can change the case of output data, perform
mathematical expressions based on input field contents, extract substrings,
and much more. We have already used the output operation prefix and suffix.
Now we will show an example of another useful operation, substitutions.

Let us work with the following input and output messages:

Collections

Input

LastName FirstName Salary Inc. Bracket Country

S k y e ; O t t o ; 3 7 0 0 0 ; 2 8 ; N O R ;

Output

FirstName LastName Salary Income Bracket Country

O t t o S k y e : $ 3 7 0 0 0 2 8 % N o r w a y ;
108 Using the MQSeries Integrator Version 1.0

We will change a three-character abbreviation for countries to their full name,
such as LUX becomes Luxembourg. Both values must be defined as literal
strings. Therefore, we recommend that you do not use this functions when
you substitute hundreds of values. Use a user exit instead. For our example
we define the five countries listed in the table below.

Note: We also add a semicolon at the end of the country field.

Table 6. Substitution Example: Table for Countries

To the input format we have to add only the field Country. The objects for the
output format are shown below:

Figure 82. Substitution Example: Objects

Three-character Country Code Country Name

AUT Austria

DEN Denmark

GER Germany

NOR Norway

USA United States

Format:

Taxes_Out

Literals :
Space
Colon
DollarSign
Percent
Countries*

Fields:
FirstName
LastName
Salary
IncomeBracket
Country*

Output Controls:
CharToSpace
CharToColon
DollarAndChar
SpaceCharPercent
SubCharSemicolon*

Output Operations:
SfxSpace
SfxColon
SfxPercent
SfxSemicolon
PfxDollar
PfxSpace
SubCountry*

Output Operation
Collections:

Space_Char_Percent
Space_Dollar_Char
Sub_Country_Semicolon*
Formatting Examples 109

Note: The new objects are marked with an asterisk. The country names and
their abbreviations are listed in Table 6 on page 109.

Before we explain how to substitute values let us define the new field we use
in the input and output formats:

1. Define the field Country.

2. Add it to the input format and specify CharToSemicolon as input control.

3. Add a new suffix, SfxSemicolon to the ouput operations. Don’t forget to
change prefix to suffix.

5.4.1 How to Define Substitution Values
1. Add the literals, both the three-character abbreviations of the countries

and their full names. In this case you do not need to change the ASCII
properties; they stay as they are.

Figure 83. Defining a Substitution
110 Using the MQSeries Integrator Version 1.0

2. Add the appropriate Output Operations. Double-click Output Operations
and right-click Substitution .

3. Select New from the menu and create SubCountry. Figure 83 on page 110
shows what you should see in your window.

4. Right-click the newly created object SubCountry and select Add
Substitute Items . Add the three-character items along with their
corresponding name. Under SubCountry you should now see ten items.

5. Then update each substitution literal (AUT, DEN, GER, NOR, USA) by
associating each literal to what they are going to be substituted with. This
is shown in Figure 84.

Click Substitute , then SubCountry , and then one of the abbreviations,
such as AUT. In the subsequent window, select the proper output value,
here Austria, and click Apply .

Figure 84. Specifying Substitution Values
Formatting Examples 111

5.4.2 How to Define Substitutions for a Field
1. Create an Output Operation Collections, here Sub_Country_Semicolon.

Right-click it and add to the collection the operations SubCountry and
SfxSemicolon, in that order.

2. Create the Output Control Sub_Char_Semicolon and assign it to the
collection Sub_Country_Semicolon you just created.

3. Update the Taxes_Out format by adding field Country.

4. Change the Output Control Name to Sub_Char_Semicolon in the
properties of the field Country and apply the changes.

This concludes the substitution example.

5.5 Using Fields Containing Length and Data

In the previous examples, we worked with fixed length fields and with variable
length fields that are separated by a delimiter, such as a semicolon. In this
section, we explain how to use fields that contain the field length, that is, one
field consists of two sub-fields, length and data. The length field may be of
fixed or variable length. Variable length fields need a delimiter to separate
them from the data portion of the field. Such fields can play an important part
with the message parsing.

In this context, we deal with the MQSI input control type "Length and Data"
which allows these field types:

• Length field with exact length followed by data

• Variable length field (delimited) followed by data

You may also specify a minimum length in connection with a delimiter or use
white space to separate the fields.

0 0 7 1 2 3 4 5 6 7

L e n g t h D a t a

7 ; 1 2 3 4 5 6 7

L e n g t h D a ta
112 Using the MQSeries Integrator Version 1.0

In this section, we demonstrate how to use fields that contain length and data
in input and output formats. To do that we create two new formats,
Address_In and Address_Out, with the following fields:

• First name

• Last name

• Street

• City

Below is an example of such a message. The field length portion of each field
is exactly two bytes long, shown underlined.

04Otto06Kaiser11Ku-Damm 123111000 Berlin

Note: The data can contain blanks.

5.5.1 Parsing Input Fields with Length and Data
For the input format we need the following objects:

Figure 85. Length and Data Example: Input Objects

Two of the fields, LastName and FirstName, are already in the database.
These are names only, without any attributes. You can reuse the fields in as
many formats as you like and each time the attributes may differ. You assign
attributes through an Input Control after the field has been added to the
format.

The following steps describe what you have to do to define the format
Address_In for the message shown above.

Literal :
none

Fields:
LastName
FirstName
Street
City

Input Control:
LengthAndData

Format:

Address_In
Formatting Examples 113

1. Add the fields Street and City to the database.

2. Create an input control that can be used for all fields:

• Click Input Controls and select New from the menu.

• Type the name LengthAndData and press Enter.

• In the Properties window, shown in Figure 86, select:

• Control type: Length and Data

• Data type: String

• Type of length field: String

• Termination of length field: Exact Length

• Length of the length field: 2 bytes

• Click Apply .

Figure 86. Input Control for Fields with Length and Data

3. Create a new input format with the name Address_In.

4. Add the four field components and put them in the right order.

5. Select and assign to each field the input control LengthAndData.
114 Using the MQSeries Integrator Version 1.0

Now use the Visual Tester and check out your definitions. The result should
be as shown in Figure 87.

Figure 87. Test Input Format with Length and Data

5.5.2 Putting Fields with Length and Data
For the output format we use the same fields as we used for the input above.
However, let us make the street 15 characters long, excluding the two-byte
length portion. Based on the above input we want to see the following output:

04Otto06Kaiser15Ku-Damm 123 111000 Berlin

Also, let us express the field name as an integer. If you use a string the field is
less than 10 bytes, the size of the length field will be one byte. The output
control does not allow us to specify a fixed length.
Formatting Examples 115

For the output format we need the following objects:

Figure 88. Length and Data Example: Output Objects

The following describes how to define the objects. The fields are already in
the database.

1. Create an output operation of the type Length. This operation allows us to
make the Street field exactly 15 bytes long.

• Expand the Output Operations tree, right-click Length and then
select New.

• Type the name Len15.

• In the Properties panel, select Space as pad character and 15 as
length.

• Click Apply .

2. Create the output control LengthAndData. This control is used for all but
the street.

• Right-click Output Controls and select New from the menu.

• Type the name LengthAndData and press Enter.

• In the Properties panel shown in Figure on page 117 specify the
following and then click Apply :

• Control type: Data Field (Name Search)

• Output operation: None

• Data type: String

• Length type: Little Endian 2 for the integer that holds the field
length.

Format:

Taxes_Out

Literals :
Space

Fields:
FirstName
LastName
Street
City

Output Controls:
LengthAndData
LengthAndData15

Output Operations:
Len15
116 Using the MQSeries Integrator Version 1.0

Figure 89. Output Control for a Field with Length and Data

Note: Don’t use String or Numeric as length type or your length field will
be one or two bytes long as you see below:

4Otto6Kaiser15Ku-Damm 123 111000 Berlin

You would have trouble processing such a message.

3. Create the output control LengthAndData15 to be used with the field
Street.

• Right-click Output Controls and select New from the menu.

• Type the name LengthAndData15 and press Enter.

• In the Properties panel shown in Figure on page 117 specify the
following and then click Apply :

• Control type: Data Field (Name Search)
• Output operation: Len15
• Data type: String
• Length type: Little Endian 2

4. Create the output format Address_Out and add the four fields to it. Make
sure they are in the correct order.

5. Click each field name and assign an output control to it:

• LengthAndData15 to Street
Formatting Examples 117

• LengthAndData to all other fields

When you test the reformatting with the Visual Tester view the output data in
hex representation as shown below.

Figure 90. Test Output Format with Length and Data

5.6 Using Fields Containing a Tag (Field ID)

Tags can be a useful item within your message. A tag or field ID describes the
field. It allows fields to appear in any order within the message. Application
programs and the Formatter can parse an input format by searching for the
tag. Tags can appear together with a field length. They can be of fixed length
or delimited. The input controls provide three choices:

• A tag followed by data
• A tag followed by a length field and data
• A length field followed by a tag and data
118 Using the MQSeries Integrator Version 1.0

We will demonstrate the use of tags based on the address message defined
in the previous section. We assign each field a tag or field ID:

11 First name
12 Last name
13 Street
15 City

5.6.1 Parsing Input Fields with Tag and Data
For this example, we chose that all tags are two bytes in length and numeric
and that the fields end with a semicolon. This is an example of a message:

11Xaver;12Huber;13Rosenstr. 17;15Muenchen;

The tags are underlined. We will also allow that the fields appear in any order,
for example:

15Muenchen;12Huber;11Xaver;13Rosenstr. 17;

Note: The Formatter parses the fields as they appear in the input message
and not as they are defined in the input format.

We need the following objects:

Figure 91. Tag and Data Example: Input Objects

Now let us create them and then test the format:

Literals:
11
12
13
15

Fields:
LastName
FirstName
Street
City

Input Controls:
TD11
TD12
TD13
TD15

Format:

Address_In
Formatting Examples 119

1. Create the four literals used as tags (11, 12, 13 and 15).

2. Create the input controls TD11, TD12, TD13 and TD15. TD stands for Tag
and Data. In the Properties window select the values shown in Figure 92
and apply them:

• The control type is of course Tag and Data.

