
Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

1

Advanced Design System 2011.01

Feburary 2011
Using Verilog-A and Verilog-AMS in Advanced Design System

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

3

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated
in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

4

as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."
Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org
http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

5

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

6

 Getting Started with Verilog-A and Verilog-AMS in Advanced Design System 7
 Using a Verilog-A/AMS Device in a Simulation . 7
 Modifying a Verilog-A/AMS Device . 11
 Installing Verilog-A/AMS Devices Provided in a Design Kit . 12
 Licensing . 15

 Using Verilog-A and Verilog-AMS with the ADS Analog RF Simulator (ADSsim) 16
 Loading Verilog-A/AMS modules . 16
 Overriding Built-in Devices with Verilog-A Devices . 18
 Using Models with Verilog-A/AMS Devices . 18
 The Verilog-A/AMS Compiled Model Library Cache . 20
 Controlling the Auto Compilation Process . 21
 Verilog-A Operator Limitations in Harmonic Balance and Circuit Envelope 21
 Module and Parameter Naming . 22
 Parameters . 22
 Hierarchy and Module Resolution . 23
 Modifying the Simulator's Model Search Path . 23
 The Compiler Include Search Path . 23
 Interaction with the Loading of Dynamically Linked UCMs . 24
 Verilog-AMS Configuration Files and Setup . 24

 About Model Development in Verilog-A . 27
 Creating a Linear Resistor in Verilog-A . 27
 Creating a Linear Capacitor and Inductor in Verilog-A . 28
 Creating a Nonlinear Diode in Verilog-A . 29
 Using Parameter Ranges to Restrict Verilog-A Parameter Values . 32
 Creating Sources in Verilog-A . 33
 Creating Behavioral Models in Verilog-A . 33
 Using Hierarchy to Manage Model Complexity . 36
 Trapping Floating Point Exception Errors in Verilog-A . 37

 About Model Development in Verilog-AMS . 38
 Creating a Mixed-Signal PLL Model . 38
 Cosimulating a Model with ADS Transient and a Digital Simulator . 41
 Viewing the Results . 42
 Debugging AMS Models . 44

 Migrating from the SDD and UCM . 45
 Symbolically Defined Devices . 45
 User-Compiled Models . 51

 Verilog-A and Verilog-AMS in ADS Design Kits . 55
 Compilation Tools . 57

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

7

 Getting Started with Verilog-A and
Verilog-AMS in Advanced Design System
Verilog-A devices provide all of the capabilities as well as the look and feel of traditional,
built-in components, with the added benefit that the end-user can choose to modify the
underlying equations. A number of new devices and models are supplied with Advanced
Design System to provide both new model capability as well as to provide Verilog-A
versions of models that already exist as built-in models.

When used with a digital simulator, ADS can simulate the analog and digital constructs of
an AMS module. ADS will automatically detect the use of Verilog-AMS code and will
transparently manage the digital cosimulation process via configuration settings. The use
model is identical to that of Verilog-A modules; however, it does require the installation of
a supported digital simulator. See Using Verilog-A and Verilog-AMS with the ADS Analog
RF Simulator (ADSsim) (veriloga).

This documentation provides an overview of the steps necessary to use Verilog-A devices.
Many Verilog-A devices are provided as examples via a Design kit. For information on
installing and using the Verilog-A devices supplied in the Verilog-A Design Kit, refer to
Installing Verilog-A/AMS Devices Provided in a Design Kit.

 Using a Verilog-A/AMS Device in a Simulation
To illustrate how Verilog-A components are used and can be modified, a popular GaAs
FET model that is also supplied in the Verilog-A Design Kit (see Installing Verilog-A/AMS
Devices Provided in a Design Kit) is used in a tutorial workspace to show how a model can
be simulated and modified. You can copy the Verilog-A Tutorial example workspace to
your home directory or another preferred location using the Operating System.
To simulate a model, begin in the ADS Main window:

Choose File > Open > Example, to open the Example directory.1.
Browse to locate Tutorial_wrk example in Examples/Verilog-A directory.2.
Select the example and click Open.3.
Specify the directory in which you want to install the example and click Choose.4.
After unarchiving the example, it'll ask to Open the workspace. Click Yes to open the5.
example.
After the workspace opens, a ReadMe schematic window will appear as shown in the
following figure.

