
Using the USART of AVR Microcontrollers.

Welcome to the third part of my RS232 serial communication

tutorial. Till now we saw the basics of RS232 communication and made

our level converter. Now its time to understand the USART of AVR

microcontroller and write the code to initialize the USART and use it to

send and receive data.

Like many microcontrollers AVR also has a dedicated hardware for

serial communication this part is called the USART - Universal

Synchronous Asynchronous Receiver Transmitter. This special hardware

make your life as programmer easier. You just have to supply the data

you need to transmit and it will do the rest. As you saw serial

communication occurs at standard speeds of 9600,19200 bps etc and this

speeds are slow compared to the AVR CPUs speed. The advantage of

hardware USART is that you just need to write the data to one of the

registers of USART and your done, you are free to do other things while

USART is transmitting the byte.

Also the USART automatically senses the start of transmission of RX

line and then inputs the whole byte and when it has the byte it informs

you(CPU) to read that data from one of its registers.

The USART of AVR is very versatile and can be setup for various

different mode as required by your application. In this tutorial I will

show you how to configure the USART in a most common configuration

and simply send and receive data. Later on I will give you my library of

USART that can further ease you work. It will be little complicated (but

more useful) as it will have a FIFO buffer and will use interrupt to buffer

incoming data so that you are free to anything in your main() code and

read the data only when you need. All data is stored into a nice

FIFO(first in first out queue) in the RAM by the ISR.

USART of AVR Microcontrollers.

http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-level-conversion/
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=10
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=10

The USART of the AVR is connected to the CPU by the following six

registers.

 UDR - USART Data Register : Actually this is not one but two

register but when you read it you will get the data stored in receive

buffer and when you write data to it goes into the transmitters

buffer. This important to remember it.

 UCSRA - USART Control and status Register A : As the name

suggests it is used to configure the USART and it also stores some

status about the USART. There are two more of this kind the

UCSRB and UCSRC.

 UBRRH and UBRRH : This is the USART Baud rate register, it is

16BIT wide so UBRRH is the High Byte and UBRRL is Low byte.

But as we are using C language it is directly available as UBRR

and compiler manages the 16BIT access.

So the connection of AVR and its internal USART can be visualized as

follows.

Fig- AVR USART registers.

Registers Explained

In order to write programs that uses the USART you need to understand

what each register's importance. The scheme behind using the AVR

USART is same as with any other internal peripheral (say ADC). So if

you are new to this topic please see this tutorial, it shows you the basic

idea of using peripherals.

I am not going to repeat what is already there in the datasheets, I will

just tell about what is required for a quick startup. The datasheets of

AVR provides you with all the details of every bit of every register so

please refer to it for detailed info. Note bit names with RED background

are of our interest here.

UDR: Explained above.

UCSRA: USART Control and Status Register A

Bit No 7 6 5 4 3 2 1 0

Name RXC TXC UDRE FE DOR PE U2X MPCM

Initial Val 0 0 1 0 0 0 0 0

RXC this bit is set when the USART has completed receiving a byte

from the host (may be your PC) and the program should read it from

UDR

TXC This bit is set (1) when the USART has completed transmitting a

byte to the host and your program can write new data to USART via

UDR

UCSRB: USART Control and Status Register B

http://extremeelectronics.co.in/avr-tutorials/using-internal-peripherals-of-avr-mcus/

Bit No 7 6 5 4 3 2 1 0

Name RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

Initial Val 0 0 0 0 0 0 0 0

RXCIE: Receive Complete Interrupt Enable - When this bit is written

one the the associated interrupt is enabled.

TXCIE: Transmit Complete Interrupt Enable - When this bit is

written one the the associated interrupt is enabled.

RXEN: Receiver Enable - When you write this bit to 1 the USART

receiver is enabled. The normal port functionality of RX pin will be

overridden. So you see that the associated I/O pin now switch to its

secondary function,i.e. RX for USART.

TXEN: Transmitter Enable - As the name says!

UCSZ2: USART Character Size - Discussed later.

For our first example we won't be using interrupts so we set UCSRB as

follows

UCSRB=(1<<RXEN)|(1<<TXEN);

UCSRC: USART Control And Status Register C

Bit No 7 6 5 4 3 2 1 0

Name URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Initial

Val
0 0 0 0 0 0 0 0

IMPORTANT : The UCSRC and the UBRRH (discussed below)

register shares same address so to determine which register user want to

write is decided with the 7th(last) bit of data if its 1 then the data is

written to UCSRC else it goes to UBRRH. This seventh bit is called the

URSEL: USART register select.

UMSEL: USART Mode Select - This bit selects between asynchronous

and synchronous mode. As asynchronous mode is more popular with

USART we will be using that.

UMSEL Mode

0 Asynchronous

1 Synchronous

USBS: USART Stop Bit Select - This bit selects the number of stop bits

in the data transfer.

USBS Stop Bit(s)

0 1 BIT

1 2 BIT

UCSZ: USART Character size - These three bits (one in the UCSRB)

selects the number of bits of data that is transmited in each frame.

Normally the unit of data in MCU is 8BIT (C type "char") and this is

most widely used so we will go for this. Otherwise you can select 5,6,7,8

or 9 bit frames!

UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5Bit

0 0 1 6Bit

0 1 0 7Bit

0 1 1 8Bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9Bit

So we set UCSRC as follows

UCSRC=(1<<URSEL)|(3<<UCSZ0);

UBRR: USART Baud Rate Register:

This is the USART Baud rate register, it is 16BIT wide so UBRRH is

the High Byte and UBRRL is Low byte. But as we are using C language

it is directly available as UBRR and compiler manages the 16BIT

access. This register is used by the USART to generate the data

transmission at specified speed (say 9600Bps). To know about baud rate

see the previous tutorial. UBRR value is calculated according to

following formula.

Where fosc is your CPU frequency say 16MHz

Baud Rate is the required communication speed say 19200 bps (see

previous tutorial for more info).

Example:

For above configuration our UBRR value comes to be 51.083 so we

have to set

UBRR=51;

http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/

in our initialization section. Note UBRR can hold only integer value. So

it is better to use the baud rates that give UBRR value that are purely

integer or very close to it. So if your UBRR value comes to be 7.68 and

you decided to use UBRR=8 then it has high error percentage, and

communication is unreliable!

You may also use our Androd App for calculating the UBRR much

easily ! It can run on Smartphones and Tablets running Android OS.

Fig. - AVR UBRR Calculator for Android

http://extremeelectronics.co.in/software/UBRRCalc.apk

Download

 AVR UBRR Calculator for Android 2.2 or Higher (apk file)

Initialization of USART

Before using the USART it must be initialized properly according to

need. Having the knowledge of RS232 communication and Internal

USART of AVR you can do that easily. We will create a function that

will initialize the USART for us.

#include <avr/io.h>

#include <inttypes.h>

void USARTInit(uint16_t ubrr_value)

{

 //Set Baud rate

 UBRR= ubrr_value;

 /*Set Frame Format

 >> Asynchronous mode

 >> No Parity

 >> 1 StopBit

 >> char size 8

 */

 UCSRC=(1<<URSEL)|(3<<UCSZ0);

http://extremeelectronics.co.in/software/UBRRCalc.apk

 //Enable The receiver and transmitter

 UCSRB=(1<<RXEN)|(1<<TXEN);

}

Now we have a function that initializes the USART with a given UBRR

value.

That's it for now friends. In next tutorial we will learn how to send and

receive data over RS232 channel. Don't forget to post your opinion or

doubts or any suggestion I would be very happy to see them. So don't

wait post a comment now !

Other Parts of this Tutorial

 RS232 Communication – The Basics

 RS232 Communication – The Level Conversion

 Using the USART of AVR Microcontrollers.

 Using the USART of AVR Microcontrollers : Reading and Writing

Data

 Visualize ADC data on PC Screen using USART – AVR Project

Using the USART of AVR Microcontrollers : Reading and Writing

Data

Posted by Avinash on December 29th, 2008 11:52 AM. Under AVR

Tutorials, Code Libraries

http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-level-conversion/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/tools/visualize-adc-data-on-pc-screen-using-usart-avr-project/
http://extremeelectronics.co.in/category/avr-tutorials/
http://extremeelectronics.co.in/category/avr-tutorials/
http://extremeelectronics.co.in/category/code-libraries/

Share on facebook Share on twitter Share on delicious Share on digg

Share on stumbleupon Share on reddit Share on email More Sharing

Services

Till now we have seen the basics of RS232 communication, the function

of level converter and the internal USART of AVR micro. After

understanding the USART of AVR we have also written a easy to use

function to initialize the USART. That was the first step to use RS232.