• The data is a string delimited with a semicolon.

• The length parameters are not applicable because we do not have a
length within the field.

• The tag is numeric (you could also select String), its value is one of the
literals defined, and the length of the tag is exactly two bytes.

3. Select each field in the input format Address_In and change the Input
Control Name to TD11, TD12, TD13, or TD15.

4. Click the format name Address_In and mark the check box Random Field
Order on the Properties panel.

Figure 92. Input Control for Fields with Tag and Data
120 Using the MQSeries Integrator Version 1.0

5.6.2 Parsing Input Fields with Tag, Length and Data
To demonstrate this function we create another set of input controls with the
names TLD11, TLD12, TLD13 and TLD15 (TLD stands for Tag, Length and
Data).

In the example message below the tag is underlined and the length is
double-underlined.

1103Jim1206Miller1308Broadway1508New York

And this is what you have to do:

1. Create the new input controls TLD11, TDL12, TLD13 and TLD15 and
specify the following properties:

• The Control Type Tag-Length and Data

• A numeric length field which is exactly two bytes long

2. All that’s left to do is to change the input control names in the fields from
TLxx to TLDxx.

Note: The specifications are the same for Length-Tag and Data.

Figure 93. Input Control for Field with Tag, Length and Data
Formatting Examples 121

5.6.3 Putting Fields with Tag and Data
You can add tags to the fields in the output format. The tag can come from the
input message (if it has a tag) or it can be added using a prefix output
operation. In the following we show both possibilities. Again, we modify the
objects belonging to the Address_In and Address_Out formats.

Let us assume that we receive a message that provides tags only for the first
and last names but not for the street and the city. Since there is no length
field, a semicolon is used to separate the fields. Below is an example of the
input message. The tags are underlined.

11Anton;12Meier;Pilsener Str.;Jever;

The output message, shown below, contains tags for all fields. Two tags are
taken from the input and two are added using field prefixes.

11Anton;12Meier;13Pilsener Str.;15Jever;

For this example we reuse the input format Address_In. We change only the
output control name for the fields Street and City to CharToSemicolon.

For the output format we need the following objects:

Figure 94. Tag and Data Example: Output Objects

Format:

Address_Out

Literals :
13
15
Semicolon

Fields:
FirstName
LastName
Street
City

Output Controls:
TagAndData
ocTD13
ocTD15

Output Operations:
Pfx13
Pfx15
SfxSemicolon

Output Operation
Collections:

T13Semicolon
T15Semicolon
122 Using the MQSeries Integrator Version 1.0

To create the objects in the database follow these steps:

1. If not already done so, define the literals.

2. If not already done so, define the output operation SfxSemicolon.

3. Create the two new output operations, the prefixes containing the tag
values 13 and 15 (for street and city). Name them Pfx13 and Pfx15.

4. Create two output operation collections. You need it for the fields Street
and City. Both fields require a prefix, namely the tag (13 or 15) and the
suffix semicolon to indicate the end of the field.

• Right-click Output Operation Collections and select New.

• Type the name, T13Semicolon or T15Semicolon (T stands for tag) and
press Enter.

• Right-click the name and select Add Output Operations from the
menu.

• From the list of output operations select Pfx13 or Pfx15 and
SfxSemicolon (hold the Control key down) and click Accept Selection .

• Make sure that the operations appear in the correct order, prefix before
suffix.

5. Create the output control TagAndData for use by the two names fields. For
these fields, we get the tag from the input and have only to add the
semicolon suffix as field delimiter.

• Right-click Output Controls , then click New and type the name
TagAndData and press Enter.

• In the Properties panel enter the values as shown in Figure 95 on page
124:

• Since both fields are tagged, select Data Field (Tag Search) as
output control type.

• Select SfxSemicolon as output operation. This adds the delimiter at
the end of the field.

• As Tag Type select Numeric or String .

• Keep NONE as Input Tag Value.

If you choose 10 or 11 then you need two output controls or both
output fields get the value you specify here.

• Click Apply .
Formatting Examples 123

Figure 95. Output Control for a Field with Tag (from Input) and Data

Figure 96. Output Control for a Field with Tag and Data

6. Create the output controls for the two other fields. The input fields do not
have a tag. We have to add it through a prefix. The fields also need a
semicolon at the end.

• Right-click Output Controls , then click New and type the name
ocTD13 or ocTD15, respectively and press Enter.

• In the Properties panel enter the values as shown in Figure 96:
124 Using the MQSeries Integrator Version 1.0

• Since both fields don’t have tags, select Data Field (Name Search)
as output control type.

• Select the collection T13Semicolon (or T15Semicolon) as output
operation. This inserts the tag (13 or 15) at the beginning of the field
and adds the delimiter at the end.

• Leave the Tag Type as is, this field is only for tags coming from an
input field.

• Click Apply .

5.6.4 Putting Fields with Tag, Length and Data
You may want to include the length of the data in a field. The length can be
before or after the tag. The two examples below show the tag underlined and
the length double-underlined:

114Fred;1210Flintstone;135Hut 3;157Bedrock;

611Barney;612Rubble;513Hut 7;715Bedrock;

To have the Formatter insert the length field, specify in the output control
(shown in Figure 95 on page 124) these additional properties:

1. A Length Type, such as String, Numeric, Little Endian 2, Little Endian 4

2. The check box Tag Before Length

In the examples above we used the length type Numeric. You notice that the
length portion is either one or two bytes, depending on the data length. That
will cause problems for the application that will get the message. Specifying
an integer would help.

This concludes the example about tags and data in output formats. As
always, we recommend that you use the Visual Tester to verify your
definitions.

5.7 Messages with Date and Time Fields

To parse and reformat date and/or time fields, special functions have been
added to the input and output controls. There are default settings for date and
time and for date and time in the same field. Furthermore, there are 30
custom date and time formats to choose from. This allows you to choose a
different format for either date or time or both. Also, it allows you to convert
Formatting Examples 125

time and/or date fields received from an input message to a different format
for the output message.

The defaults are the following:

Date YYYYMNDD
Time HHMMSS
Date and time YYYYMNDDHHMMSS
Custom MN/DD/YYY

Note: MN stands for month and MM for minutes.

Where do I find the various formats?

• Input controls

• Select the control type Data Only.

• Select one of the data types Date, Time, Date and Time and you see
the default in the grayed-out Format field.

• Select the data type Custom Date and Time and you can choose from
30 different formats in the Format list.

• Output Controls

• Select the output control type Data Field (Name Search) or Data Field
(Tag Search).

• Select one of the data types Date, Time or Date and Time and you see
the default in the grayed-out Data Format field.

• Select the data type Custom Date and Time and you can choose from
30 different formats in the Data Format List.

As an example, we show how to convert a date from one format to another.
Both dates in Figure 97 on page 126 are custom dates.

Figure 97. Conversion of a Date Field

0 2 / 0 5 / 9 9

Input

5 - F e b - 1 9 9 9

Output
126 Using the MQSeries Integrator Version 1.0

5.7.1 Parsing a Date Field
To parse the input, let us define the input control icDate and assign it to the
date field in the input format. For this example, we append the field Date to
the format Address_In. The following steps explain how to do that:

1. Define a field with the name Data.

2. Right-click Input Controls and select New from the menu.

3. Type the name icDate and press Enter. This displays the window you see
in Figure 98 on page 128.

Note: The figure shows only the left side of the Properties panel.

4. Select the control type Data Only . This is the only one valid for date and
time fields.

5. Select the data type Custom Date and Time .

6. Leave the base type, String, unchanged.

7. From the formats select MM/DD/YY. Note that there is also a format with a
four-digit year.

8. When you specify a two-digit year (as in this case), you must change the
101 in Year Cutoff to a value in the range from 0 to 100. 101 is invalid and
you get an error message if you don’t change it.

What is the cutoff field for?

This is the Formatter’s way to address Year 2000 compliance. It makes
you decide what years belong in the 20th and 21st centuries. If you
specify:

0 All years will get the prefix 19, as in 1900 or 1999.

100 All years will get the prefix 20, as in 2000 or 2099.

50 The years 50 to 99 get the prefix 19, as in 1950 or 1999; and the
years 00 through 49 get the prefix 20, as in 2000 or 2049.

9. For this example, you may enter 1. Click Apply .

10.Add the field Date to the format Address_Out and assign it to the input
control icDate.

Below is an example of an input message. There is no delimiter at the end of
the date. The formatter treats it as a fixed length field.

11Peter;12Pan;Archway;Hursley;02/05/99

Use the Visual Tester to verify your definitions.
Formatting Examples 127

Figure 98. Input Control for a Custom Date and Time Field

5.7.2 Putting a Date Field into a Message
To complete the example we have to place the date in the output message,
however in a different format. We have to create an output control, ocDate,
and assign it to the field Date which has to be added to Address_Out. The
following steps explain how to do that:

1. Right-click on Output Controls and select New from the menu.

2. Type the name ocDate and press Enter.

3. Select the values shown in Figure 99 on page 129 and click Apply .

4. Add the field Date to the format Address_Out and assign to it the output
control ocDate.
128 Using the MQSeries Integrator Version 1.0

Figure 99. Output Control for a Custom Date and Time Field

Note: We also place a semicolon at the end of the date.

The reformatted message looks like this:

11Peter;12Pan;13Archway;15Hursley;05-feb-1999;

The tags are underlined.

The data conversion can be a very handy function because of the various
international date standards or even to help solve the Y2K problem. You
could, for example, change the date in all messages that flow between
programs in your enterprise by routing them through an MQSI rules
processor.