 The Verilog-A Tutorial_wrk ReadMe

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

8

The tutorial contains six different examples to illustrate Verilog-A components. Click6.
the PSFETV example button on the left and then push down into the design.

The example consists of a simple DC_FET curve tracer to sweep the device.7.

 Simple Schematic Design using a Verilog-A Component

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

9

Run a simulation.8.
Note that the first time the design is simulated, the compiler will compile any un-
compiled Verilog-A files found in the workspace veriloga directory.

Note
The compiled files, by default, reside in a cache directory in your $HOME/hpeesof directory.

Status / Summary

AGILENT-VACOMP (*) 2003C.day Dec 3 2003 (built: 12/04/03 01:42:48)

Tiburon Design Automation (R) Verilog-A Compiler Version 0.97.120103.

Copyright (C) Tiburon Design Automation, Inc. 2002-2003. All rights reserved.

Compiling Verilog-A file

'/users/bobl/Tutorial_wrk/veriloga/psfetv.va'

Loading Verilog-A module 'R' from

'/users/bobl/hpeesof/agilent-model-

cache/cml/veriloga_21561_20031204_135236_007390/lib.hpux11/resv.cml'.

This module overrides the builtin 'R' (Linear Two Terminal Resistor).

HPEESOFSIM (*) 2003C.day Dec 3 2003 (built: 12/03/03 21:27:46)

Copyright Agilent Technologies, 1989-2003.

Loading Verilog-A module 'psfetv' from

'/users/bobl/hpeesof/agilent-model-

cache/cml/veriloga_21561_20031204_135236_007390/lib.hpux11/psfetv.cml'.

CT DC_FET1.S1[1] <(GEMX netlist)> DC_FET1.VGS=(-2->0)

DC DC_FET1.S1[1].DC_FET1.DC1[1/5] <(GEMX netlist)> DC_FET1.VGS=-2 DC_FET1.VDS=(0->5)

..

..

DC DC_FET1.S1[1].DC_FET1.DC1[2/5] <(GEMX netlist)> DC_FET1.VGS=-1.5 DC_FET1.VDS=(0->5)

..

..

DC DC_FET1.S1[1].DC_FET1.DC1[3/5] <(GEMX netlist)> DC_FET1.VGS=-1 DC_FET1.VDS=(0->5)

..

..

DC DC_FET1.S1[1].DC_FET1.DC1[4/5] <(GEMX netlist)> DC_FET1.VGS=-500e-03 DC_FET1.VDS=(0->5)

..

..

DC DC_FET1.S1[1].DC_FET1.DC1[5/5] <(GEMX netlist)> DC_FET1.VGS=0 DC_FET1.VDS=(0->5)

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

10

..

..

Resource usage:

Total stopwatch time: 35.54 seconds.

Simulation finished: dataset `tutorial_PSFETV' written in:

`/users/bobl/Tutorial_wrk/data'

--

If there had been a compile error, the status window would display the error and the
associated line number. In this case, there were no errors and the simulation
continued.

Note
The status window provides information about the files that were compiled and the modules that
were used. This is useful when files exist in multiple directories.

After the simulation is complete, open the Data Display TestBench.dds window if
necessary. The display consists of a rectangular plot with a trace of the IDS.i data. Your
results should look similar to the following figure.

 PSFET DCIV Results

The PSFETV (and any Verilog-A based device) can be used in all analyses that a
traditional built-in device could be used. The PSFETV is defined in the file psfetv.va
located in a directory called veriloga in the workspace directory. You can open and edit
the file using any text editor. You can see from this file that the code is relatively easy to
understand. The next section will show how to modify an equation and see the effect.

Other designs in the Tutorial workspace illustrate other key aspects of the Verilog-A
language.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

11

 Modifying a Verilog-A/AMS Device
One powerful feature of Verilog-A is that a user can make modifications to the equations
that describe the behavior of the device. These changes can be available in the simulator
automatically, with no loss of analysis functionality. Many models will be distributed with
their source code with the expectation that end-users will modify the equations for any
number of reasons. For example, the user may want the equations to better reflect some
aspect of their device behavior, or they may want to delete code that is not necessary to
describe their device behavior, thereby improving simulation performance.

In this example, the PSFETV model will be modified slightly. During simulation, the
program searches for the source code based on pre-defined search paths (discussed in
detail later), in the workspace directory veriloga, or as specifically defined using a
VerilogA_Load component.