Now we will see how we can actually send/receive data via rs232. As

this tutorial is intended for those who are never used USART we will

keep the things simple so as to just concentrate on the "USART" part. Of

course after you are comfortable with usart you can make it more usable

my using interrupt driven mechanism rather than "polling" the usart.

So lets get started! In this section we will make two functions :-

 USARTReadChar() : To read the data (char) from the USART buffer.
 USARTWriteChar(): To write a given data (char) to the USART.

This two functions will demonstrate the use of USART in the most basic

and simplest way. After that you can easily write functions that can write

strings to USART.

Reading From The USART : USARTReadChar() Function.

This function will help you read data from the USART. For example if

you use your PC to send data to your micro the data is automatically

received by the USART of AVR and put in a buffer and bit in a register

(UCSRA) is also set to indicate that data is available in buffer. Its now

your duty to read this data from the register and process it, otherwise if

new data comes in the previous one will be lost. So the funda is that wait

until the RXC bit (bit no 7) in UCSRA is SET and then read the UDR

register of the USART.

http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=delicious&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fusing-the-usart-of-avr-microcontrollers-reading-and-writing-data%2F&title=Using%20the%20USART%20of%20AVR%20Microcontrollers%20%3A%20Reading%20and%20Writing%20Data&ate=AT-unknown/-/-/5147654d3d692110/2&frommenu=1&uid=5147654d85ce99e7&description=Till%20now%20we%20have%20seen%20the%20basics%20of%20RS232%20communication%2C%20the%20function%20of%20level%20%0A%20%20converter%20and%20the%20internal%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=digg&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fusing-the-usart-of-avr-microcontrollers-reading-and-writing-data%2F&title=Using%20the%20USART%20of%20AVR%20Microcontrollers%20%3A%20Reading%20and%20Writing%20Data&ate=AT-unknown/-/-/5147654d3d692110/3&frommenu=1&uid=5147654d40166df4&description=Till%20now%20we%20have%20seen%20the%20basics%20of%20RS232%20communication%2C%20the%20function%20of%20level%20%0A%20%20converter%20and%20the%20internal%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=stumbleupon&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fusing-the-usart-of-avr-microcontrollers-reading-and-writing-data%2F&title=Using%20the%20USART%20of%20AVR%20Microcontrollers%20%3A%20Reading%20and%20Writing%20Data&ate=AT-unknown/-/-/5147654d3d692110/4&frommenu=1&uid=5147654d77fd5d94&description=Till%20now%20we%20have%20seen%20the%20basics%20of%20RS232%20communication%2C%20the%20function%20of%20level%20%0A%20%20converter%20and%20the%20internal%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=reddit&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fusing-the-usart-of-avr-microcontrollers-reading-and-writing-data%2F&title=Using%20the%20USART%20of%20AVR%20Microcontrollers%20%3A%20Reading%20and%20Writing%20Data&ate=AT-unknown/-/-/5147654d3d692110/5&frommenu=1&uid=5147654d45a35a08&description=Till%20now%20we%20have%20seen%20the%20basics%20of%20RS232%20communication%2C%20the%20function%20of%20level%20%0A%20%20converter%20and%20the%20internal%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&tt=0&captcha_provider=nucaptcha
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=6
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=6

(See the full description of USART registers)

char USARTReadChar()

{

 //Wait untill a data is available

 while(!(UCSRA & (1<<RXC)))

 {

 //Do nothing

 }

 //Now USART has got data from host

 //and is available is buffer

 return UDR;

}

Writing to USART : USARTWriteChar()

This function will help you write a given character data to the USART.

Actually we write to the buffer of USART and the rest is done by

USART, that means it automatically sends the data over RS232 line.

One thing we need to keep in mind is that before writing to USART

buffer we must first check that the buffer is free or not. It its not we

simply wait until it is free. If its not free it means that USART is still

busy sending some other data and once it finishes it will take the new

data from buffer and start sending it.

Please not that the data held in the buffer is not the current data which

the USART is busy sending. USART reads data from the buffer to its

shift register which it starts sending and thus the buffer is free for your

data. Every time the USART gets it data from buffer and thus making it

empty it notifies this to the CPU by telling "USART Data Register Ran

http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/

Empty" (UDRE) . It does so by setting a bit (UDRE bit no 5) in UCSRA

register.

So in our function we first wait until this bit is set (by the USART),

once this is set we are sure that buffer is empty and we can write new

data to it.

(See the full description of USART registers)

void USARTWriteChar(char data)

{

 //Wait until the transmitter is ready

 while(!(UCSRA & (1<<UDRE)))

 {

 //Do nothing

 }

 //Now write the data to USART buffer

 UDR=data;

}

Note: Actually their are two separate buffers, one for transmitter and

one for receiver. But they share common address. The trick is that all

"writes" goes to the Transmitter's buffer while any "read" you performs

comes from the receiver's buffer.

That means if we read UDR we are reading from receivers buffer and

when we are writing to UDR we are writing to transmitters buffer.

UDR=some_data; //Goes to transmitter

http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/

some_data=UDR; //Data comes from receiver

(See the full description of USART registers)

Sample program to use AVR USART

The following program makes use of the two functions we developed.

This program simply waits for data to become available and then echoes

it back via transmitter but with little modification. For example if you

send "A" to it, it will send you back "[A]" that is input data but

surrounded by square bracket. This program is enough to test the

USART yet easy to understand.

/*

A simple program to demonstrate the use of USART

of AVR micro

**

See: www.eXtremeElectronics.co.in for more info

Author : Avinash Gupta

E-Mail: me@avinashgupta.com

Date : 29 Dec 2008

Hardware:

 ATmega8 @ 16MHz

 Suitable level converter on RX/TX line

 Connected to PC via RS232

 PC Software : Hyper terminal @ 19200 baud

 No Parity,1 Stop Bit,

 Flow Control = NONE

http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/

*/

#include <avr/io.h>

#include <inttypes.h>

//This function is used to initialize the USART

//at a given UBRR value

void USARTInit(uint16_t ubrr_value)

{

 //Set Baud rate

 UBRRL = ubrr_value;

 UBRRH = (ubrr_value>>8);

 /*Set Frame Format

 >> Asynchronous mode

 >> No Parity

 >> 1 StopBit

 >> char size 8

 */

 UCSRC=(1<<URSEL)|(3<<UCSZ0);

 //Enable The receiver and transmitter

 UCSRB=(1<<RXEN)|(1<<TXEN);

}

//This function is used to read the available

data

//from USART. This function will wait untill

data is

//available.

char USARTReadChar()

{

 //Wait untill a data is available

 while(!(UCSRA & (1<<RXC)))

 {

 //Do nothing

 }

 //Now USART has got data from host

 //and is available is buffer

 return UDR;

}

//This fuction writes the given "data" to

//the USART which then transmit it via TX line

void USARTWriteChar(char data)

{

 //Wait untill the transmitter is ready

 while(!(UCSRA & (1<<UDRE)))

 {

 //Do nothing

 }

 //Now write the data to USART buffer

 UDR=data;

}

void main()

{

 //This DEMO program will demonstrate the use

of simple

 //function for using the USART for data

communication

 //Varriable Declaration

 char data;

 /*First Initialize the USART with baud rate =

19200bps

 for Baud rate = 19200bps

 UBRR value = 51

 */

 USARTInit(51); //UBRR = 51

 //Loop forever

 while(1)

 {

 //Read data

 data=USARTReadChar();

 /* Now send the same data but but surround

it in

 square bracket. For example if user sent

'a' our

 system will echo back '[a]'.

 */

 USARTWriteChar('[');

 USARTWriteChar(data);

 USARTWriteChar(']');

 }

}

Download Sample Program

Running the USART Demo

You can run the above program in a ATmega8, ATmega16, ATmega32

cpu running at 16MHz without any modification. If you are using

different clock frequency you have to change the UBRR value that we

are passing to USARTInit() function. See previous tutorial for

calculating UBRR value. AVR running the USART demo program can

be interface to PC using following three ways.

 Connect to a Physical COM Port.

If you are lucky and own a really old PC then you may find a

Physical COM port on your PC's back. It is a 9 pin D type male

connector. In this case you have to make a RS232 to TTL

converter and connect the MCU to COM port via it.

 Connect to a Virtual COM Port.

http://extremeelectronics.co.in/avrtutorials/code/usart_demo.c
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-level-conversion/
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-level-conversion/

Those who are not so lucky may buy a Virtual COM port. Again in

this case too you need to built a RS232 to TTL converter and

connect the MCU to COM port via it.