5.8 Adding Fields with Calculated Values

The output operations allow you to do some calculations using values from
input fields and literals. In the following we use the output operation Math
Expression to calculate taxes. The resulting value will be added to the output
message in the field TaxPaid. We calculate the taxes with this formula:
Formatting Examples 129

TaxPaid = Salary / 100 * Income Bracket

To do this we have to create the following objects and add them to the output
format Taxes_Out:

1. Fields: TaxPaid

2. Output Operations, Math Expression: CalcTax

• Decimal Precision: 2
• Round: Up
• Mathematical Expression: Salary / 100 * IncomeBracket

3. Output Operation Collections: TaxPaid

• Add Output Operations:
• CalcTax
• SfxSemicolon

4. Output Control: TaxOut

• Output Control Type: Data Field (Name Search)
• Output Operation: TaxPaid
• Data Type: String

5. Output Format: Taxes_Out

• Add Field Components: TaxPaid

• Properties for field TaxPaid:

• Output Control Name: TaxOut
• Access Mode: Normal Access
• Input Field Name: NONE

Here is an example:

Input message (Taxes_In):

Saetra;Morton;88000;20;NOR;

Output message (Taxes_Out):

Morton Saetra:$ 88000 20%Norway;22000.00;

Note: The tax value contains two decimal positions. You specify this in the
Properties for the Math Expression.
130 Using the MQSeries Integrator Version 1.0

5.9 Compound Formats

A compound format is a collection of flat and/or other compound formats. The
flat or compound formats that reside within a compound format are called
components. Compounds can help with the organization, grouping and
parsing of messages. You can group sections of the total message.

Formats within a compound can be:

• Repeatable or single

• Mandatory or optional

Note: Optional component formats can have missing mandatory fields and
the parse or reformat can still succeed.

In this section, we will develop two compound formats, an input and an output
compound. The following example describes what we want to do:

• The input message contains the following fields:

John;Bell;Main St.;Chicago;NOR;200;USA;600;GER;500;$

The first four fields (underlined) compose the address. The fields are
defined in the input format Address_In. All fields are delimited with a
semicolon.

The remainder of the message contains three sales to customers in three
different countries. All fields end with a semicolon suffix. The number of
sales varies, that is, the two fields Country and Sales (such as NOR;200;)
can repeat several times.

For this reason, we define another flat input format, SalesList, that
contains those two fields. To tell the Formatter when the format stops
repeating we add a delimiter at the end, in this case the dollar sign.
Following that you could have another format.

To summarize, the above compound message contains two components:

• The flat input format Address_In with four mandatory fields
• The repeatable flat input format SalesList with two mandatory fields

• The output message contains the following fields:

John;Bell;Main St.;Chicago;$ 200;$ 600;$ 500

This is also a compound, consisting of the format Address_Out and the
repeatable format SaleItem. SaleItem contains only one field.
Formatting Examples 131

5.9.1 Objects for the Compound Example
We need the objects shown below. Most of them have already been defined
for the previous examples.

Figure 100. Objects for Input Compound

Figure 101. Objects for Output Compound

5.9.2 Defining an Input Compound Format
For this example, all literals, fields (with the exception of Sales) and input
controls are already in the database. So is the format Address_In with all four
fields using CharToSemicolon as input control.

We have to define the format SalesList with the two fields Country and Sale,
both using CharToSemicolon as input control.

Literals :
Semicolon
DollarSign

Fields:
LastName
FirstName
Street
City
Country
Sale

Input Control:
CharToSemicolon

Formats:

Address_In

SalesList

Compound:
Sales_In

Format:
Address_Out
SaleItem

Literals :
Space
DollarSign

Fields:
FirstName
LastName
Street
City
Sale

Output Controls:
CharToSemicolon
DollarAndChar

Output Operations:
SfxSemicolon
PfxDollar
PfxSpace

Output Operation
Collections:

Space_Dollar_Char

Compound:

Sales_Out
132 Using the MQSeries Integrator Version 1.0

The compound format is created with the following steps:

1. Right-click Formats and select New, Compound and Input from the
menu.

2. Type the format name, SalesIn, and press Enter.

3. Right-click the format name SalesIn , select Add Format Components
from the menu.

4. From the list, select Address_In and SalesList and click on Accept
Selection . This builds the compound as shown below:

5. Make sure that all six fields use the input control CharToSemicolon.

6. Click SalesList and select the Properties window. Here, we define that the
format is repeating and that the repeating fields end with a dollar sign.
This is shown below.

Note: None of the properties is selected for Address_In.
Formatting Examples 133

5.9.3 Defining an Output Compound Format
For this example, all fields, literals, output operations, the output operation
collection SpaceDollarChar, and the output controls are already in the
database.

We have to create the output format SaleItem which contains Sale as the only
field. The field uses the output control DollarAndChar which puts the dollar
sign and a space in front of the amount.

The compound format is created in the following way:

1. Right-click Formats and select New, Compound and Output from the
menu.

2. Type the format name, Sales_Out, and press Enter.

3. Right-click the format name Sales_Out , select Add Format Components
from the menu.

4. From the list, select Address_Out and SaleItem and click Accept
Selection . This builds the compound as shown below:

5. Make sure that the fields in Address_Out use the output control
CharToSemicolon.

6. Click SaleItem in the compound tree and make sure that the property
Repeating is selected.

7. Select the field Sale in the format and specify the properties:

• Output Control Name: DollarAndChar
• Access Mode: Access using Relative Index
• Input Field Name: Sale

The two compound formats are now defined and you can use the Visual
Tester to verify your definitions.
134 Using the MQSeries Integrator Version 1.0

Chapter 6. Writing Rules

NEON Rules is a component of the MQSI. It depends on the Formatter to
parse messages for evaluations. NEON Rules enables you to evaluate a
string of data (message) and react to the evaluation results. With the Rules
GUI you can define the different components of rules. There are two ways to
define rules, with the Rules GUI or with the Management API which you can
use to write your own interface to Rules components.

A brief introduction to rules together with a small example is in 3.2, “Working
with Rules” on page 39. There you find also information on how to log on to
the Rules GUI. In the following sections we provide more detailed (and more
challenging) examples. We explain how to use the Rules definitions with the
rules processor to reformat and route messages.

6.1 About Rules

First, let us look at the objects we use in context with rules. The objects in the
rules hierarchy are shown in Figure 102.

Figure 102. Rules Hierarchy

An application group is a rule set.

A rule set can be business or application oriented. We can define many
application groups, however, one instance of the rules daemon (the run-time

Application Group

Message Type

Rule

Expression

Subscription

Subscription List

Actions
© Copyright IBM Corp. 1999 135

program) will only execute rules from one application group. We can have
several rules daemons executing the same application group or different
application groups.

An application group is a container which holds information about work to be
done by the rules daemon, MQSI’s run-time environment. For example, all
messages and rules that have to do with payroll would be in one application
group. Information regarding the sales department would belong to a different
application group, thus requiring a second rules daemon.

An application group can contain one or more message types. A message
type is an input format that you defined with the Formatter. Each message
type may have one or more rules associated with it.

Rules determine what happens to a message, for example, which input
format to map to which output format. In fact, from a single input format you
can generate several messages, each with a different output format.

Each rule is associated with a subscription list, which is a set of actions. An
action can be one of two, map an input message to an output message
(reformat), or put a message to a queue.

Note: Without a put action messages will be lost!

The MQSI Rules Daemon does a few things differently based on subscription
boundaries. For example, it starts the next reformat over from the incoming
message. Also, you can associate multiple subscriptions with a rule and
associate subscriptions to multiple rules.

You define the objects in the rules hierarchy from the top down. Remember,
formats are defined from the bottom up. You start with the application group,
the most inclusive definition, then you work your way down to the most
specific part, the action.

6.2 Techniques for Creating Rules

The following example demonstrates how to use the Rules GUI in the
application sample defined in Chapter 5, “Formatting Examples” on page 87.
All message types defined in the Formatter are available in the Rules GUI.
When using the Formatter, the message type is the same as the input format
name.

When you create a new application group you will be presented with a choice
of message types. These are input formats you defined with the Formatter.
136 Using the MQSeries Integrator Version 1.0

6.2.1 Creating a New Application Group
To create a new application group do the following:

1. Click the A in the Rules Toolbar.

2. Type a name for the application group, such as Taxes, and press Enter.

This will present you with a window as shown in Figure 103. This window
tells you what application groups exist. In our case, it is defaultApp which
is always there and the one just created.

Figure 103. Adding a New Application Group

You have to restart the rules processor after you change a rule and want it
to become effective. Rules are cached.

Alternatively, you can send a special control message, reload rule set, to
the rules daemon and it will refresh the cache while up and running.

Important

drag
Writing Rules 137

You see also what message types are available to be included in the
application group. In this case there are two, Taxes_In and Address_In
which were defined in Chapter 5 on page 87.

3. To add a message type to the application group, drag the name, such as
Taxes_In from the Available list into the Current list.

Note: To remove a message type from the Current list, highlight it and press
the Delete key. The name will then appear in the Available list again.

6.2.2 Creating a Rule
Let us create a simple rule that just checks that the input message contains
all fields it is supposed to contain. We call it EvaluateMsg. To define a new
rule for the message do the following:

Figure 104. Rules Window with Simple Expression

Note:
At least one
expression is
required.
138 Using the MQSeries Integrator Version 1.0

1. In the left pane of the window, right-click the message name Taxes_In .

2. Select New.

3. Type the name of the rule, EvaluateMsg. Now you see a window as shown
in Figure 28 on page 42, which is the same window as the one above,
however, with the Expression Components tab selected.

This window shows all expressions available to the rules. With the
expressions, field list, operators, values, and functions you can build
advanced rules to be performed on the message.

The window shows all fields that have been defined in the Formatter GUI
for this message type. You can pick from this list which fields you want to
check and/or manipulate.

4. In 3.2.2, “How to Define a Rule” on page 41 is described, in detail, what to
click and select to compose a rule as shown in Figure 104.

As you can see, we have built a simple expression where all fields are
checked for their existence. It does not matter in what order the fields
appear in the list and in the expression window.

5. To activate the expression definitions click the Apply button at the bottom
of the screen.

The security tab in Figure 105 shows what level of security is applied to
accessing rules definitions in the Rules GUI. This has nothing to do with
message security. There can be only one owner of a rule, but several users
can update it. All users of the GUI can read the rule definitions.

In MQSI Version 1.0, it is not possible to switch off the public read function. If
a user who is not the owner of a rule deletes the rule, it will not be physically
deleted but a disable flag will be set for it. For more information on security
refer to Chapter 8., “Some Comments about Security” on page 163.