If necessary, copy the workspace Tutorial_wrk from the Examples/Verilog-A directory1.
to a local directory. This tutorial contains a directory called veriloga that includes a
file called psfetv.va . This file is a copy of the parker_skellern.va file distributed in
the Verilog-A Design Kit, with the module name changed to psfetv to prevent
unintended overwriting of the other model.
Open the design file tutorial_PSFETV and run a simulation to verify that the results2.
are the same as the previous example.
Using any text editor, open the psfetv.va file.3.
Find the equation that describes the drain current,4.
Id: Id = Area * Beta_T * (1 + lambda * Vdst) * (pow(Vgt, q) - pow(Vgt -

Vdt, q));

Purely for demonstration purposes, change the power law relation from "q" to "q/2"
in the first power term (this has no physical meaning):
Id = Area * Beta_T * (1 + lambda * Vdst) * (pow(Vgt, q/2) - pow(Vgt - Vdt,

q));

Save the file and start a simulation.5.

Note
The program will detect that the file has not been compiled and will compile the source file. It will
also compile other Verilog-A files found in the workspace veriloga directory if they have yet to be
compiled, or if they are out of date.

The Data Display window now shows very different results (see the following figure)
compared to the figure PSFET DCIV Results, demonstrating that the modification to
the equation did indeed take effect.

 PSFETV_DCIV Results using Power Law Relation of q/2

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

12

 Overriding Model Parameters on Instances

One feature that most Verilog-A models implemented for ADS have is that the instance
component can share all of the model parameter definitions. In most cases, the instance
parameters are not visible by default, but can be edited (and made visible) from the Edit
Component Parameters dialog box. Instance parameters will override the associated
model parameter values. This feature provides a method to easily evaluate device
mismatch, for example, since only the model parameter that is being modified needs to be
changed at the instance level.

Note
Typically, some parameters are only available on the instance, and some parameters are only available on
the model. For example, Tnom would only make sense on a model card, and Trise, the instance
temperature rise over ambient, would only make sense on an instance. For this reason, the AEL definition
hides these parameters from the schematic, although they are available at the netlist level.

The underlying Verilog-A definition of the device is stored in a text file and, if necessary,
compiled by the simulator during a simulation according to a flexible and configurable set
of rules, described later.

 Installing Verilog-A/AMS Devices Provided in a
Design Kit
 Design Kits provide a convenient method for model developers to distribute new models,
including those developed using Verilog-A. The use model for installing and using Verilog-

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

13

A models distributed in Design Kits is the same as any other models distributed as ADS
Design Kits, except that the Verilog-A files (.va), are placed in 'veriloga' folder in the main
directory of the design kit.

After properly installing the Design Kit, the components are made available on the
associated palettes. The ADS release includes a Design Kit called
TIBURONDA_VERILOGA_DESIGN_KIT delivered as an unzipped file in the following
location:

$HPEESOF_DIR/tiburon-da/ads/designkits/tiburon-da_veriloga

This design kit includes the nonlinear models listed in the following two tables. Models
shown in the first table below are new to, or later versions of, existing models in ADS.

Note
All of these models are proof-of-concept models only and have not undergone the exhaustive qualification
that built-ins do.

Model Name Description

aTFT Shur-RPI amorphous silicon thin film transistor MOSFET model

BSIMSOI Version 3.1 of the BSIMSOI model family

EKV Version 2.6 of the EKV MOSFET model

HICUM_L0 Level 0 version of the HICUM BJT model, a simplified version of the full HICUM
model.

HiSIM STARC/Hiroshima University surface potential based MOSFET model

Parker_Skellern The Parker-Skellern MESFET model for medium power applications.

pTFT Shur-RPI polysilicon thin film transistor MOSFET model

The models listed in the following table are Verilog-A examples of models that already
exist as built-in devices.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

14

Model Name Description

Angelov Angelov GaAs FET model

BJT SPICE Gummel-Poon BJT model

BSIM3 UC Berkeley BSIM3 (version 3.22)

BSIM4 UC Berkeley BSIM4 (version 4.3)

Curtice Curtice Quadratic GaAs FET model

Diode SPICE diode

JFET SPICE silicon junction FET

JunCap Philips JunCap diode

MESFET SPICE Metal Semiconductor FET model

MEXTRAM Philips Most Exquisite Transistor model for BJT devices

MOS9 Philips MOS Model 9

MOS11 Philips MOS Model 11

TOM1 Triquint's Own Model 1

TOM3 Triquint's Own Model 3

VBIC Vertical Bipolar InterCompany BJT model, as released.