Virtual COM Port can be connect to USB Port.

http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=34
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-level-conversion/
http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=34

RS232 to TTL Converter attached.

 Connect Via a Chips like CP2102.

CP2102 is single chip USB to UART Bridge by SiLabs. This chip

can be used to connect your embedded applications to USB port

and enable them to transfer data with PC. It is the easiest path to

build PC interfaced projects, like a PC controlled robot. We have a

very good CP2102 module that can be used right out of the box.

We have done all PCBs and fine SMD soldering for you.

http://www.silabs.com/products/interface/usbtouart/Pages/default.aspx
http://www.silabs.com/
http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=238

CP2102 Based Module.

http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=238

CP2102 Module Can be hooked to USB Directly!

Flywires used for interconnects.

Connection is very easy.

Female sides provide easy connection to headers.

xBoard MINI v2.0 with ATmega8 MCU

http://shop.extremeelectronics.co.in/product_info.php?cPath=23&products_id=107

ATmega8 Connected to CP2102

Complete setup for ATmega to USB Connection

Finding the COM port number of Serial Port

A PC can have several COM ports, each may have some peripheral

connected to it like a Modem. Serial Ports on PC are numbered like

COM1, COM2 ... COMn etc. You first need to figure out in which COM

port you have connected the AVR. Only after you have a correct COM

port number you can communicate with the AVR using tools such as

Hyperterminal. The steps below shows how to get COM port number in

case of Virtual COM Ports.

Right Click on "My Computer" icon in Windows Desktop.

My Computer Icon on Windows Desktop

Select "Properties"

System Context Menu

The System Properties will open up. Go to the "Hardware" Tab.

System Properties.

In Hardware tab select "Device Manager" button. It will open up device

manager.

Open Device Manager

In Device Manager Find the Node "Ports (COM & LPT)"

Expand the PORT node in Device Manager

Depending on whether you are using a "USB to Serial Converter" or

"CP2102 USB/USART Bridge Module" you have to find the port with

following name.

 Prolific USB-to-Serial if you are using Bafo USB to Serial Converter.
 Silicon Labs CP210x if you are using CP2102 chip.

Note down the COM port number next to the port name. You need to

open this Port in Hyperterminal.

http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=34
http://shop.extremeelectronics.co.in/product_info.php?cPath=54&products_id=238

COM Port Number

COM Port Number

Communication using a Terminal Program on PC.

Since this is the introductory article about serial communication, we

won't be going in much detail on PC end COM port programming. For

this reason we will be using a ready made software for sending and

receiving serial data. I will be showing how to use two different terminal

program to exchange data with embedded application.

Windows Hyperterminal

This is a default terminal program shipped with Windows OS. You can

start it from

Start Menu->All Programs->Accessories->Communication-

>Hyperterminal.

Hyperterminal is not available in Windows Vista or Windows 7 so you

have to use other terminal programs like RealTerm.

On startup it will ask for a connection name. Here we will enter AVR

Create New Connection

After that select a COM port you want to use. If you are using USB to

serial adaptor please confirm which COM port number it is using. Other

COM ports are usually connected to some device say an Internal modem

etc. While some others are Bluetooth COM ports. Don't use them. If you

have a physical com port then most probably it will be COM1. If you

select wrong COM port during this step you won't be able to

communicate with the AVR MCU and won't get expected results.

Select COM Port

Now setup the COM port parameters as follows.

 Bits per second: 19200
 Data bits: 8
 Parity: None
 Stop bits: 1
 Flow Control: None

Setting up the COM port

HyperTerminal is ready for communication now! If everything went

right HyperTerminal and AVR will talk happily and AVR will send the

following message as we have programmed it.

Screenshot of Hyperterminal Showing the message received from

AVR

If the screen shows similar message then you have successfully created a

link between PC and your AVR micro. It shows that PC can read the

data sent by AVR. To test if the AVR can also read Hyperterminal, press

some keys on PC keyboard. Hyperterminal will send them over COM

port to the AVR mcu where AVR will process the data. In the simple

test program this processing includes returning the same data but

enclosed inside [and], so if you press 'k' then AVR will return [k]. If

you are able to see this on PC screen then you are sure that AVR is

receiving the data correctly.

That's it! It fully tests the Serial Communication Routine and your

hardware setup.

Setting Up Realterm and using it to communicate with AVR

If you are running Windows Vista or Windows 7 then the Hyperterminal

Program may not be available. So in place of it you can use Realterm. It

can be downloaded from here.

http://realterm.sourceforge.net/

 http://realterm.sourceforge.net/

Start Realterm from its Desktop Icon. You will get a screen similar to

this. Increase the Value of Row to 40 to see whole message.

Screenshot of Realterm Showing the message received from AVR

Setup Realterm as follows. Go to the Port Tab and set it as follows.

 Baud: 19200
 Port: Port where you have connected the AVR
 Data bits: 8
 Parity: None
 Stop bits: 1
 Hardware Flow Control: None

http://realterm.sourceforge.net/

Screenshot of Realterm Setup

GSM Module SIM300 Interface with AVR Amega32

Posted by Avinash on July 29th, 2012 12:17 PM. Under AVR Tutorials

Share on facebook Share on twitter Share on delicious Share on digg

Share on stumbleupon Share on reddit Share on email More Sharing

Services

A GSM/GPRS Module like SIM300 can be used for any embedded

application that requires a long range communication, like a robot in

Chennai controlled by a person sitting in New Delhi! Or simply a water

pump in a rice field turned on in the morning by a farmer sitting in his

house few kilometers away! You have few communication options

depending on the application, they may be as follows.

http://extremeelectronics.co.in/category/avr-tutorials/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=delicious&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&title=GSM%20Module%20SIM300%20Interface%20with%20AVR%20Amega32&ate=AT-unknown/-/-/5147650b95bc076d/2&frommenu=1&uid=5147650befd1effc&description=A%20GSM%2FGPRS%20Module%20like%20SIM300%20can%20be%20used%20for%20any%20embedded%20application%20that%20requires%20a%20long%20range%20communication%2C%20like%20a%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=digg&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&title=GSM%20Module%20SIM300%20Interface%20with%20AVR%20Amega32&ate=AT-unknown/-/-/5147650b95bc076d/3&frommenu=1&uid=5147650b4bf74f78&description=A%20GSM%2FGPRS%20Module%20like%20SIM300%20can%20be%20used%20for%20any%20embedded%20application%20that%20requires%20a%20long%20range%20communication%2C%20like%20a%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=stumbleupon&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&title=GSM%20Module%20SIM300%20Interface%20with%20AVR%20Amega32&ate=AT-unknown/-/-/5147650b95bc076d/4&frommenu=1&uid=5147650b80fbb0f5&description=A%20GSM%2FGPRS%20Module%20like%20SIM300%20can%20be%20used%20for%20any%20embedded%20application%20that%20requires%20a%20long%20range%20communication%2C%20like%20a%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=reddit&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fgsm-module-sim300-interface-with-avr-amega32%2F&title=GSM%20Module%20SIM300%20Interface%20with%20AVR%20Amega32&ate=AT-unknown/-/-/5147650b95bc076d/5&frommenu=1&uid=5147650b53ceb88a&description=A%20GSM%2FGPRS%20Module%20like%20SIM300%20can%20be%20used%20for%20any%20embedded%20application%20that%20requires%20a%20long%20range%20communication%2C%20like%20a%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&tt=0&captcha_provider=nucaptcha
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://store.extremeelectronics.co.in/GSM-GPRS-Modem-SIM300-KIT.html
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=6
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=6
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=6

 Simple SMS based communication

o Turn on/off loads using simple SMS commands, so the

controlling device is a standard handset. You can use any

mobile phone to control the device.

o A intruder alarm/fire alarm that informs about the panic

situation to the house owner on his/her mobile via SMS.

 Call based communication

o A smart intruder alarm/fire alarm that calls the police or fire

station and plays a pre recorded audio message to inform

about the emergency.

 Internet Based Communication (GPRS)

o User can control the end application using any

PC/Tablet/Mobile with internet connection. Example: LED

Message Displays installed on highways/expressways

controlled from a central control room to inform users or

traffic conditions ahead.

o A robot controlled over internet. That means the robot can be

accessed from any device having internet any where in the

world.

o A portable device installed on vehicles that connects to

internet using the GPRS Module SIM300 and uploads current

position(using Global Position System) to a server. The

server stores those location in a database with the ID of

vehicle. Then a client(using a PC) can connect with the

server using World Wide Web to see the route of the vehicle.

Advantage of using SIM300 Module.