To see the subscription list in the window, you may have to collapse the
tree displayed in the left pane so that only Application Groups is visible and
then expand the tree again. It is important that the subscription list is visible
because we have to click it when we define actions later.

Be Aware
Writing Rules 139

Figure 105. Rule Security

6.2.3 Creating a Subscription and Action
We create a subscription with one action only, Put Message. That means no
reformatting of the message will be done. This action will put the complete
original message, not reformatted, to the target queue specified. If a
subscription does not include the Put Message action, messages will not be put
on any queue and will be lost.

Figure 106. Subscription - Simple Put Action

Figure 106 shows an action that simply puts the input message in the queue
Output. You create the subscription SubMsgCopy the following way:
140 Using the MQSeries Integrator Version 1.0

1. Right-click Subscription List , select New from the menu, enter the name
SubMsgCopy and press Enter.

2. Select the Actions tab.

3. Highlight Put Message and drag it into the Action List.

4. Specify the name of the target queue, here Output.

5. On the left side of the window, select and drag it on top of EvaluateMsg.

Note: If you forget the last step you will get the following error message:

-1003 - Rules not configured and/or Operations missing for message

All changes to a suspicions, such as adding another action, must be done in
the subscription list and not in the entry under the rule name. The rule is just
a user, or subscriber, of the definition.

6.2.4 Testing a Rule
You can use one of the tools described in Chapter 4, “Tools That Help with
Development” on page 57 to test the rule, or you may use the rules processor.
In the latter case you have to change the mpf file you are using, for example,
mqsiruleng.mpf, and reference the application group Test and the message
group Test_In. Otherwise, you have to include an MQSI header in your
message. The sample file mqsiruleng.mpf which comes with the product is in
Figure 42 on page 65. The values you have to look at are:

• QueueManagerName = QM1
• InputQueueName = RulesIn
• NoHitQueueName = RulesNoHit
• FailureQueueName = RulesFail
• DefaultAppGroup = Taxes
• DefaultMsgType = Taxes_In

Now let us make three tests:

1. All fields are present in the message:

drag
Writing Rules 141

The message is put into the queue Output.

2. One or more fields are missing:

The message is put into the queue RulesFail and mqsiruleng.log shows
this error message:

Rules evaluation failed.
Application group : 'Taxes'
Message type : 'Taxes_In'
Rules Error # : -2025
Rules Error Message : 'Formatter failed to parse input message -
check format -- Format - 'Taxes_In', msg length - 21'

3. We change the rule and require that only FirstName exists:

The message is always put in the Output queue, regardless of the number
of fields in it.

Note: No formatting takes place.

6.3 Adding Rules and Subscriptions

Let us add another rule to the message group Taxes_In. We want to achieve
the following:

• Every message will be put "as is" on the queue Output.

• If the income bracket is over 50% the message will be formatted using
TaxesOut and put on the queue Output1.Yes, these messages will end up
in two queues. For this we define the rule HighIncBra.

You can add a rule in two ways, create a new one or duplicate an existing one
and modify it. The following steps explain how to duplicate and modify the
rule EvaluateMsg:

1. Right-click EvaluateMsg and select Duplicate from the menu.

2. Type the name of the new message, HighIncBra and press Enter.

3. You will notice that the subscription is also duplicated. To delete it
right-click SubMsgCopy under HighIncBra and select Delete from the
menu. Then confirm the deletion.

4. You will see that the expression has been copied into the new rule. We add
now the expression that checks the contents of the field IncomeBracket in
the message:

& IncomeBracket INT >= 51
142 Using the MQSeries Integrator Version 1.0

5. Verify the new expression and click Apply .

6. Create a new subscription with the name SubIncBra as shown in Figure
107 and click Apply .

7. Drag the subscription over the rule HighIncBra and drop it.

Note: If one of the input fields is missing the message will be placed in the
RulesFail queue.

Figure 107. Using Two Rules and Reformatting

6.4 Multiple Rules

You can write as many rules as you like. Each must be associated with at
least one subscription. Subscription actions are processed sequentially. All
rules will be evaluated. If one of the required input fields is missing, the
message will be put on the RulesFail queue. If the input is as expected but
the message does not match any of the criteria defined in the rules, it is
placed on the RulesNoHit queue. It is the user’s responsibility to take care of
messages in those queues.

Now let us add two more rules to the two defined in the previous examples:

• With the rule ForeignCountry, we extract all messages that don’t have the
country code USA and put them into the queue WorldQ.

• Since the MQSI does not know an "else", we need the rule HomeCountry
to place all messages with the country code USA in the USAQ.

As you can see in the figure below, there are four rules for the message
Taxes_In. They are evaluated in alphabetical order:
Writing Rules 143

1. EvaluateMsg (as described in 6.2.2, “Creating a Rule” on page 138)
checks if all input fields are present. If not, the message is put on the
queue RulesFail. The expressions in the rule read as follows:

FirstName EXIST & LastName EXIST & Salary EXIST &
IncomeBracket EXIST & Country EXIST

Subscription SubMsgCopy contains one action:

2. ForeignCountry checks if the field Country in the input format does not
contain the string USA. If this is the case, the message is formatted using
the output format WorldMsg. The expression is:

FirstName EXIST & LastName EXIST & Salary EXIST &
IncomeBracket EXIST & Country EXIST & Country STRING <> USA

Subscription SubForeign contains the following actions:

3. HighIncBra has been defined in 6.3, “Adding Rules and Subscriptions” on
page 142. If the expression below is true the messages will be reformatted
using TaxesOut and put on the queue Output.
144 Using the MQSeries Integrator Version 1.0

FirstName EXIST & LastName EXIST & Salary EXIST &
IncomeBracket EXIST & Country EXIST & IcomeBracket INT >= 51

Subscription SubIncBra contains the following actions:

4. HomeCountry reformats the message using the output format USAMsg
and writes it to the queue USAQ, provided the following expression is true:

FirstName EXIST & LastName EXIST & Salary EXIST &
IncomeBracket EXIST & Country EXIST & Country STRING => USA

Subscription SubUSA contains the following actions:

To get this application running you also have to define the following:

• Define the queues WORLDQ and USAQ. If you fail to do this, results may
be unpredictable.

• Create the output formats WorldMsg and USAmsg, add some fields to
them and don’t forget to assign each field an output control.

Figure 108 on page 146 shows the output of the ruletest tool. It is an example
where two rules "hit" and two don’t.

Summary: The example above shows that you can:

• Make decisions based on the contents of a field

• Route messages to different queues (applications) based on that decision
Writing Rules 145

Figure 108. Test of Multiple Rules

6.5 Changing MQMD Fields

With the Rules definitions it is possible to change some of the fields in the
message descriptor (MQMD header). The changes are done in Actions under
the Subscription List, and they are part of the putqueue action.

However, there are a few things to consider before attempting to change
fields in the MQMD header:

• In MQSI Version 1.0 all messages will be put to the target queue with the
message type datagram.

What does this mean?

MQSeries has a field in the MQMD called MsgType. This field is used to
convey information about what type of message this is:

Datagram No response expected
Request A request message that should invoke a reply.
Reply A response to a request message
Report A message usually generated in response to a report

request

New message
Fred;Flintstone;55000;25;USA;
End of message
Rule set flagged for reload.

NO HIT RULES - Rule Name (Id)
HighIncBra(7)
ForeignCountry(10)

HIT RULES - Rule Name (Id)
EvaluateMsg(3)
HomeCountry(12)

ACTIONS
Action(Id): putqueue(2)

1 : OPT_TARGET_QUEUE - Output
Action(Id): reformat(7)

1 : INPUT_FORMAT - Taxes_In
2 : TARGET_FORMAT - USAMsg

Action(Id): putqueue(7)
1 : OPT_TARGET_QUEUE - USAQ

Income bracket < 51

Country = not foreign

All fields are present

Country = USA
146 Using the MQSeries Integrator Version 1.0

If the MQSI received a request message with the fields ReplyToQMgr and
ReplyToQ set, then this information will not be given to the target
application. It will be lost.

It also means that MQSI cannot participate in a conversational
request/reply application architecture (unless the application programs are
modified).

• It is planned that request/reply messages will be supported in Version 1.1.

6.5.1 The MQSI Header
MQSI uses a message header called MQSI Message Header. In the MQSI
documentation for Version 1.0, this header seems to be unique to MQSI.
However, this is the same header format as MQSeries Publish/Subscribe
uses. The header is called MQRFH - Rules and Formatting Header. The
MQPS/MQSI header has two parts, the MQRFH (in many places in the NEON
documentation spelled MQHRF) and the Options (also called NEON
Options). The options part is named NameValueString in Table 7.

The MQRFH header precedes the user data in an MQSeries message. To tell
the MQSI Rules Daemon that the message is in MQSI format, the MQFMT
field in the MQMD should be set to MQRFH or MQFMT_RF_HEADER. This
could be done either in the originating application or in another MQSI Rules
Daemon instance. The MQRFH structure is shown in Table 7.

Table 7. Fields in the MQRFH

Field Description

StrucId Structure identifier for the rules and formatting
header

Version Structure version number

StrucLength Total length of MQRFH including string containing
name/value pairs

Encoding Numeric encoding

CodedCharSetId Coded character set identifier.
Note: When a message is put, this field must be set
to the non-zero value that specifies the character set
of the user data. If this is not done, it will not be
possible to convert the message using the
MQGMO_CONVERT option when the message is
retrieved.

Format Format name of the user data that follows the string
containing the name/value pairs
Writing Rules 147

The MQSI Options buffer (NameValueString) consists of a collection of
space-delimited tag/value pairs. It contains information such as:

• Application Group
• Message Type

6.5.2 About Conversion
If the target application accepts the MQSI format (with MQSI header), then it
cannot use the standard method on MQGET with convert as a way of doing
codepage conversion. The codepage conversion has to be done on the
sending side, that is, the MQSI Rules Daemon must convert to the codepage
of the target application before the MQPUT is done. This may lead to
unknown problems because of unsupported codepages on the MQSI
platform, for example, European languages use many different codepages to
support national characters on NT, UNIX and mainframe platforms.

Usually, headers that begin MQH are converted by the queue manager
because they are defined in MQSeries.