Use the following procedure to install the TIBURONDA_VERILOGA_DESIGN_KIT.

From the ADS Main window,

Choose DesignKit > Manage Favorite Design Kits to display the Manage1.
Favorite Design Kits dialog box.
Since the Design Kit is delivered as an unzipped file, simply click the Add Library2.
Definition File and browse to
$HPEESOF_DIR/tiburon-da/ads/designkits/tiburon-da_veriloga.
Select the lib.defs file and click Open.3.
The Add Design Kit dialog box appears to add the design kit to current workspace.4.
Click OK.
If a design is open, a warning "All designs must be closed to Add a Design Kit"5.
appears.
Close all the designs and click OK to add the design kit to your current workspace.6.
Close the Manage Favorite Design Kits dialog box and open a schematic window.7.
The Devices-Verilog-A palette should now be available in the Component Palette List.
The following figure shows the icons for each of the devices and models available in
the Devices-Verilog-A palette.

 Devices-Verilog-A Component Palette

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

15

Note
To prevent unintentional overriding of the built-in versions of these models, the Verilog-A modules
name use an _va suffix for the name.

 Licensing
Verilog-A is an integral part of ADS and no additional licenses are needed.

For Verilog-AMS, you need the following license:

sim_verilog_ams

The use of the digital simulator will require an appropriate license from the digital
simulator tool vendor.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

16

 Using Verilog-A and Verilog-AMS with
the ADS Analog RF Simulator (ADSsim)
Once Verilog-A modules are loaded into the simulation environment, they may be used
just like any other device in the system. A module loaded into the system takes the look
and feel of a built-in ADS Analog RF Simulator (ADSsim) device. The module name
becomes the device definition name, the module parameters become device parameters,
and, uniquely to Verilog-A, the module may have an optional model card.

 Loading Verilog-A/AMS modules
 ADSsim has a Verilog-A model search path . Any Verilog-A module in the search path is
available to be instantiated in the netlist or used on the schematic. This Verilog-A module
loading mechanism is called auto loading as the search path is only traversed and
modules are only loaded when the simulator encounters an unknown device definition.
The alternative loading mechanism is called explicit loading . In this case, the system
always loads a particular Verilog-A module whether the simulator needs it or not. These
loading mechanisms complement each other and are explained below in detail.

During the loading process, a Verilog-A file is compiled into a shared library. These
libraries are referred to as Compiled Model Libraries (CML). In general, you do not need
to be concerned about the compilation process. The process has been designed to allow
users to focus on writing and using Verilog-A modules rather than on the mechanics of
compilation and CML file management. The system uses a CML cache. Verilog-A files are
compiled once and stored for later use in the CML cache. The system manages the CML
files, updating them only when necessary. As a user, you will see Verilog-A files being
compiled the first time you use the files and subsequently only when you modify the files.

 The Auto Loading Mechanism

Verilog-A files (files with a .va or .vams extension) that reside in the simulator's Verilog-
A model search path are automatically compiled and loaded by the simulator, on demand,
when an unknown device is encountered in the netlist. The Verilog-A model search path
has four components,

Wrk_DIR/veriloga

$HOME/hpeesof/veriloga

$HPEESOF_DIR/custom/veriloga

$HPEESOF_DIR/veriloga

When searching for an unknown device, the system will sequentially look for a matching
Verilog-A module name in each of the above directories. The first module found is loaded
and a status message issued informing you that a Verilog-A module has been loaded
from a particular file in the model search path.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

17

If you want the Verilog-A module to only have visibility within the current workspace, then
create a Verilog-A directory under the current workspace (Wrk_DIR/ veriloga) and copy
the Verilog-A file to that location. Putting a Verilog-A module in the local user directory (
$HOME/hpeesof/veriloga) will make it visible to simulations in all workspaces for this user
account. The site custom directory ($HPEESOF_DIR/custom/veriloga) should be used to
make Verilog-A modules available to all users of a particular ADS installation. Finally, the
site directory ($HPEESOF_DIR/veriloga) should not be used by you as an end user, this
directory is used by Agilent Technologies to deliver new Verilog-A modules as part of the
ADS system. Note that Verilog-A files placed in the site directory will not be compiled.