The SIM300 KIT is a fully integrated module with SIM card holder,

power supply etc. This module can be easily connected with low cost

MCUs like AVR/PIC/8051. The basic communication is over

asynchronous serial line. This is the most basic type of serial

communication that's why it is very popular and hardware support is

available in most MCUs. The data is transmitted bit by bit in a frame

consisting a complete byte. Thus at high level it is viewed as a simple

http://store.extremeelectronics.co.in/GSM-GPRS-Modem-SIM300-KIT.html
http://extremeelectronics.co.in/avr-tutorials/rs232-communication-the-basics/

text stream. Their are only two streams one is from MCU to SIM300 and

other is from SIM300 to MCU. Commands are sent as simple text. Their

are several tutorials that describes how to send and receive strings over

the serial line.

 Using the USART of AVR MCU

 Using the USART of AVR MCU - Sending and Receiving data.

If you have never heard of serial communication and never did it in

practice then it is highly recommend to go and understand clearly

using some thing simpler (experiments given in above links).

Communication with SIM300 Module using AVR UART.

The hardware(inside the AVR MCU Chip) that is used to to serial

communication is called the UART, we use this UART to communicate

with the SIM300 module (the UART can also be used to communicate

with other devices like RFID Readers, GPS Modules, Finger Print

Scanner etc.). Since UART is such a common method of communication

in embedded world that we have made a clean and easy to use library

that we use in all our UART based projects.

Since a byte can arrive to MCU any time from the sender (SIM300),

suppose if the MCU is busy doing something else, then what happens?

To solve this, we have implemented a interrupt based buffering of

incoming data. A buffer is maintained in the RAM of MCU to store all

incoming character. Their is a function to inquire about the number of

bytes waiting in this queue.

Following are the functions in AVR USART library

void USARTInit(uint16_t ubrrvalue)

Initializes the AVR USART Hardware. The parameter ubrrvalue is

required to set desired baud rate for communication. By default SIM300

communicates at 9600 bps. For an AVR MCU running at 16MHz the

ubrrvalue comes to be 103.

http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers/
http://extremeelectronics.co.in/avr-tutorials/using-the-usart-of-avr-microcontrollers-reading-and-writing-data/

char UReadData()

Reads a single character from the queue. Returns 0 if no data is available

in the queue.

void UWriteData(char data)

Writes a single byte of data to the Tx Line, used by UWriteString()

function.

uint8_t UDataAvailable()

Tells you the amount of data available in the FIFO queue.

void UWriteString(char *str)

Writes a complete C style null terminated string to the Tx line.

Example #1:

UWriteString("Hello World !");

Example #2:

char name[]="Avinash !";

 UWriteString(name);

void UReadBuffer(void *buff,uint16_t len)

Copies the content of the fifo buffer to the memory pointed by buff, the

amount of data to be copied is specified by len parameter. If UART

incoming fifo buffer have fewer data than required (as per len

parameter) then latter areas will contain zeros.

Example:

char gsm_buffer[128];

 UReadBuffer(gsm_buffer,16);

The above example will read 16 bytes of data (if available) from the

incoming fifo buffer to the variable gsm_buffer. Please note that we

have allocated gsm_buffer as 128 byte array because latter we may need

to read more than 16 bytes. So the same buffer can be used latter to read

data up to 128 bytes.

The above function is used generally along with UDataAvailable()

function.

while(UDataAvailable()<16)

 {

 //Do nothing

 }

char gsm_buffer[128];

 UReadBuffer(gsm_buffer,16);

The above code snippet waits until we have 16 bytes of data available in

the buffer, then read all of them.

 void UFlushBuffer()

Removes all waiting data in the fifo buffer. Generally before sending

new command to GSM Module we first clear up the data waiting in the

fifo.

The above functions are used to send and receive text stream from the

GSM Module SIM300.

SIM300 AT Command Set

Now you know the basics of AVR USART library and how to use it to

initialize the USART, send and receive character data, its time for us to

move ahead and look what commands are available with SIM300

module and how we issue commands and check the response. SIM300

supports several functions like sending text messages, making phone call

etc. Each of the tasks is done using a command, and sim300 has several

commands known as the command set.

All SIM300 commands are prefixed with AT+ and are terminated by a

Carriage Return (or <CR> in short). The ASCII code of CR is 0x0D

(decimal 13). Anything you write to SIM300 will be echoed back from

sim300's tx line. That means if you write a command which is 7 bytes

long (including the trailing CR) then immediately you will have same 7

bytes in the MCU's UART incoming buffer. If you don't get the echo

back then it means something is wrong !

So the first function we develop is SIM300Cmd(const char *cmd)

which does the following job :-

(NOTE: All sim300 related function implementations are kept in file

sim300.c, and prototypes and constants are kept in sim300.h)

 Writes the command given by parameter cmd.

 Appends CR after the command.

 Waits for the echo, if echo arrives before timeout it returns

SIM300_OK(constant defined in sim300.h). If we have waited too

long and echo didn't arrive then it returns SIM300_TIMEOUT.

Implementation of SIM300Cmd()

int8_t SIM300Cmd(const char *cmd)

{

 UWriteString(cmd); //Send Command

 UWriteData(0x0D); //CR

 uint8_t len=strlen(cmd);

 len++; //Add 1 for trailing CR added to all

commands

 uint16_t i=0;

 //Wait for echo

 while(i<10*len)

 {

 if(UDataAvailable()<len)

 {

 i++;

 _delay_ms(10);

 continue;

 }

 else

 {

 //We got an echo

 //Now check it

 UReadBuffer(sim300_buffer,len); //Read

serial Data

 return SIM300_OK;

 }

 }

 return SIM300_TIMEOUT;

}

Commands are usually followed by a response. The form of the response

is like this

<CR><LF><response><CR><LF>

LF is Line Feed whose ASCII Code is 0x0A (10 in decimal)

So after sending a command we need to wait for a response, three things

can happen while waiting for a response :

 No response is received after waiting for a long time, reason can be

that the SIM300 is not connected properly with the MCU.

 Response is received but not as expected, reason can be faulty

serial line or incorrent baud rate setting or MCU is running at some

other frequency than expected.

 Correct response is received.

For example, command Get Network Registration is executed like this

:-

Command String: "AT+CREG?"

Response:

<CR><LF>+CREG: <n>,<stat><CR><LF>

<CR><LF>OK<CR><LF>

So you can see the correct response is 20 bytes. So after sending

command "AT+CREG?" we wait until we have received 20 bytes of

data or certain amount of time has elapsed. The second condition is

implemented to avoid the risk of hanging up if the sim300 module

malfunctions. That means we do not keep waiting forever for response

we simply throw error if SIM300 is taking too long to respond (this

condition is called timeout)

If correct response is received we analyses variable <stat> to get the

current network registration.

depending on current network registration status the value of stat can be

 0 - not registered, SIM300 is not currently searching a new

operator to register to

 1 registered, home network

 2 not registered, but SIM300 is currently searching a new operator

to register to

 3 registration denied

 4 unknown

 5 registered, roaming

Implementation of SIM300GetNetStat() Function

int8_t SIM300GetNetStat()

{

 //Send Command

 SIM300Cmd("AT+CREG?");

 //Now wait for response

 uint16_t i=0;

 //correct response is 20 byte long

 //So wait until we have got 20 bytes

 //in buffer.

 while(i<10)

 {

 if(UDataAvailable()<20)

 {

 i++;

 _delay_ms(10);

 continue;

 }

 else

 {

 //We got a response that is 20 bytes

long

 //Now check it

 UReadBuffer(sim300_buffer,20); //Read

serial Data

 if(sim300_buffer[11]=='1')

 return SIM300_NW_REGISTERED_HOME;

 else if(sim300_buffer[11]=='2')

 return SIM300_NW_SEARCHING;

 else if(sim300_buffer[11]=='5')

 return SIM300_NW_REGISTED_ROAMING;

 else

 return SIM300_NW_ERROR;

 }

 }

 //We waited so long but got no response

 //So tell caller that we timed out

 return SIM300_TIMEOUT;

}

Similarly we have implemented the following functions :-

 int8_t SIM300IsSIMInserted()

In another type of response we don't exactly know the size of response

like we knew for the above command. Example is the Get Service

Provider Name command where the provider name's length cannot be

known in advance. It can be Airtel or Reliance or TATA Docomo. To

handle that situation we make use of the fact that all response are

followed by a CR LF pair. So we simple buffer in all characters until we

encounter a CR, that indicates end of response.

To simplify handling of such commands we have made a function called

SIM300WaitForResponse(uint16_t timeout)

This function waits for a response from SIM300 module (end of

response is indicated by a CR), it returns the size if response received,

while the actual response is copied to the global variable

sim300_buffer[].