The MQRFH is now converted on the distributed platforms. This has been
added by CSD5 to support Publish/Subscribe which also uses the RFH
header.

Unfortunately, RFH conversion is not supported on OS/390 yet. The
work-around is to disable convert on the channel, or create a simple
conversion exit that will convert the RFH header.

For MQSI on S/390 there is an exit installed to handle conversion of the RFH
when the daemon reads a message off the input queue. With MQSI on
distributed platforms the conversion of the RFH is done by the broker after the
message has been read by the daemon, before any further processing is
performed. The reason for these two approaches is that on the distributed
platforms MQSeries will not call an exit for a structure that begins MQH, while
on S/390 it will.

Flags Flags

NameValueString String containing name/value pairs. This is a
variable length character string.

Field Description
148 Using the MQSeries Integrator Version 1.0

6.5.3 Get and Put Options
For MQGET, the MQSI Rules Daemon uses these options:

• Syncpoint
• Fail_if_quiescing
• Complete_msg
• Convert

The most important option here is the convert, it can use either yes or no,
depending on whether the MQSI output format is defined to convert the data
or not. Use convert no if the MQSI output format is defined to convert the
data. Use convert yes if the output format is not defined to convert the data.

For MQPUT, it uses these options:

• Syncpoint
• Fail_if_quiescing
• Pass_all_context
• Alternate_user_authority

The alternate user authority flag is set with the variable CredentialsEnabled in
the MQSIruleng.mpf file in the \mqi\bin\ directory.

What happens when there are two legacy applications that exchange
messages?

Because none of them uses the MQSI format, the MQSI Rules Daemon will
not find which application group and message type it should use to parse the
message. The MQSIruleng (daemon) will therefore use the defaults that are
set in the configuration file used by this instance of the rules processor, for
instance the MQSIruleng.mpf file.

The putqueue actions that can be changed or overridden from the original
MQSeries message are:

• MQS_FORMAT

• Can change the MQMD FORMAT for the output message.
• Can change a message from a standard to an MQSI message that will

be processed by another MQSI Rules Daemon.
• Can also make an MQSI message into a legacy message.

• MQS_PERSIST

• If defined, can change the persistence of a message from persistent to
non-persistent, or vice versa.
Writing Rules 149

• If undefined, the value in the input message’s MQMD will be the value
in the output message’s MQMD header.

• MQS_EXPIRY

• Can map the incoming value over to the output MQMD header as is.
• Can clear this value and set it to no expiration.
• Cannot change the expiration.

• MQS_PROPAGATE

Reconstruct the MQSI header along with the MQMD header for the output
message.

• Should be set to propagate if there is another MQSI Rules Daemon
downstream.

• Should be set to no_propagate if the target is a legacy application.

The MQSI Rules Daemon strips off the MQMD and MQSI headers from the
message before it parses the data. Then, based on the format and propagate
definitions above, reconstructs either the MQMD header alone, or the MQMD
and MQSI headers for the output message. See the MQSeries Integrator
Application Development Guide for more information.

Note: A standard message can be converted into an MQSI-aware message.
However, this is not automatic. You set the MQMD.Format field to "MQHRF ',
then build the RFH header and options segment in the output message.

6.6 Management API

The management APIs provide management definition ability via code rather
than through GUIs. For the Formatter, the management API can manage
elements such as:

• Read and create formats
• Change formats
• Return format information

The Rules management API can manage elements including:

• Rules
• Subscriptions
• Actions

The API commands are add, read, update, and delete.

While the reformat and putqueue subscription options are the only actions that
can be performed by the rules processor, the MQSeries Integrator Rules APIs
150 Using the MQSeries Integrator Version 1.0

allow any number of actions and associated options. An application programmer
can use MQSeries Integrator APIs in conjunction with independently generated
code, in order to execute other types of actions. The size of your database and
performance requirements are the only limitations on the MQSeries Integrator
Rules APIs.

For more information refer to the following manuals (available in PDF format):

• MQSeries Integrator Programming Reference for NEON Rules
• MQSeries Integrator Programming Reference for NEON Formatter
Writing Rules 151

152 Using the MQSeries Integrator Version 1.0

Chapter 7. MQSI As an Intelligent Router

In this chapter, we develop a more complex example of using the Formatter
GUI and Rules GUI to do intelligent routing of messages using the content of
the message. The application is a small "warehouse and manufacturing"
process that produces fruit salad. The application architecture with data and
message flow is shown in Figure 109.

Figure 109. Fruit Salad Example - Overview

The purpose of this process is to produce fruit salad that can contain four
different fruits, apples, oranges, peaches and pears. The customer phones
the person at the data entry desk and places his order. The person interfacing
the data entry program enters how many pieces of fruit from each kind are
needed to make the fruit salad. The data entry program then builds an
MQSeries message as shown in Table 8 on page 154 and puts it in the queue
FruitIn. FruitIn is the input queue for an instance of the rules processor.

The MQSI gets the message and creates as many new messages as there
are fruits in the order. Each message is sent to a warehouse application

MQSI

AppleQ

OrangeQ

PeachQ

PearQ

FruitIn

Apple
Inventory

Orange
Inventory

Peach
Inventory

Pear
Inventory

Check
Reply

FruitStandIn

FruitStandOut

MQSI
FruitSalad

FruitSaladFailed

Fruit Data
Entry Pgm

Fruit Salad
Program
© Copyright IBM Corp. 1999 153

where the inventory is checked. If there are enough apples, for example, a
field is appended to the message indicating whether the order can be filled.
The messages are then sent to the Check Reply program, via the queue
FruitStandIn.

The Check Reply program, written in C, performs a message broker function.
It collects all messages that belong together. The MQSI cannot do message
re-composition. The MQSI is an intelligent router with strong reformatting
capabilities. The Check Reply program waits until all messages have arrived
from the warehouse. Then it composes one message and puts it in the queue
FruitStandOut.

Another instance of the rules processor is processing these messages and
deciding whether the fruit salad can be made. The messages are placed
either in the FruitSalad queue for production or in FruitSaladFailed for back
order.

7.1 Data Entry and Message Routing

The instance of the rules processor that processes the messages from the
data entry program expects the messages in this format:

Table 8. Fruit Salad Example - Message Format for FruitIn Queue

The message consists of the MQSeries message header and data, but does
not contain an MQSI header with application group and (MQSI) message
type. In the example above, five apples and seven pears are requested.All
fields shown in Table 8 must be included in the message. The reason for this
is that MQSI does not provide a standard way of handling repeating fields in a
way suitable for this example. However, we could use a user exit to do this.

The first field in the message is a counter telling how many or different fruit
types are in this order (message). The next (repeating) two fields describe the
kind of fruit and the quantity needed.

Note: We use a colon as a separator between fruit name and the quantity,
and a semicolon elsewhere.

The definitions for the various fields are shown in Figure 110. You recognize
the same fields and their names in the Rules GUI in Figure 112 on page 157.

MQMD Data

2;apple:5;orange:0;peach:0;pear:7;
154 Using the MQSeries Integrator Version 1.0

Figure 110. Fruit Salad Example - Fields

Figure 111. Fruit Salad Example - Formats
MQSI As an Intelligent Router 155

Figure 111 on page 155 shows the input format and the four output formats
needed for this example. The input format Fruit_In applies to messages
coming from the data entry program. The output formats are for the
messages to be sent to the warehouse program.

The reason for having four output formats and an input format that must
contain all four items is that the Rules Daemon lacks intelligence in handling
compounds and repeatable fields in an input message. The rules processor
will find the first occurrence of a repeatable field but not the following ones. It
may be possible for a user exit program to handle this, but we consider that
outside the scope of this book.

The MQSI Rules Daemon parses the message and by checking the contents
of each field, determines what actions to perform. For instance, if the apple
quantity field contains a number higher than zero, a message like the one in
Table 9 will be put on the AppleQ and sent to the apple warehouse where the
inventory application will check whether there are enough apples in stock to
satisfy the request. If the apple amount field contains a zero, no message will
be sent.

Table 9. Fruit Salad Example - Reformatted Message for AppleQ

The Rules definitions required to do this are shown in Figure 112 and Figure
113 on page 157.

In Figure 112 on page 157, you see the expression the Rules Daemon uses
to validate the input message. It may seem like overkill to do all this testing,
but it is done to ensure that our data is correct.

7.2 Warehouse Application

The warehouse application decides whether a request for fruit can be
satisfied or not. It builds a message as shown in Table 10. It contains a "y" if
the request can be satisfied; otherwise an "n" will be appended. The message
is then put on the FruitStandOut queue for processing by the Check Reply
program.

Table 10. Fruit Salad Example - Message Format for FruitStandIn Queue

MQMD Data

1;apple:5;

MQMD Data

1;apple:5;y;
156 Using the MQSeries Integrator Version 1.0

Figure 112. Fruit Salad Example - Rule Expression

Figure 113. Fruit Salad Example - Subscription
MQSI As an Intelligent Router 157

Figure 114. Fruit Salad Example - Rule Test

7.3 Re-Composition of the Message

The Check Reply program is a plain C program that re-assembles one single
message. The code is in Appendix A., “Check Reply C Program” on page
167. The program first browses the message in the FruitStandIn queue to
determine how many reply messages to expect. It will find that information as
the first field in the message.

When the number of reply messages is known, it executes an MQINQ call to
find the current depth of the queue. If the current depth equals the number of
expected reply messages, it will MQGET all messages and build one
message containing all replies from the warehouse.

The reasons we choose to do it this way are:

• MQSI Version 1.0 does not support request/reply type messages.
158 Using the MQSeries Integrator Version 1.0

• MQSI cannot combine several messages or their contents into one
message.

• To show the use of MQSI in more than one place in an application.

The format for the messages on the FruitStandOut queue is shown in Table
11. As we can see, this program just appends the reply messages received
from the warehouse, one after another.

Table 11. Fruit Salad Example - Message Format for FruitStandOut Queue

This newly built message will then be put to queue FruitStandOut for
processing by another occurrence of the MQSI.