Each file in any directory in the path must have a unique set of module names. In
addition the module namespace across all files in a given directory must be unique.
Having duplicate Verilog-A module names across multiple files in a directory is flagged as
an error. The system cannot determine which module to use. To correct the error, modify
the module names so that they are unique and re-run the simulation.

 Explicit Loading of Verilog-A modules

 Explicit loading refers to explicitly loading all modules in a named Verilog-A file using the
load component. The load component is available with the Verilog-A Design Kit (see
Installing Verilog-A/AMS Devices Provided in a Design Kit (veriloga)).

To load a file:

Insert a VerilogA_Load component from the Devices-Verilog-A palette.1.
Use the Edit Parameters dialog box to add the name of the file to the Module File2.
Name parameter. Note that this parameter is repeatable to enable multiple files to
be loaded. The component should look similar to the following figure.

 The VerilogA_Load Component

When the file name specified is an absolute name, the system loads the file directly. When
the file name is relative, the system searches each directory in the Verilog-A model
search path and loads the first file found with that name. Note that all modules in a file

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

18

are loaded (unlike auto loading where only the required module is loaded into the
system.)

The load component netlists the #load ADS preprocessor command which has the syntax:

#load "veriloga", "filename"

#load is processed early in the simulation boot phase. #load commands may be placed
anywhere in the netlist, but since they are preprocessor commands, there is no regard for
network hierarchy. #load processing occurs before auto loading; when a device is
explicitly loaded, the auto loading mechanisms are never invoked even if the device is in
the search path.

 Overriding Built-in Devices with Verilog-A Devices
When a device has the same name as a built-in device and that Verilog-A device is in the
Verilog-A model search path or is explicitly loaded, the Verilog-A device overrides the
built-in device. For example, if we place a file containing a module called R in a Verilog-A
file in the model search path, then the module R will override the built-in R (the simple
linear resistor). When a built-in device is overridden, the system issues a status message
warning of the override as shown below.

Loading Verilog-A module 'R' from

'/users/bobl/hpeesof/agilent-model-cache/cml

/veriloga_21561_20031204_135236_007390

/lib.hpux11/my_resistor.cml'.

This module overrides the built-in 'R' \(Linear Two Terminal Resistor\).

Note
Overriding built-ins is a powerful and convenient way to use Verilog-A based devices in place of an
existing device, but should be used with care. The system does not check that the device being loaded has
the same parameter list as the built-in device that it is overriding. Without careful attention to detail, you
can easily cause netlist syntax errors relating to unmatched parameters.

 Using Models with Verilog-A/AMS Devices
The model card is a simulator convenience that enables you to share device parameters
among multiple device instances. Each Verilog-A module loaded into the system
introduces a new device and a new model - both of the same name.

All parameters on a Verilog-A device may either be specified on the model, on the
instance, or in both places. When a Verilog-A device references a model, it first reads all
of the model parameters. Parameters specified directly on the instance then override the
model settings. This behavior is particularly convenient when two devices share almost

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

19

the same model. In this situation, they may reference a single model and override the
parameters that are particular to the instances themselves.

For example, let us take the diode module (PNDIODE) from the tutorial workspace. The
module may be instantiated directly as,

PNDIODE:d1 1 0 Is=3e-14 Rs=1 N=1.1 CJ0=1e-12 TT=0

or it may be used more conventionally with a model card as,

Model PNDIODE Dmod1 IS=3e-14 RS=1 N=1.1 CJ0=1e-12 TT=0

Dmod1:d1

Dmod1:d2

Dmod1:d3

The decision to use a model or not is your choice. Generally models are convenient when
there are two or more instances that have the same parameter sets, as above where d1 ,
d2 , and d3 all share the same model. We can go one step further in Verilog-A when
almost all model parameters are the same. For the PNDIODE let us assume that RS i s the
only parameter that varies from instance to instance. We use Dmod1 again but simply
override RS on each instance that requires an RS different from the model

Dmod1:d1 RS=2

Dmod1:d2 RS=3

Dmod1:d3 RS=4

Dmod1:d4

In this example, d1 through d3 override RS while d4 inherits its value from the model,
Dmod1 . This model parameter inheritance with instance parameter override is ideally
suited to mismatch modeling where two devices share almost the same model except for
one or two parameters.