If no response is received before timeout it returns 0. Timeout in

millisecond can be specified by the parameter timeout. It does not count

the trailing LF or the last <CR><LF>OK<CR><LF>, they remain in the

UART fifo queue. So before returning we call UFlushBuffer() to

remove those from the queue.

Implementation of function SIM300WaitForResponse(uint16_t

timeout)

int8_t SIM300WaitForResponse(uint16_t timeout)

{

 uint8_t i=0;

 uint16_t n=0;

 while(1)

 {

 while (UDataAvailable()==0 &&

n<timeout){n++; _delay_ms(1);}

 if(n==timeout)

 return 0;

 else

 {

 sim300_buffer[i]=UReadData();

 if(sim300_buffer[i]==0x0D && i!=0)

 return i+1;

 else

 i++;

 }

 }

}

Implementation of function SIM300GetProviderName(char *name)

The function does the following :-

1. Flush the USART buffer to get rid of any leftover response from

the last command or errors.

2. It send the command "AT+CSPN?" using

SIM300Cmd("AT+CSPN?"); function call.

3. Then it waits for a response using the function

SIM300WaitForResponse()

4. If we receive a response of non zero length we parse it to extract

string describing the service provider name.

5. If SIM300WaitForResponse() returns zero that means no valid

response is received within specified time out period. In this case

we also return SIM300_TIMEOUT.

In the same way we have implemented the following functions :-

 uint8_t SIM300GetProviderName(char *name)

 int8_t SIM300GetIMEI(char *emei)

 int8_t SIM300GetManufacturer(char *man_id)

 int8_t SIM300GetModel(char *model)

uint8_t SIM300GetProviderName(char *name)

{

 UFlushBuffer();

 //Send Command

 SIM300Cmd("AT+CSPN?");

 uint8_t len=SIM300WaitForResponse(1000);

 if(len==0)

 return SIM300_TIMEOUT;

 char *start,*end;

 start=strchr(sim300_buffer,'"');

 start++;

 end=strchr(start,'"');

 *end='\0';

 strcpy(name,start);

 return strlen(name);

}

SIM300 and ATmega32 Hardware Setup

To run the basic demo showing communication with SIM300 using

AVR ATmega32 we need the following circuit :-

 ATmega32 Core circuit, including the reset register, ISP header,

16MHz crystal oscillator.

 Power Supply circuit to supply 5v to the ATmega32 and the LCD

Module.

 A 16x2 Alphanumeric LCD Module to show programs output.

 SIM300 Module.

Fig. SIM300 and ATmega32 Schematic

We have made the prototype using xBoard development board because

it has ATmega32 core circuit, 5v power supply circuit and the LCD

module.

http://extremeelectronics.co.in/avr-tutorials/using-lcd-module-with-avrs/
http://extremeelectronics.co.in/avr-tutorials/using-lcd-module-with-avrs/
http://extremeelectronics.co.in/avr-tutorials/using-lcd-module-with-avrs/
http://store.extremeelectronics.co.in/GSM-GPRS-Modem-SIM300-KIT.html
http://store.extremeelectronics.co.in/xBoard-v2.0.html
http://www.extremeelectronics.co.in/avrtutorials/images/avr_atmega32_lcd_sim300.gif

Fig. SIM300 and ATmega32 Connection

Fig. SIM300's PINs

Fig. xBoard's USART PINs

Fig. GSM Module connected with ATmega32

NOTE

The board shown below is the new version of SIM300 Modem, it can

also be used to make this project. New version is much smaller and low

cost.

http://store.extremeelectronics.co.in/GSM-GPRS-Modem-SIM300-KIT-v2.html

Fig. SIM300 Module New Version

Demo Source Code for AVR and SIM300 Interface

The demo source code is written in C language and compiled using free

avr-gcc compiler using the latest Atmel Studio 6 IDE. The project is

split into the following modules.

 LCD Library

o Files lcd.c, lcd.h, myutils.h, custom_char.h

o Job is to control standard 16x2 LCD Module.

o More information on LCD library.

 USART Library

o Files usart.c,usart.h

http://xboard.extremeelectronics.co.in/Name_In_LCD.htm
http://store.extremeelectronics.co.in/GSM-GPRS-Modem-SIM300-KIT-v2.html

o Job is to control the USART hardware of AVR MCU.

Includes functions to initialize the USART, Send/Receive

chars, Send/Receive Strings.

 SIM300 Library

o Files sim300.c, sim300.h

To build the project you need to be have working knowledge of the

Atmel Studio 6 IDE. Please refer to the following tutorial.

 Working with latest Atmel Studio 6 IDE.

Steps to configure the AS6 Project

 Create a new AS6 Project with name "Sim300Demo".

 Using solution explorer create a folder named "lib" in current

folder.

 Inside the "lib" folder create the following sub folders "lcd",

"usart" and "sim300".

 copy followings files to the lcd folder (using Windows File

Manager) lcd.c, lcd.h, myutils.h, custom_char.h

 copy followings files to the usart folder (using Windows File

Manager) usart.c,usart.h

 copy followings files to the sim300 folder (using Windows File

Manager sim300.c, sim300.h

 Add the files lcd.c, lcd.h, myutils.h, custom_char.h to the project

using solution explorer.

 Add the filesusart.c,usart.h to the project using solution explorer.

 Add the files sim300.c, sim300.h to the project using solution

explorer.

 Define a symbol F_CPU=16000000 using AS6's

 in the main application file Sim300Demo.c copy paste the

following demo program.

 Build the project to get the executable hex file.

 Burn this hex file to the xBoard using USB AVR Programmer.

 If you are using a new ATMega32 MCU from the market set the

LOW FUSE as 0xFF and HIGH FUSE are 0xC9.

http://extremeelectronics.co.in/lfrm8/Help/AS6.htm
http://extremeelectronics.co.in/lfrm8/Help/AS6.htm#SOLUTION_EXPLORER
http://extremeelectronics.co.in/lfrm8/Help/AS6.htm#ADD_EXISTING_ITEM
http://extremeelectronics.co.in/lfrm8/Help/AS6.htm#ADD_EXISTING_ITEM
http://extremeelectronics.co.in/lfrm8/Help/AS6.htm#ADD_EXISTING_ITEM
http://store.extremeelectronics.co.in/USB-AVR-Programmer-v2.1.html

Fig.: Setting the Fuse bytes.

/*

 * Sim300Demo.c

 *

 * Created: 10-07-2012 PM 12:23:08

 * Author: Avinash

 */

#include <avr/io.h>

#include <util/delay.h>

#include "lib/lcd/lcd.h"

#include "lib/sim300/sim300.h"

void Halt();

int main(void)

{

 //Initialize LCD Module

 LCDInit(LS_NONE);

 //Intro Message

 LCDWriteString("SIM300 Demo !");

 LCDWriteStringXY(0,1,"By Avinash Gupta");

 _delay_ms(1000);

 LCDClear();

 //Initialize SIM300 module

 LCDWriteString("Initializing ...");

 int8_t r= SIM300Init();

 _delay_ms(1000);

 //Check the status of initialization

 switch(r)

 {

 case SIM300_OK:

 LCDWriteStringXY(0,1,"OK !");

 break;

 case SIM300_TIMEOUT:

 LCDWriteStringXY(0,1,"No response");

 Halt();

 case SIM300_INVALID_RESPONSE:

 LCDWriteStringXY(0,1,"Inv response");

 Halt();

 case SIM300_FAIL:

 LCDWriteStringXY(0,1,"Fail");

 Halt();

 default:

 LCDWriteStringXY(0,1,"Unknown Error");

 Halt();

 }

 _delay_ms(1000);

 //IMEI No display

 LCDClear();

 char imei[16];

 r=SIM300GetIMEI(imei);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Device IMEI:");

 LCDWriteStringXY(0,1,imei);

 _delay_ms(1000);

 //Manufacturer ID

 LCDClear();

 char man_id[48];

 r=SIM300GetManufacturer(man_id);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Manufacturer:");

 LCDWriteStringXY(0,1,man_id);

 _delay_ms(1000);

 //Manufacturer ID

 LCDClear();

 char model[48];

 r=SIM300GetModel(model);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Model:");

 LCDWriteStringXY(0,1,model);

 _delay_ms(1000);

 //Check Sim Card Presence

 LCDClear();

 LCDWriteString("Checking SIMCard");

 _delay_ms(1000);

 r=SIM300IsSIMInserted();

 if (r==SIM300_SIM_NOT_PRESENT)

 {

 //Sim card is NOT present

 LCDWriteStringXY(0,1,"No SIM Card !");