7.4 Route Depending on Message Contents

The Check Reply program leaves it to the MQSI to decide whether the salad
can be produced. Another instance of the rules processor reformats the
message into a proper format for the final fruit salad program and puts it
either in the FruitSalad queue for production or in the FruitSaladFail queue.

The format required by the final fruit salad program is shown in Table 12, and,
as we can see, the MQSI strips off the "y" or "n" for each item. The first field is
the number of fruit selections.

Table 12. Fruit Salad Example - Message Format for FruitSalad Queue

The new formats definitions used for this instance of MQSI are shown in
Figure 115 on page 160. Because we do not know how many fruit fields there
will be in the message and the sequence they will be in, we have defined
more generic names for the fields. In addition, the first three fields,
Total_Fruit_Items, Fruit1, and Fruit1Amt are defined as mandatory fields. The
remaining fields may or may not be there so they are defined as optional
using an Input or Output Control Name with optional fields. By doing it this
way we can more easily handle a message containing from one to four fruit
types with fewer definitions. We can also look at this as a different way of
handling repeating fields.

Note also that in the input format Fruit_Stand, we have the field
TotalFruitItems defined as optional for two reasons; the first reason is

MQMD Data

2;apple:5;y;2;pear:7;y;

MQMD Data

2;apple:5;pear:7;
MQSI As an Intelligent Router 159

because we do not know if it will be there, the second reason is because we
can use it in the rules to validate the message.

Figure 115. Fruit Salad Example - Fields for Reply Messages

The new rules definitions used for the second instance of MQSI are shown in
Figure 116 on page 161. Instead of making one rule for each of the possible
formats of the message we have made one rule that covers the four
scenarios, the FruitReply rule. This might seem to complicate the rule, but as
a matter of fact, the rules definition and administration is simpler because of
fewer rules.

The logic of the rule is that all arguments for one check are grouped together
between a pair of parentheses, and this expression is ORed with another
grouped argument. The subscription SubToSalad used by this rule is not
160 Using the MQSeries Integrator Version 1.0

shown here. It uses the input format Fruit_Stand, the target format
Fruit_Salad, and the target queue FruitSalad.

Figure 116. Fruit Salad Example - Rule Expression for Second MQSI Instance

We can also use the Rules Daemon to send messages that do not match a
rule to a different queue from the default. To do this, we have to create a rule
that will match all other formats of the message than our main rule. We have
not done that in our example; however, that should be easy to accomplish.
MQSI As an Intelligent Router 161

162 Using the MQSeries Integrator Version 1.0

Chapter 8. Some Comments about Security

Security in MQSeries Integrator exists only within the Rules database. For
security outside of this area it relies on the database security of the
underlying database management system (DBMS) being used, such as DB2,
SQL Server, SYBASE, Oracle.

All users automatically have read-only access to all rules within the MQSeries
Integrator Rules database. Read access cannot be removed. This privilege is
granted to the user group PUBLIC of which all users are a member.

Individual users who create their own rules and subscriptions immediately
own and have read and update privileges to objects they create. In addition to
this, the owner of a rule can pass ownership to another user as well as create
and update the PUBLIC user group’s permissions and their own.

Only one user can be the owner of a rule or subscription at any one time.

Figure 117. Security for a Rule

All security changes can be made from the Security tab in the Rules GUI.
This is shown in Figure 117. JORGEN is the owner of the rule and he alone
can update it while all members of the PUBLIC group have read access.

In addition to the security feature in the Rules GUI, the MQSI provides
another tool, NNDBARuleOwnership. This utility is designed for system
© Copyright IBM Corp. 1999 163

administration. It allows the Rules administrator to change the ownership of
multiple rules or subscriptions at one time. For more details and examples of
how this tool is used refer to the MQSeries Integrator System Management
Guide, available in PDF format.

8.1 Adding a Database User

Using DB2 as the database you would need to carry out the following steps to
add a user to the Rules database:

1. Connect to the database as the database owner:

In the DB2 Command Window (DB2CMD) type:

db2 connect to <databasename> user <userabc> using <passxyz>

2. Change the script 401_aliases.sql replacing every occurrence of <new
user> with the name of the new user ID and every occurrence of
<database owner> with the ID of the database owner.

3. Run this script which will create an alias for the owner of the tables using
the syntax below:

db2 -f 401_aliases.sql -l 401_aliases.log -t

4. If it has not already been done then create the user ID using User
Manager under Administrative Tools.

5. Add the user to the database using the DB2 Control Center. Expand the
structure under the database name and right-click on DB User under User
and Group Objects and select Add .

6. Finally, log on to the Rules GUI as the database owner and you will see
the new user appear in the User List. To add the new user to the
Permissions list drag it across under the User Name column.
164 Using the MQSeries Integrator Version 1.0

Chapter 9. The MQSeries SAP Link

The IBM MQSeries Link for SAP R/3 allows us to both put and get data into
and out of SAP R/3 from and to other data sources and legacy applications. It
consists of three parts:

• MQSeries

• MQSeries Integrator

• The SAP Integration Libraries

Figure 118. Sample SAP IDoc Loaded in Formatter GUI
© Copyright IBM Corp. 1999 165

The MQSeries SAP Link uses ALE to load SAP IDoc metadata into the
MQSeries Integrator Formatter. This means that it can handle bidirectional
IDoc formats.

A library of IDocs is provided and additional or customized IDocs can be
loaded dynamically into the Formatter via the IDoc loader.

The IDoc loader is a tool with a GUI interface used to load IDocs from a
specific SAP R/3 instance into the MQSeries Integrator Formatter. Figure 118
on page 165 shows an IDoc imported from SAP R/3 into the Formatter.

Formats may be taken either from the SAP Integration Libraries provided or
re-created dynamically using the SAP Integration Libraries IDoc Loader and
the Envelope Loader GUI tools. This eliminates the costly time-consuming
process of creating or amending format information for all fields within an
inbound or outbound IDoc.

The only remaining task is to map the incoming or outgoing application or
legacy database data formats to the corresponding IDoc field formats.To aid
in this process a GUI Formatter Mapping Tool is also provided to formats to
SAP R/3 fields.
166 Using the MQSeries Integrator Version 1.0

Appendix A. Check Reply C Program

/* Function: */
/* */
/* Program #3 of Fruit Salad (code name ASIL). */
/* */
/* -- This program is design to get a message from a queue. */
/* */
/* -- Get the first char from the message. Convert it to an */
/* integer. */
/* */
/* -- Get the depth of the Queue and compare the two numbers.*/
/* */
/* -- If the number from the message is > than the result */
/* of the depth then stop processing. */
/* */
/* -- If the number from the message is < than the result */
/* of the inquiry then get all of the messages on the */
/* queue. */
/* */
/* -- Concatenate all of the messages into one message. */
/* */
/* -- Put the concatenated message onto a queue. */
/* */
/* Program logic: */
/* - Connect to the QManager */
/* - MQOPEN queue for INPUT */
/* - Set up and perform the Inquiry */
/* - Browse the first message */
/* - Compare the depth and the first field of the message */
/* - Stop processing (if depth is < first field) or get all */
/* of the messages */
/* - Concatenate all of the messages into one */
/* - MQPUT1 the one message. */
/* - MQCLOSE and MQDISC */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* includes for MQI */
#include <cmqc.h>
© Copyright IBM Corp. 1999 167

int main(int argc, char **argv)
{

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQHOBJ Hinq; /* handle for MQINQ */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQBYTE buffer[101]; /* message buffer */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length received */
char QMName[50]; /* queue manager name */
MQLONG Select[3]; /* attribute selectors */
MQLONG IAV[3]; /* integer attribute values */
MQLONG FruitAmtInt; /* integer conversion value */
char FruitAmt[1]; /* char */
char outputBuffer[100]; /* message buffer */
char AdnerbBuffer[100]; /* transition buffer */

/**/
/* Create object descriptor for subject queue */
/**/
strcpy(od.ObjectName, "FruitStandIn"); /***Input Queue ***/
QMName[0] = 0; /* default */
outputBuffer[0] = 0 ;

/**/
/* Connect to queue manager */
/**/
MQCONN(QMName, /* queue manager */

&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

if (CompCode == MQCC_FAILED)
{

printf("MQCONN ended with reason code %ld\n", CReason);
exit((int)CReason);

}

168 Using the MQSeries Integrator Version 1.0

/**/
/* Open named queue for INQUIRE */
/**/
O_options = MQOO_INQUIRE /*open to inquire attributes*/

+ MQOO_BROWSE /*open queue for browse ***/
+ MQOO_INPUT_SHARED /* open for shared */
+ MQOO_FAIL_IF_QUIESCING;

MQOPEN(Hcon, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hinq, /* object handle for MQINQ */
&CompCode, /* completion code */
&Reason); /* reason code */

if (CompCode != MQCC_OK) /***** check the the open***/
{

printf("The open failed \n");
exit((int)CReason);

}
/**/
/* Prepares for an inquire */
/**/
if (CompCode == MQCC_OK)
{ /

Select[0] = MQIA_INHIBIT_GET; /* attribute selectors */
Select[1] = MQIA_CURRENT_Q_DEPTH;
Select[2] = MQIA_OPEN_INPUT_COUNT;
MQINQ(Hcon, /* connection handle */

Hinq, /* object handle */
3L, /* Selector count */
Select, /* Selector array */
3L, /* integer attribute count */
IAV, /* integer attribute array */
0L, /* character attribute count */
NULL, /* character attribute array */
&CompCode, /* completion code */
&Reason); /* reason code */

/**/
/* Did the Inquire work */
/**/
if (CompCode == MQCC_OK)
{

printf("IAV %ld \n",IAV[1]);
}
else /* if MQINQ failed, flag that report is needed */
{

printf("The Inquiry failed \n");
}

Check Reply C Program 169

/***/
/* Get messages from the message queue */
/***/
buflen = sizeof(buffer) - 1; /* buffer size available for GET */
gmo.Options = MQGMO_BROWSE_FIRST; /* get with browse */

MQGET(Hcon, /* connection handle */
Hinq, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) /* did the get work */
{

printf("MQGET ended with reason code %ld\n", Reason);
CompCode = MQCC_FAILED;