While this behavior is powerful, it leads to some complications in any analysis that
involves an operation that modifies a parameter. Operations that modify parameters are
used in sweeping, tuning, optimization, and statistical analyses. We will use sweeping in
this explanation, but the rules outlined here apply to the other analyses in exactly the
same way.

Device instance parameter sweeping operates in the usual way. To sweep a Verilog-A
instance parameter, simply reference the parameter in the normal way in the sweep
dialog box. To sweep a model parameter, reference the model parameter, again in the
same way as is done for any model.

When a model parameter is swept, only those instances that inherit the parameter are
affected. Instances that reference the model but override the swept model parameter are
not affected. When all instances override the model parameter, you will see no change in
results as a function of the sweep variable. In the above example, if RS on DMod1 was
being swept, then the only instance affected by the sweep would be d4.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

20

Note
Only those model parameters that are actually specified on the model card may be swept. This is a model
only limitation.

 The Verilog-A/AMS Compiled Model Library Cache
When Verilog-A modules are compiled, they are stored in a directory cache, which by
default is created at,

$HOME/hpeesof/agilent-model-cache/

This cache is created the first time a Verilog-A file is compiled and entries are added or
updated as Verilog-A files are compiled. An existing cache may be moved to a new
location, but cache contents may not be modified in any way.

A cache is user, platform, and release-version specific. However, no cache locking
mechanisms are used, so you should not run two copies of ADS on the same platform and
attempt to share the same model cache. This will result in cache corruption. No cache
recovery tools are provided in this release. If two sessions do interfere with the cache then
you must delete the cache and restart the simulation. The cache will then progressively
rebuild itself as simulations involving Verilog-A modules are performed.

If two copies of ADS must be run concurrently (perhaps one from the ADS user-interface
and another in batch mode), then use a separate cache. The cache location may be
modified by using the environment variable,

AGILENT_MODEL_CACHE_DIR

or a hpeesofsim.cfg configuration variable of the same name. The cache directory is
created when the first Verilog-A file is compiled and you will see the following status
message,

HPEESOFSIM (*) 2003C.day Dec 13 2003 (built: 12/13/03 21:28:34)

Copyright Agilent Technologies, 1989-2003.

A Verilog-A compiled model library (CML) cache has been created at

 '/users/bobl/hpeesof/agilent-model-cache/cml/0.99/hpux11'

Compiling Verilog-A file

 '/users/bobl/QA_Test/Tutorial_wrk/veriloga/deadband.va'

AGILENT-VACOMP (*) 2003C.day Dec 13 2003 (built: 12/14/03 01:50:07)

Tiburon Design Automation (R) Verilog-A Compiler Version 0.99.121203.

Copyright (C) Tiburon Design Automation, Inc. 2002-2003. All rights reserved.

Compiling Verilog-A file

 '/users/bobl/QA_Test/Tutorial_wrk/veriloga/gumpoonv.va'

AGILENT-VACOMP (*) 2003C.day Dec 13 2003 (built: 12/14/03 01:50:07)

Tiburon Design Automation (R) Verilog-A Compiler Version 0.99.121203.

Copyright (C) Tiburon Design Automation, Inc. 2002-2003. All rights reserved.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

21

CML files vary in size depending on the size of the Verilog-A file and the platform used. It
is recommended that you locate the cache on a local disk with at least 200Mbytes of free
space. A local cache will improve compilation and load times. You may delete the cache at
any time, though you should never need to do so, unless the size of the cache has become
unreasonable or when it contains many old CML files that are no longer used. Deleting the
cache leads only to recompiles and its clean reconstruction. Do this only when there are
no simulations running.

 Controlling the Auto Compilation Process
When a Verilog-A module is compiled, the CML file is placed in the model cache to be
retrieved later. If you do not want to use the cache, you have the option of storing the
CML files in platform specific directories under the Verilog-A source directory. This and
other auto compilation features are controlled by a file called vamake.spec (Verilog-A
make specifications file .) If a file with this name is in the Verilog-A source directory, then
the system uses it. The file may contain two options,

USE_CACHE=

PREPARE_DIR=

The USE_CACHE variable may be set to YES or NO. It defaults to YES. When you set it to NO,
the cache is not used and CML files are written to the platform specific directories:

lib.linux_x86

lib.sun57

lib.win32

In some cases, you may want to compile the libraries and subsequently have the files
loaded without any dependency checks. To do this, set the PREPARE_DIR variable to NO.