 Halt();

 }

 else if(r==SIM300_TIMEOUT)

 {

 //Communication Error

 LCDWriteStringXY(0,1,"Comm Error !");

 Halt();

 }

 else if(r==SIM300_SIM_PRESENT)

 {

 //Sim card present

 LCDWriteStringXY(0,1,"SIM Card Present");

 _delay_ms(1000);

 }

 //Network search

 LCDClear();

 LCDWriteStringXY(0,0,"SearchingNetwork");

 uint8_t nw_found=0;

 uint16_t tries=0;

 uint8_t x=0;

 while(!nw_found)

 {

 r=SIM300GetNetStat();

 if(r==SIM300_NW_SEARCHING)

 {

LCDWriteStringXY(0,1,"%0%0%0%0%0%0%0%0%0%0%0%0%0

%0%0%0");

 LCDWriteStringXY(x,1,"%1");

 LCDGotoXY(17,1);

 x++;

 if(x==16) x=0;

 _delay_ms(50);

 tries++;

 if(tries==600)

 break;

 }

 else

 break;

 }

 LCDClear();

 if(r==SIM300_NW_REGISTERED_HOME)

 {

 LCDWriteString("Network Found");

 }

 else

 {

 LCDWriteString("Cant Connt to NW!");

 Halt();

 }

 _delay_ms(1000);

 LCDClear();

 //Show Provider Name

 char pname[32];

 r=SIM300GetProviderName(pname);

 if(r==0)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString(pname);

 _delay_ms(1000);

 Halt();

}

void Halt()

{

 while(1);

}

What the Demo Program does?

 Initializes the LCD Module and SIM300 module.

 Check if the SIM300 module is present on the USART and

responding properly.

 Displays the IMEI No of the SIM300 Module.

 Displays Manufacturer ID

 Then checks for the SIM card presence.

 Searches for a GSM Network and establishes a connection. The

sim card need to be valid in order to connect to the GSM network.

 Shows the Network Provider's name like Airtel or Vodafone.

Troubleshooting

 NO Display on LCD

o Make sure AVR Studio Project is set up for clock frequency

of 16MHz (16000000Hz)

o Adjust the Contrast Adj Pot.

o Press reset few times.

o Power On/Off few times.

o Connect the LCD only as shown on schematic above.

 On SIM300 Initialization phase if you get error "No Response"

o Check Rx,Tx and GND line connection between SIM300 and

the xBoard.

o Make sure crystal frequency is 16MHz only.

o Fuse bits are set as described above.

 Compiler Errors

1. Many people these days has jumped to embedded

programming without a solid concept of computer science

and programming. They don't know the basics of compiler

and lack experience. To learn basic of compilers and their

working PC/MAC/Linux(I mean a desktop or laptop) are

great platform. But embedded system is not good for

learning about compilers and programming basics. It is for

those who already have these skills and just want to apply

it.
2. Make sure all files belonging to the LCD Library are "added"

to the "Project".

3. avr-gcc is installed. (The Windows Binary Distribution is

called WinAVR)

4. The AVR Studio project Type is AVR GCC.

5. Basics of Installing and using AVR Studio with avr-gcc is

described in this tutorial

 General Tips for newbies

o Use ready made development boards and programmers.

o Try to follow the AVR Tutorial Series from the very

beginning. (Remember the list spans four pages, page 1 is

most recent addition thus most advance)

Downloads for GSM Module Demo.

 Atmel Studio 5 Project for SIM300 Demo.

 Atmel Studio 6 Project for SIM300 Demo.

 HEX File Ready to Burn on ATmega32 running at 16MHz.

 SIM300 Complete Command Set.

http://winavr.sourceforge.net/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/extremeelectronics.co.in/lfrm8/Help/AS6.htm
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/extremeelectronics.co.in/lfrm8/Help/AS6.htm
http://store.extremeelectronics.co.in/Development-Boards/
http://store.extremeelectronics.co.in/Programmers/
http://extremeelectronics.co.in/category/avr-tutorials/page/4/
http://extremeelectronics.co.in/avrtutorials/code/Sim300Demo_AS5_Project.zip
http://extremeelectronics.co.in/avrtutorials/code/Sim300Demo_HEX.zip
http://extremeelectronics.co.in/datasheets/SIM300DATC.pdf

Sending an Receiving SMS using SIM300 GSM Module

Posted by Avinash on August 2nd, 2012 01:09 PM. Under AVR

Tutorials, Code Snippets

Share on facebook Share on twitter Share on delicious Share on digg

Share on stumbleupon Share on reddit Share on email More Sharing

Services

Hi friends in this part we will have a look at the functions related to text

messages. By the end of this article you will have a clear idea of how

to wait for a text message, read the message, send a new text

message and deleted a received message. We have already discussed

the basics of SIM300 GSM Module interface with AVR MCU in our

previous tutorial you can refer that article to know about the schematic

and basic communication code.

 GSM Module SIM300 Interface with AVR

After reading the above article you will know how we have connected

the SIM300, AVR ATmega32 and LCD Module to make a basic test rig.

Also covered in the article is the detail about the communication method

between SIM300 and AVR which is called asynchronous serial

communication, done using AVR's USART peripheral. The article

shows you how to use the AVR USART library to send and receive data

to/from the GSM Module. We have also discussed the command

response method used for the interfacing with the module. Working code

is provided that shows you how to implement the command response

based communication over USART with the SIM300 GSM Module.

Those techniques are used through out this article so we recommend you

to go through the article and do the demo project given there.

Waiting for a text message (SMS)

When a text message (SMS) arrives on SIM300 GSM Module it sends a

unsolicited response <CR><LF>+CMTI: <mem>,<n><CR><LF>

http://extremeelectronics.co.in/category/avr-tutorials/
http://extremeelectronics.co.in/category/avr-tutorials/
http://extremeelectronics.co.in/category/code-snippets/
http://extremeelectronics.co.in/avr-tutorials/sending-an-receiving-sms-using-sim300-gsm-module/
http://extremeelectronics.co.in/avr-tutorials/sending-an-receiving-sms-using-sim300-gsm-module/
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=delicious&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&title=Sending%20an%20Receiving%20SMS%20using%20SIM300%20GSM%20Module&ate=AT-unknown/-/-/514764eab9bcff14/2&frommenu=1&uid=514764eafc346c94&description=Hi%20friends%20in%20this%20part%20we%20will%20have%20a%20look%20at%20the%20functions%20related%20to%20text%20messages.%20By%20the%20end%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=digg&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&title=Sending%20an%20Receiving%20SMS%20using%20SIM300%20GSM%20Module&ate=AT-unknown/-/-/514764eab9bcff14/3&frommenu=1&uid=514764ea921e2c96&description=Hi%20friends%20in%20this%20part%20we%20will%20have%20a%20look%20at%20the%20functions%20related%20to%20text%20messages.%20By%20the%20end%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=stumbleupon&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&title=Sending%20an%20Receiving%20SMS%20using%20SIM300%20GSM%20Module&ate=AT-unknown/-/-/514764eab9bcff14/4&frommenu=1&uid=514764ea237c430d&description=Hi%20friends%20in%20this%20part%20we%20will%20have%20a%20look%20at%20the%20functions%20related%20to%20text%20messages.%20By%20the%20end%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2F&tt=0&captcha_provider=nucaptcha
http://www.addthis.com/bookmark.php?v=250&winname=addthis&pub=unknown&source=tbx-250&lng=en-US&s=reddit&url=http%3A%2F%2Fextremeelectronics.co.in%2Favr-tutorials%2Fsending-an-receiving-sms-using-sim300-gsm-module%2F&title=Sending%20an%20Receiving%20SMS%20using%20SIM300%20GSM%20Module&ate=AT-unknown/-/-/514764eab9bcff14/5&frommenu=1&uid=514764ea2025a66b&description=Hi%20friends%20in%20this%20part%20we%20will%20have%20a%20look%20at%20the%20functions%20related%20to%20text%20messages.%20By%20the%20end%20...&ct=1&pre=http%3A%2F%2Fextremeelectronics.co.in%2F&tt=0&captcha_provider=nucaptcha
http://extremeelectronics.co.in/avr-tutorials/sending-an-receiving-sms-using-sim300-gsm-module/
http://extremeelectronics.co.in/avr-tutorials/sending-an-receiving-sms-using-sim300-gsm-module/
http://extremeelectronics.co.in/avr-tutorials/sending-an-receiving-sms-using-sim300-gsm-module/
http://extremeelectronics.co.in/avr-tutorials/gsm-module-sim300-interface-with-avr-amega32/
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=23
http://extremeelectronics.co.in/wp-content/plugins/wp-adserve/adclick.php?id=23

I have already told in previous article that <CR> refers to a control

character whose ASCII is 0D (Hex) and <LF> with ASCII code of

0A(Hex). The new thing you will learn about is unsolicited response.