}
/**/
/* Display the message for testing */
/* Get first number from buffer, convert to integer */
/**/

if (CompCode != MQCC_FAILED)
{

buffer[messlen] = '\0'; /*add terminator */
memcpy(FruitAmt,buffer,1);
FruitAmtInt = atoi(FruitAmt) ;

}

}
while (FruitAmtInt == IAV[1] && Reason == MQRC_NONE)

{
gmo.Options = MQGMO_ACCEPT_TRUNCATED_MSG; /* get messages */

/**/
/* */
/* In order to read the messages in sequence, MsgId and */
/* CorrelID must have the default value. MQGET sets them */
/* to the values in for message it returns, so re-initialise */
/* them before every call */
/* */
/**/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
170 Using the MQSeries Integrator Version 1.0

MQGET(Hcon, /* connection handle */
Hinq, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
{

if (Reason == MQRC_NO_MSG_AVAILABLE || Reason ==
MQRC_NO_MSG_UNDER_CURSOR)

{
printf("no more messages\n");

}
else
{

printf("MQGET ended with reason code %ld\n", Reason);
CompCode = MQCC_FAILED;

}
}
else

{
/***** Create a new message of all of the fruit responses **/
memcpy(AdnerbBuffer,buffer,buflen);
strcat(outputBuffer,AdnerbBuffer);

}
}

/**/
/* Close the queue opened for INQUIRE */
/**/

C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hinq, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
{

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

Check Reply C Program 171

if (FruitAmtInt == IAV[1])
{ /***/

/* Put the combined message to a MQSI Queue to be process */
/* but first reset the MsgIds and CorrelIds. */
/**/

strcpy(od.ObjectName, "FruitStandOut");
memcpy(buffer,outputBuffer,sizeof(outputBuffer));
messlen = sizeof(outputBuffer); /* length of reply */

/**/
/* */
/* Put the message */
/* Note - this sample stops if MQPUT1 fails; in some */
/* applications it may be appropriate to continue */
/* after selected Reason codes */
/* */
/**/
MQPUT1(Hcon, /* connection handle */

&od, /* object descriptor */
&md, /* message descriptor */
&pmo, /* default options */
messlen, /* message length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason if any (loop ends if it failed) */
if (Reason != MQRC_NONE)
{

printf("MQPUT1 ended with reason code %ld\n", Reason);
}

}
/**/
/* */
/* Disconnect from MQM if not already connected */
/**/
if (CReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
{

printf("MQDISC ended with reason code %ld\n", Reason);
}

}

172 Using the MQSeries Integrator Version 1.0

/**/
/* */
/* END OF Program #3 (ASIL) */
/* */
/**/

printf("Fruit Salad sample program #3 \n");
return(0);

}

Check Reply C Program 173

174 Using the MQSeries Integrator Version 1.0

Appendix B. Special Notices

This publication is intended to help designers and developers to integrate
applications that send messages in a different format from what the partner
program understands. The information in this publication is not intended as
the specification of any programming interfaces that are provided by the
MQSeries Integrator Version 1.0. See the PUBLICATIONS section of the IBM
Programming Announcement for MQSeries for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk NY
10504-1785 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 1999 175

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

NEON Rules and NEON Formatter are trademarks of New Era of Networks,
Inc.

Other company, product, and service names may be trademarks or service
marks of others.

AIX AS/400
AT CICS
CT DB2
FlowMark IBM
MQ MQSeries
OS/390 RS/6000
S/390 SP
SupportPac System/390
VisualAge XT
176 Using the MQSeries Integrator Version 1.0

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 179.

• MQSeries Version 5 Programming Examples, SG24-5214

• MQSeries Backup and Recovery, SG24-5222

• MQSeries Security: Example of Using a Channel Security Exit, Encryption
and Decryption, SG24-5306

• MQSeries for Windows Version 2.1 in a Mobile Environment, SG24-2103

• Using MQSeries on the AS/400, SG24-5236

• Connecting the Enterprise to the Internet with MQSeries and VisualAge
for Java, SG24-2144

• Internet Application Development with MQSeries and Java, SG24-4896

• Application Development with VisualAge for Smalltalk and MQSeries,
SG24-2117

• Examples of Using MQSeries on WWW, SG24-4882

C.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the
CD-ROMs offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks SK2T-8046

RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040
© Copyright IBM Corp. 1999 177

C.3 Other Publications

These publications are also relevant as further information sources:

• MQSeries for AIX Quick Beginnings Version 5.0, GC33-1867

• MQSeries for Windows NT Quick Beginnings Version 5.0, GC33-1871

• MQSeries Command Reference, SC33-1369

• MQSeries Intercommunication, SC33-1872

• MQSeries: An Introduction to Messaging and Queuing, GC33-0805

• MQSeries System Administration, SC33-1873

• MQSeries Planning Guide, GC33-1349

• DB2 UDB Personal Edition Quick Beginnings V5, S10J-8150

• DB2 UDB for UNIX Quick Beginnings V5R2, S10J-8148

These publications are available on the product CD in softcopy format:

• MQSeries Integrator Application Development Guide

• MQSeries Integrator Installation and Configuration Guide

• MQSeries Integrator Programming Reference for NEON Formatter

• MQSeries Integrator Programming Reference for NEON Rules

• MQSeries Integrator System Management Guide

• MQSeries Integrator User’s Guide

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

CD-ROM Title Collection Kit
Number
178 Using the MQSeries Integrator Version 1.0

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/ .

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com / and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com /.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 179

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
180 Using the MQSeries Integrator Version 1.0

List of Abbreviations

AIX Advanced Interactive
Executive (IBM’s flavor
of UNIX)

CCA Client Configuration
Assistant

CLP command line
processor (DB2)

CSD correctional service
diskette

DB2 Database 2

DBMS Database Management
System

GUI graphical user interface

HTML Hypertext Markup
Language

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

IVP installation verification
program

MQ Message Queuing

MQHRF MQSI Rules/Format
Header

MQI Message Queuing
Interface

MQM MQSeries Queue
Manager

MQMD MQ Message
Descriptor

MQSI MQSeries Integrator

MVS Multiple Virtual Storage

NEON New Era of Networks

OCX OLE Control Module

ODBC open database
connectivity
© Copyright IBM Corp. 1999
PDF Portable Document
Format

PC Personal Computer

PE personal edition

PS PostScript (file
extension)

RFH Rules/Format Header

SDK Software Developers
Kit

SMIT System Management
Interface Tool

UDB Universal Database

URL Uniform Resource
Locator

WWW World Wide Web
181

182 Using the MQSeries Integrator Version 1.0

Index

A
access using relative index 134
action 43, 136
add database user 164
add field components 33, 37, 94, 98
add format components 133
AIX 9, 21
alias (database) 12
amqsbcg 66, 71
amqsget 20
amqsput 20, 52
application group 6, 136

default 6
define 137

architecture 3
assign input format 34
assign output control name 103

B
business integration 1
business rules 4

C
cache 47, 137
calculations 129
changing MQMD fields 146
Client Configuration Assistant 13, 24
codepage 148
compound format 32, 131
compounds 156
configuration

MQSI database 11
connect to database 14
control type 92, 97
conversion 148
create

database 23
MQSI objects 87
queue manager 16, 52
queues 52
rules 136
table space 15

CSD3 9
CSD5 148
curdepth 52
© Copyright IBM Corp. 1999
Custom Date and Tim 127
cutoff field 127

D
Data Field (Name Search) 97
data termination 92
data type 92
database

add user 164
administrator 14
alias 12, 17
configuration 13
connect 14
connection file 5, 15
create 23
instance 18
instance name 22
instance owner 23
schema 15, 24
security 163
session 15

datagram 146
date field 125
DB2 9

client 9
installation 10
on AIX 21

DB2 CLP 12
DB2 Connect 9
DBADM 14
DBMS 17
dbsetup command 22
default 6
default application group 40
default queue manager 52
default queues 53
defaultApp 18, 137
define

delimiter 90
field 30, 91
formats 28
Input Control 31, 92
Input Format 32, 89, 93
objects 87
Output Control 35
Output Format 37, 96
Output Operation Collection 106
183

queue 16
rule 41

delimited fields 89
delimiter 89, 92
development tools 57
driver 17

E
European languages 148
evaluate rules 59
export

formats 72, 74
rules 75

expression 42
expression components 42

F
FAT-format 11
field 30, 91

containing a tag 118
containing length and data 112
delimited 89
literals 97
mapped 97
not mapped 96
with calculated values 129
with prefix/suffix 102
with tag, length and data 121

field components 94
field ID 118
field map 99
first steps 27
flat format 32, 93
format administrator 28
formatter 3

examples 87
Formatter GUI 5, 17

start 28
formatting examples 87

G
get and put options 149
global business 1
GUI 9

I
IDoc 166

IDoc Loader 166
import

formats 72, 74
formats.fie 17, 72
IVP format and rules 17
rules 76
rules.rie 17, 76

Input Control 31, 92
input control name 95
Input Format 32, 93
inst_db.bat 15, 24
inst_db2.log 15
installation

AIX 21
database schema 15
DB2 10
DB2 (AIX) 22
MQSeries 10, 22
MQSI 11
MQSI (AIX) 23
preparation 10, 21
steps 9, 21
verify 16
Visual Tester 78
Windows NT 9

Installation and Setup 9
instance 6
integration libraries 165
intelligent router 153, 154
IVP 16, 24

directory 16
formats and rules 17
mqsiruleng.mpf 19
queues 16

L
legacy applications 149
length and data 112
link input to output 87
literal 90
literature 7, 10, 16, 21
log on 28

formatter 17, 28
rules 39
Visual Tester 80

M
makefile 20
184 Using the MQSeries Integrator Version 1.0

management API 150
mapped fields 97
Math Expression 129
mergers 1
message broker 3, 154
message descriptor 146
message header 147
message routing 154
message type 136

remove 138
mpf file 20
MQGET 149
MQHRF 63, 68
MQMD header

change fields 146
fields that can be changed 64

MQMT_DATAGRAM 64
MQPUT 149
MQRFH 147
MQS_EXPIRY 150
MQS_FORMAT 149
MQS_PERSIST 149
MQS_PROPAGATE 150
MQSeries 1

CSD3 9
environment 52
version 9

MQSeries 5.1 80
MQSeries message type 40
MQSeries Workflow 1
MQSI 1

components 5
GUI 13
highlights 2
installation 9
Installation and Configuration Guide 10
OS/390 148
tutorial 27