 Verilog-A Operator Limitations in Harmonic Balance
and Circuit Envelope
The Verilog-A language was first designed with time domain simulation algorithms in mind
and, as such, has a set of features that are not easily supported in Harmonic Balance,
Circuit Envelope analysis and their derivatives (LSSP, XDB, etc.). In these cases we either
approximate the behavior and/or issue an appropriate warning or error message.

Event-driven constructs such as cross and timer will not be triggered in Harmonic Balance
analysis or in Circuit Envelope analysis. Since the cross event does not trigger in these
analyses, it follows that the last_crossing() function is likewise not triggered. When
these events are present in a Verilog-A module the system issues a warning message
saying they will not be triggered.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

22

The $abstime() function will return zero (0) in Harmonic Balance analysis. In this release,
users should use built-in ADS source components to generate time-varying waveforms.

The idtmod() operator and Z-transform filters are not supported for Harmonic Balance or
Circuit Envelope in this release. The transition and slew filters act as simple allpass
elements. This latter behavior is consistent with the language reference specification for
frequency domain analysis.

Modules which contain memory states are not compatible with Harmonic Balance. A
module contains a memory state if it has local variables which retain values that are used
at subsequent time steps.

 Module and Parameter Naming
ADS and Verilog-A are case sensitive. Verilog-A also supports a set of special characters
through an escaping mechanism. These special characters are not supported in this
release and so all module names (and therefore ADS Verilog-A based device names) are
alpha numeric with underscores and no leading number. The same is true of Verilog-A
module parameters.

 Parameters
Verilog-A supports reals, integers, arrays of reals, and arrays of integers. When an integer
value is passed to a real parameter, it is converted to a real. When a real value is passed
to an integer parameter, the real value is rounded to the nearest integer value and the
system issues a warning indicating loss of precision in a parameter assignment. Ties are
rounded away from zero.

The ADS functions list() and makearray() are two of several functions that may be used
to generate arrays to be passed to Verilog-A array type module parameters. Verilog-A
arrays have a single dimension; ADS arrays can be multi-dimensional. If a
multidimensional array is passed, then an incorrect dimension error is issued.

As with scalar integer parameters, if a real array is assigned to an integer parameter array
then a loss of precision warning message is issued and the system rounds each real in the
array to the nearest integer value.

If either string or complex scalar or array values are passed to Verilog-A devices then an
unsupported type message is issued. No roundings or conversions are attempted.

Verilog-A parameters also optionally have a range specification. If a parameter value is
specified that is outside the allowed range, then an out of range error message is issued
and the system exits. Parameters can go out of range during a sweep, a tune, an
optimization, or a statistical analysis. In each case, an out of range error is issued and the

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

23

system exits. To avoid the problem, you must ensure that during parameterized analyses
such as sweeps, Verilog-A parameter values are only varied across their allowed ranges.

 Hierarchy and Module Resolution
Verilog-A enables you to describe components in terms of their structure or their behavior
or a mixture of both. Often, Verilog-A modules in a module hierarchy are all contained in
the same Verilog-A file. However, this is not a requirement. The fact that the modules are
in the same file has no special importance. That is, in terms of what modules actually get
instantiated when a hierarchical module is itself instantiated in the ADS netlist is set by
the search paths and not by what modules are contained in what file.

When a Verilog-A module is instantiated, the system works recursively down its hierarchy
instantiating all of its children. When instantiating a child, the system uses the Verilog-A
model search path. This means that the first child definition found in the path is
instantiated, and that is not necessarily the child module defined in the same file as the
parent.

 Modifying the Simulator's Model Search Path
The simulator defines its model search path in the simulator configuration file,
hpeesofsim.cfg. To extend the search path, add the line,

USER_VERILOGA_MODEL_PATH=myDir1:myDir2:...

to your local configuration file. This directory or set of directories are pre-pended to the
Verilog-A model search path and the system will then compile all Verilog-A modules and
make them available to the Verilog-A auto loading mechanism.

In addition to the configuration parameter, an environment variable of the same name
and the same syntax may be used. Use of the configuration file is preferred as its location
determines the visibility of the additions.