Earlier I told commands are followed by response. But the response

discussed above is not followed by any command, it can come at any

moment. So it is called an unsolicited response.

value of mem is the storage location where the sms was stored. Usually

its value is SM, which stands for SIM memory.

the value of n is the sms slot on which the incoming message was stored.

Depending on the size of storage in your SIM card their may me 20 or so

slots in your card. When a message is received it is stored in the lowest

numbered empty slot. For example you first received 4 messages then

deleted the 1st message, then 5th message will get stored in slot 1.

Code Example showing how Wait for a message.

int8_t SIM300WaitForMsg(uint8_t *id)

{

 //Wait for a unsolicited response for 250ms

 uint8_t len=SIM300WaitForResponse(250);

 if(len==0)

 return SIM300_TIMEOUT;

 sim300_buffer[len-1]='\0';

 //Check if the response is +CMTI (Incoming

msg indicator)

if(strncasecmp(sim300_buffer+2,"+CMTI:",6)==0)

 {

 char str_id[4];

 char *start;

 start=strchr(sim300_buffer,',');

 start++;

 strcpy(str_id,start);

 *id=atoi(str_id);

 return SIM300_OK;

 }

 else

 return SIM300_FAIL;

}

Code Walkthrough

1. We wait for a response from SIM300 with a time-out of 250

millisecond. That means if nothing comes for 250 millisecond we

give up!

2. If we get a response, SIM300WaitForResponse() returns its length

till trailing <CR>. So suppose we got <CR><LF>+CMTI:

SM,1<CR><LF> then len will be 14.

3. Next line sim300_buffer[len-1]='\0'; puts an NULL

character at position len - 1 that is 13(points to last <CR>). So the

response actually becomes <CR><LF>+CMTI: SM,1

4. Now we want to check if the first 6 characters are +CMTI: or not,

we check first 6 characters only because the <n> following +CMTI

is variable. Remember it is the slot number where the message is

stored! Also while comparing we want to ignore the case, that

means +CMTI or +cMtI are same. This type of string comparison

is easily done using the standard C library function strncasecmp().

Well if you have ever attended a C training session in school you

must have remembered strcmp() , so you can look

strncasecmp().So you can see only an n and case is added in the

name of the function. n in the name indicate you don't have to

compare the whole string, you can check the first n characters.

While the case in the name indicate a case in-sensitive match. Also

you notice we don't pass sim300_buffer (which holds the

response) directly to the comparison function, but we pass

sim300_buffer + 2, this removes the leading <CR><LF> in the

response string.

5. If the response matches the next step is to extract the value of <n>,

i.e. the message slot id. As you can see the slot id is after the first

comma(,) in the response. So we search for the position of first

comma in the response. This is done using strchr() standard library

function. Now start points to a string which is ",1".

6. The we do start++, this makes start points to a string which is "1",

but remember it is still a string. So we use standard library function

atoi() which converts a string to a integer. Which we store in *id.

Remember the parameter id is pass by reference type, if you don't

know what does that means go and revise your C book!

7. Finally we return SIM300_OK which is a constant defined in

sim300.h indicating a success to caller.

Reading the Content of Text Message

The command that is used to read a text message from any slot is

AT+CMGR=<n> where <n> is an integer value indicating the sms slot

to read. As I have already discussed that their are several slots to hold

incoming messages.

The response is like this

+CMGR: "STATUS","OA",,"SCTS"<CR><LF>Message

Body<CR><LF><CR><LF>OK<CR><LF>

where STATUS indicate the status of message it could be REC

UNREAD or REC READ

OA is the Originating Address that means the mobile number of the

sender.

SCTS is the Service Center Time Stamp.

This is a simple example so we discard the first line data i.e. STATUS,

OA and SCTS. We only read the Message Body.

One of the most interesting thing to note is that three things can happen

while attempting to read a message ! They are listed below.

1. Successful read in that case the response is like that discussed

above.

2. Empty slot ! That means an attempt has been make to read a slot

that does not have any message stored in it. In this case the

response is <CR><LF>OK<CR><LF>

3. SIM card not ready! In this case +CMS ERROR: 517 is returned.

Our function handles all the three situations.

int8_t SIM300ReadMsg(uint8_t i, char *msg)

{

 //Clear pending data in queue

 UFlushBuffer();

 //String for storing the command to be sent

 char cmd[16];

 //Build command string

 sprintf(cmd,"AT+CMGR=%d",i);

 //Send Command

 SIM300Cmd(cmd);

 uint8_t len=SIM300WaitForResponse(1000);

 if(len==0)

 return SIM300_TIMEOUT;

 sim300_buffer[len-1]='\0';

 //Check of SIM NOT Ready error

 if(strcasecmp(sim300_buffer+2,"+CMS ERROR:

517")==0)

 {

 //SIM NOT Ready

 return SIM300_SIM_NOT_READY;

 }

 //MSG Slot Empty

 if(strcasecmp(sim300_buffer+2,"OK")==0)

 {

 return SIM300_MSG_EMPTY;

 }

 //Now read the actual msg text

 len=SIM300WaitForResponse(1000);

 if(len==0)

 return SIM300_TIMEOUT;

 sim300_buffer[len-1]='\0';

 strcpy(msg,sim300_buffer+1);//+1 for removing

trailing LF of prev line

 return SIM300_OK;

}

Code Walkthrough

1. Clear pending data in the buffer.

2. A command string is built using the standard library function

sprintf().

1. sprintf(cmd,"AT+CMGR=%d",i);

2. You must be knowing that the above code gives a string in

which placeholder %d is replaced by the value of i.

3. Command is sent to the SIM300 module.

4. Then we wait for the response.

5. Response is analyzed.

6. Finally messages is read and copied to the memory address pointed

by *msg using standard library function strcpy().

Sending a New Text Message

We will develop a function to easily send message to any mobile

number. This function has the argument

 num (IN) - Phone number where to send the message ex

"+919939XXXXXX"

 msg (IN) - Message Body ex "This a message body"

 msg_ref (OUT) - After successful send, the function stores a

unique message reference in this variable.

The function returns an integer value indicating the result of operation

which may be

 SIM300_TIMEOUT - When their is some problem in

communication line or the GSM module is not responding or

switched off.

 SIM300_FAIL - Message Sending Failed. A possible reason may

be not enough balance in your prepaid account !

 SIM300_OK - Message Send Success!

int8_t SIM300SendMsg(const char *num, const

char *msg,uint8_t *msg_ref)

{

 UFlushBuffer();

 char cmd[25];

 sprintf(cmd,"AT+CMGS= %s",num);

 cmd[8]=0x22; //"

 uint8_t n=strlen(cmd);

 cmd[n]=0x22; //"

 cmd[n+1]='\0';

 //Send Command

 SIM300Cmd(cmd);

 _delay_ms(100);

 UWriteString(msg);

 UWriteData(0x1A);

 //Wait for echo

 while(UDataAvailable()<(strlen(msg)+5)

);

 //Remove Echo

 UReadBuffer(sim300_buffer,strlen(msg)+5);

 uint8_t len=SIM300WaitForResponse(6000);

 if(len==0)

 return SIM300_TIMEOUT;

 sim300_buffer[len-1]='\0';

 if(strncasecmp(sim300_buffer+2,"CMGS:",5)==0)

 {

 *msg_ref=atoi(sim300_buffer+8);

 UFlushBuffer();

 return SIM300_OK;

 }

 else

 {

 UFlushBuffer();

 return SIM300_FAIL;

 }

}

Code Walkthrough

1. The beginning of the function implementation is similar to those

done above, first we flush the buffer and build command string.

Command string must be like this :-

o AT+CMGS=<DA>, Where DA is the destination address i.e.

the mobile number like AT+CMGS="+919939XXXXXX"

o This function sprintf(cmd,"AT+CMGS= %s",num);

gives a string like this AT+CMGS= +919939XXXXXX

o cmd[8]=0x22; //" this like replaces the space just

before +91 with " so we have a string like this

AT+CMGS="+919939XXXXXX
o cmd[n]=0x22; //" this adds a " in the end

also so the string becomes

AT+CMGS="+919939XXXXXX", but caution it

removes the '\0' the null character that

must be present to mark the end of string

in C. So the following statement adds a

NULL character at the end.
o cmd[n+1]='\0';

2. Then we send the command string prepared above.\

3. We now write the message body to SIM300 module using the

function UWriteString(msg);

4. UWriteData(0x1A);Is used to send the control character

called EOF (End of File) to mark the end of message.