MQSI database 12
create 12, 24
create alias 12
naming convention 12
setup 11

MQSI header 53, 68, 141
MQSI message type 40
MQSIgetdata 57, 69
mqsigetdata.mpf 69, 70
MQSIputdata 57, 64

examples 66

explained 63
mqsiputdata.mpf 63, 65
mqsiruleng 20
mqsiruleng.mpf 18, 20
msgtest 57

explained 58
MsgType 146
multiple rules 143

N
NEON

Formatter 5, 14
option buffer 68
Product 14
Rules 5, 14, 135
Rules Daemon 6

NNDBARuleOwnership 163
NNF 14
NNFie 17, 57, 72
NNFie.err 74
NNMgrs.ocx 80
NNObjs.ocx 80
NNP 14
NNR 14
NNRie 17, 57, 74

parameters 75
NNRTrace 57, 61

explained 61
NT client 12

O
objects 87
OCX 78
OCX files 80
ODBC 9, 12, 21
ODBC driver 12, 13
operators 42
OPT_APP_GROUP 64
OPT_APP_GRP 68
OPT_MSG_TYPE 64, 68
option buffer 68
order fields 94
order of definitions 29
OS/390 148
output control 35, 97
output control name 99
output format 37, 96
output operation 107
185

output operation collections 104
output operations

pre-defined 35
Output queue 16
output queue (for MQSI) 53

P
parameters 64
parse 87
password 15, 22
port number 22
predefined output operations 35
Prefix/Suffix 101
propagate definition 150
PUBLIC 163
publications 177
publish/subscribe 3, 147
put message 43
Put Message action 141

Q
queue

load with Visual Tester 81
queue depth 52
queue manager 53
queue names 44
queues 52

Output 16
RulesFail 16
RulesIn 16
RulesNoHit 16

R
readme.db2 10
ReadMQI.txt 11
recache rules/formatter 47
recache rules/rormatter 83
redbooks 177
reformat 43, 58, 87
register OCX files 80
regsvr32 80
relative index 134
release notes 21
remove

message type 138
re-order fields 34
repeatable fields 156

repeating 134
repeating fields 154
reply message 146
ReplyToQ 147
ReplyToQMgr 147
report message 146
request message 146
RFH conversion 148
RFH header 63, 148
routing 153
rules 135

debug 61
define 41
evaluate 59
fail queue 20
hit 61

Rules Daemon 4
rules daemon 135, 147

get/put options 149
rules engine 4, 6, 20
rules engine connection file 6

for IVP 19
Rules GUI 5, 18, 39, 135

start 39
rules hierarchy 135
rules processor 4, 51

end 55
start 55

rules processor connection file 53
for tutorial 54

rules/routing engine 4
RulesFail queue 16, 53, 143
RulesIn queue 16
RulesNoHit queue 16, 53, 143
ruletest 57, 145

explained 59
runmqsc 16, 52

S
SAP Link 165
SAP R/3 165
security 163
server name 15, 18
shutdown message 55
SMIT 23
sqlsvses.cfg 5, 15, 24, 72

example 16
for IVP 16
186 Using the MQSeries Integrator Version 1.0

start
formatter 17, 28
MQSIgetdata 71
mqsiputdata 66
queue manager 52
queue manger 16
rules engine 20, 25
rules GUI 18, 39
rules processor 55
Visual Tester 45

subscription 40, 140
evaluate 59

subscription list 43, 136, 141
substituting field values 108
substitution values 110
SupportPac 77

T
table space 14, 24

create 15
tag 119
tag, length and data 121
TARGET_FORMAT 43
TCP/IP 22
termination 92
test a rule 141
time field 125
tools 57
transport 3
tutorial 27
tutorial.mpf 54

U
UDB 9
Universal Database 10
UPPER_CASE 35
URL for Visual Tester 77
user ID 15

V
variable length 89, 112
verify

installation 16, 24
rules syntax 43

version 5.1 21
Visual Tester 27, 77

how to get it 77

installation 78
load queue 81
logging on 80
test format 46, 82
test reformat 48, 84
test rules 49, 86

W
Windows NT 9
workflow 1
working with rules 135

Y
year 2000 compliance 127
year 2000 ready 3
year cutoff 127
187

188 Using the MQSeries Integrator Version 1.0

© Copyright IBM Corp. 1999 189

ITSO Redbook Evaluation

Using the MQSeries Integrator Version 1.0
SG24-5386-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5386-00

U
sing

th
e

M
Q

S
eries

Integrator
V

ersion
1.0

S
G

24
-53

8
6-0

0

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Overview
	1.1 Business Integration
	1.2 What the MQSeries Integrator Can Do for You
	1.3 The MQSI Architecture
	1.4 How to Use the MQSI
	1.5 Literature

	Chapter 2. Installation and Setup
	2.1 Windows NT Installation
	2.1.1 Preparing for the Installation
	2.1.2 Installing MQSeries
	2.1.3 Installing DB2 Universal Database
	2.1.4 Installing MQSeries Integrator for DB2
	2.1.5 Setting Up the MQSI Database
	2.1.6 Installing the Database Schema
	2.1.7 The Database Connection File
	2.1.8 Verifying the Installation
	2.1.9 Editing the Makefile

	2.2 AIX Installation
	2.2.1 Preparing for the Installation
	2.2.2 Installing MQSeries
	2.2.3 Installing the AIX DB2 Universal Database
	2.2.4 Installing MQSeries Integrator for DB2
	2.2.5 Creating the MQSI Database on AIX
	2.2.6 Verifying the Installation

	Chapter 3. Getting to Know the MQSI - A Tutorial
	3.1 Working with the MQSI Format Administrator
	3.1.1 How to Define a Field
	3.1.2 How to Define an Input Control
	3.1.3 How to Define an Input Format
	3.1.4 How to Define an Output Control
	3.1.5 How to Define an Output Format

	3.2 Working with Rules
	3.2.1 How to Add a Message Type to an Application
	3.2.2 How to Define a Rule
	3.2.3 How to Specify Actions for a Rule

	3.3 Testing Formats and Rules with the Visual Tester
	3.3.1 How to Test If the Input Message Is Defined Correctly
	3.3.2 How to Test If the Output Message Is Defined Correctly
	3.3.3 How to Test If the Rules Work Properly

	3.4 Using the Rules Processor
	3.4.1 How to Set Up the Environment
	3.4.2 What the Rules Processor Configuration File Is For
	3.4.3 How to Start the Rules Processor

	Chapter 4. Tools That Help with Development
	4.1 Using msgtest to Test If a Message Reformats Correctly
	4.2 Using ruletest to Evaluate Rules
	4.3 Debugging Rules Using NNRTrace
	4.4 Using MQSIputdata to Create Messages with RFH Header
	4.5 Displaying Messages with MQSIgetdata
	4.6 Importing and Exporting Formats
	4.6.1 How to Export a Format
	4.6.2 How to Import a Format

	4.7 Importing and Exporting Rules
	4.7.1 How to Export Rules
	4.7.2 How to Import Rules

	4.8 The Visual Tester
	4.8.1 Installing the Visual Tester
	4.8.2 Logging On to the Visual Tester
	4.8.3 Loading a Message into a Queue
	4.8.4 Testing an Input Format
	4.8.5 Testing Reformat
	4.8.6 Testing Rules

	Chapter 5. Formatting Examples
	5.1 Using Delimited Fields
	5.1.1 Defining an Input Format with Delimited Fields
	5.1.2 Defining an Output Format with Fields and Literals

	5.2 Using Fields with Prefixes and Suffixes
	5.2.1 Adding Fields and Literals
	5.2.2 Creating a Prefix and a Suffix
	5.2.3 Attaching Prefixes and Suffixes to Fields

	5.3 Output Operation Collections
	5.3.1 How to Define an Output Operation Collection
	5.3.2 How to Assign an Output Operation Collection to a Field

	5.4 Substituting Field Values
	5.4.1 How to Define Substitution Values
	5.4.2 How to Define Substitutions for a Field

	5.5 Using Fields Containing Length and Data
	5.5.1 Parsing Input Fields with Length and Data
	5.5.2 Putting Fields with Length and Data

	5.6 Using Fields Containing a Tag (Field ID)
	5.6.1 Parsing Input Fields with Tag and Data
	5.6.2 Parsing Input Fields with Tag, Length and Data
	5.6.3 Putting Fields with Tag and Data
	5.6.4 Putting Fields with Tag, Length and Data

	5.7 Messages with Date and Time Fields
	5.7.1 Parsing a Date Field
	5.7.2 Putting a Date Field into a Message

	5.8 Adding Fields with Calculated Values
	5.9 Compound Formats
	5.9.1 Objects for the Compound Example
	5.9.2 Defining an Input Compound Format
	5.9.3 Defining an Output Compound Format

	Chapter 6. Writing Rules
	6.1 About Rules
	6.2 Techniques for Creating Rules
	6.2.1 Creating a New Application Group
	6.2.2 Creating a Rule
	6.2.3 Creating a Subscription and Action
	6.2.4 Testing a Rule

	6.3 Adding Rules and Subscriptions
	6.4 Multiple Rules
	6.5 Changing MQMD Fields
	6.5.1 The MQSI Header
	6.5.2 About Conversion
	6.5.3 Get and Put Options

	6.6 Management API

	Chapter 7. MQSI As an Intelligent Router
	7.1 Data Entry and Message Routing
	7.2 Warehouse Application
	7.3 Re-Composition of the Message
	7.4 Route Depending on Message Contents

	Chapter 8. Some Comments about Security
	8.1 Adding a Database User

	Chapter 9. The MQSeries SAP Link
	Appendix A. Check Reply C Program
	Appendix B. Special Notices
	Appendix C. Related Publications
	C.1 International Technical Support Organization Publications
	C.2 Redbooks on CD-ROMs
	C.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