5. Since SIM300 echoes back everything we write to it, so we remove

the echo by reading the data from the buffer.

6. Finally we wait for the response, read the response and compare it

to find out whether we succeeded or not.

Deleting a Text Message

This function takes an integer input which should be slot number of the

message you wish to delete. Function may return the following values.

 SIM300_TIMEOUT - When their is some problem in

communication line or the GSM module is not responding or

switched off.

 SIM300_FAIL - Message Deleting Failed. A possible reason may

be an incorrect slot number id.

 SIM300_OK - Message Delete Success!

AT command of deleting a message is AT+CMGD=<n> where n is an

slot of number of message you wish to delete. If delete is successful it

returns OK. The function implementation is very simple compared to

above functions. The steps are similar, that involves building a

command string, sending command, waiting for response and verifying

response.

int8_t SIM300DeleteMsg(uint8_t i)

{

 UFlushBuffer();

 //String for storing the command to be sent

 char cmd[16];

 //Build command string

 sprintf(cmd,"AT+CMGD=%d",i);

 //Send Command

 SIM300Cmd(cmd);

 uint8_t len=SIM300WaitForResponse(1000);

 if(len==0)

 return SIM300_TIMEOUT;

 sim300_buffer[len-1]='\0';

 //Check if the response is OK

 if(strcasecmp(sim300_buffer+2,"OK")==0)

 return SIM300_OK;

 else

 return SIM300_FAIL;

}

SIM300 Message Send Receive Demo

To show all the above functions in working demo we have developed a

small program. This program does all the basic routine task on boot up,

that include the following :-

 Initialize the LCD Module and the SIM300 GSM Module.

 Print IMEI, Manufacturer name and model name.

 Then it checks SIM card presence and connects to network.

 When network connection succeeds its show name of the network.

Eg. Airtel or Vodafone etc.

 Finally it sends a message with message body "Test".

 Then it waits for a message, when a message arrives reads it and

displays on LCD.

 Then the message is deleted.

/***

A basic demo program showing sms functions.

 NOTICE

NO PART OF THIS WORK CAN BE COPIED, DISTRIBUTED

OR PUBLISHED WITHOUT A

WRITTEN PERMISSION FROM EXTREME ELECTRONICS

INDIA. THE LIBRARY, NOR ANY PART

OF IT CAN BE USED IN COMMERCIAL APPLICATIONS. IT

IS INTENDED TO BE USED FOR

HOBBY, LEARNING AND EDUCATIONAL PURPOSE ONLY. IF

YOU WANT TO USE THEM IN

COMMERCIAL APPLICATION PLEASE WRITE TO THE

AUTHOR.

WRITTEN BY:

AVINASH GUPTA

me@avinashgupta.com

**

*******************************/

#include <avr/io.h>

#include <util/delay.h>

#include "lib/lcd/lcd.h"

#include "lib/sim300/sim300.h"

void Halt();

int main(void)

{

 //Initialize LCD Module

 LCDInit(LS_NONE);

 //Intro Message

 LCDWriteString("SIM300 Demo !");

 LCDWriteStringXY(0,1,"By Avinash Gupta");

 _delay_ms(1000);

 LCDClear();

 //Initialize SIM300 module

 LCDWriteString("Initializing ...");

 int8_t r= SIM300Init();

 _delay_ms(1000);

 //Check the status of initialization

 switch(r)

 {

 case SIM300_OK:

 LCDWriteStringXY(0,1,"OK !");

 break;

 case SIM300_TIMEOUT:

 LCDWriteStringXY(0,1,"No response");

 Halt();

 case SIM300_INVALID_RESPONSE:

 LCDWriteStringXY(0,1,"Inv response");

 Halt();

 case SIM300_FAIL:

 LCDWriteStringXY(0,1,"Fail");

 Halt();

 default:

 LCDWriteStringXY(0,1,"Unknown Error");

 Halt();

 }

 _delay_ms(1000);

 //IMEI No display

 LCDClear();

 char imei[16];

 r=SIM300GetIMEI(imei);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Device IMEI:");

 LCDWriteStringXY(0,1,imei);

 _delay_ms(1000);

 //Manufacturer ID

 LCDClear();

 char man_id[48];

 r=SIM300GetManufacturer(man_id);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Manufacturer:");

 LCDWriteStringXY(0,1,man_id);

 _delay_ms(1000);

 //Manufacturer ID

 LCDClear();

 char model[48];

 r=SIM300GetModel(model);

 if(r==SIM300_TIMEOUT)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString("Model:");

 LCDWriteStringXY(0,1,model);

 _delay_ms(1000);

 //Check Sim Card Presence

 LCDClear();

 LCDWriteString("Checking SIMCard");

 _delay_ms(1000);

 r=SIM300IsSIMInserted();

 if (r==SIM300_SIM_NOT_PRESENT)

 {

 //Sim card is NOT present

 LCDWriteStringXY(0,1,"No SIM Card !");

 Halt();

 }

 else if(r==SIM300_TIMEOUT)

 {

 //Communication Error

 LCDWriteStringXY(0,1,"Comm Error !");

 Halt();

 }

 else if(r==SIM300_SIM_PRESENT)

 {

 //Sim card present

 LCDWriteStringXY(0,1,"SIM Card Present");

 _delay_ms(1000);

 }

 //Network search

 LCDClear();

 LCDWriteStringXY(0,0,"SearchingNetwork");

 uint8_t nw_found=0;

 uint16_t tries=0;

 uint8_t x=0;

 while(!nw_found)

 {

 r=SIM300GetNetStat();

 if(r==SIM300_NW_SEARCHING)

 {

LCDWriteStringXY(0,1,"%0%0%0%0%0%0%0%0%0%0%0%0%0

%0%0%0");

 LCDWriteStringXY(x,1,"%1");

 LCDGotoXY(17,1);

 x++;

 if(x==16) x=0;

 _delay_ms(50);

 tries++;

 if(tries==600)

 break;

 }

 else

 break;

 }

 LCDClear();

 if(r==SIM300_NW_REGISTERED_HOME)

 {

 LCDWriteString("Network Found");

 }

 else

 {

 LCDWriteString("Cant Connt to NW!");

 Halt();

 }

 _delay_ms(1000);

 LCDClear();

 //Show Provider Name

 char pname[32];

 r=SIM300GetProviderName(pname);

 if(r==0)

 {

 LCDWriteString("Comm Error !");

 Halt();

 }

 LCDWriteString(pname);

 _delay_ms(1000);

 //Send MSG

 LCDClear();

 LCDWriteString("Sending Msg");

 uint8_t ref;

r=SIM300SendMsg("+919939XXXXXX","Test",&ref);//C

hange phone number to some valid value!

 if(r==SIM300_OK)

 {

 LCDWriteStringXY(0,1,"Success");

 LCDWriteIntXY(9,1,ref,3);

 }

 else if(r==SIM300_TIMEOUT)

 {

 LCDWriteStringXY(0,1,"Time out !");

 }

 else

 {

 LCDWriteStringXY(0,1,"Fail !");

 }

 _delay_ms(2000);

 //Wait for MSG

 uint8_t id;

 UFlushBuffer();

 while(1)

 {

 LCDClear();

 LCDWriteStringXY(0,0,"Waiting for msg");

 x=0;

 int8_t vx=1;

 while(SIM300WaitForMsg(&id)!=SIM300_OK)

 {

LCDWriteStringXY(0,1,"%0%0%0%0%0%0%0%0%0%0%0%0%0

%0%0%0");

 LCDWriteStringXY(x,1,"%1");

 LCDGotoXY(17,1);

 x+=vx;

 if(x==15 || x==0) vx=vx*-1;

 }

 LCDWriteStringXY(0,1,"MSG Received ");

 _delay_ms(1000);

 //Now read and display msg

 LCDClear();

 char msg[300];

 r=SIM300ReadMsg(id,msg);

 if(r==SIM300_OK)

 {

 LCDWriteStringXY(0,0,msg);

 _delay_ms(3000);

 }

 else

 {

 LCDWriteString("Err Reading Msg !");

 _delay_ms(3000);

 }

 //Finally delete the msg

 if (SIM300DeleteMsg(id)!=SIM300_OK)

 {

 LCDWriteString("Err Deleting Msg !");

 _delay_ms(3000);

 }

 }

 Halt();

}

void Halt()

{

 while(1);

}

Downloads

 Complete AVR Studio 5 Project.

http://extremeelectronics.co.in/avrtutorials/code/SIM300SendReceiveMsgs.zip