 The Compiler Include Search Path
When including files with a relative path via the Verilog-A `include directive the system
first looks in the same directory as the Verilog-A file being compiled. If the file is not found
in that directory, then the system looks in the Verilog-A system include directory given
by:

$HPEESOF_DIR/tiburon-da/veriloga/include

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

24

These are the only directories in the Verilog-A `include search path in this release.

 Interaction with the Loading of Dynamically Linked
UCMs
The Verilog-A models and User-Compiled Models (UCM) using the dynamic linking
mechanism share the same search path. When the system encounters an unknown
device, it looks in each directory in the model search path for that device.

In each directory, it first looks to see if there is a Verilog-A module with a matching name
in this directory. If there is, then this Verilog-A device is used and loaded. If no Verilog-A
device is found, then the system looks to see if there is a UCM device in this directory. If a
UCM is found, it is loaded. If no UCM is found, then the system moves on to the next
directory in the model search path and does the same query until it finds the device or
reaches the end of the path.

This means that in any given directory, a Verilog-A device takes precedence over a UCM
device. But since Verilog-A and UCM devices are searched for in each directory, the
Verilog-A modules later in the path do not hide UCM devices earlier in the path and vice -
versa. When a Verilog-A device and a UCM device of the same name exist in the same
directory, the Verilog-A device is loaded and no error or warning message is issued.

In normal usage, Verilog-A files reside in veriloga directories (described earlier) and
UCM devices reside in other directories. When customizing the Verilog-A model path, you
should avoid mixing Verilog-A and UCM devices in the same directory.

 Verilog-AMS Configuration Files and Setup
Co-simulating with ADS and a digital simulator requires that the digital simulator be
installed and operational as specified by the digital simulator tool vendor's procedures.

ADS will use the configuration file hpeesofsim.cfg, which enables the user to change
settings from their default values. The default version of the file can be found in the
directory $HPEESOF_DIR/config. It can be modified and placed at the top level of the
workspace directory, at the user's local configuration (~/hpeesof/config), or site directory
($HPEESOF_DIR/custom/config).

 Verilog-AMS Options

The digital simulator may be set to either modelsim or ncsim.

DIGITAL_ENGINE=modelsim

The Cadence NCSim installation directory should be set by the variable NC_ROOT. It

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

25

defaults to the tools/bin directory under the directory set by $CDS_INST_DIR. The path to
the Cadence NC tools directory must be in your PATH and match the NC_ROOT setting in
your simulation configuration file, hpeesofsim.cfg.

NC_ROOT=$CDS_INST_DIR/tools/bin

The Cadence Verilog compiler option values are set by the variable NCVLOG_OPTIONS.

NCVLOG_OPTIONS=-work worklib -view v

The Cadence elaborator options are set by NCELAB_OPTIONS. See the NCSim
documentation for acceptable values. The default values are:

NCELAB_OPTIONS=-access rw worklib.%%s:v

To enable interactive use, set the NCSIM_OPTIONS variable to (or copy and uncomment the
version in $HPEESOF_DIR/config/hpeesofsim.cfg):

NCSIM_OPTIONS=-gui -input $HPEESOF_DIR/tiburon-

da/verilogams/misc/interactive.tcl worklib.%%s:v

Otherwise the default values to NCSim are:

NCSIM_OPTIONS=-input $HPEESOF_DIR/tiburon-da/verilogams/misc/batch.tcl

worklib.%%s:v

For ModelSim, the environment variable MODELSIM_ROOT must be set to the installation
directory. By default, this is set to the $LMS_HOME_OS value:

MODELSIM_ROOT=$LMS_HOME_OS

The Verilog Compiler options can be set using VLOG_OPTIONS (by default, no options are
passed):

VLOG_OPTIONS=

The simulator options are set by VSIM_OPTIONS. See the ModelSim documentation for
allowable options.

VSIM_OPTIONS=-c -do "vsim -pli libvpi.so work.%%s; run -all"

The VLOG_OUTPUT_FILE environment variable determines where the output log will go. By
default this is file is called msvlog.log and will be found in the ams_files directory in the
workspace directory.

VLOG_OUTPUT_FILE = msvlog.log

The path where modified Verilog files are stored us set by VERILOG_PATH. It defaults to the

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

26

current working directory. This path must also be in the Verilog compiler path.

VERILOG_PATH=.

Connect modules are found in the CONNECT_MODULE_PATH variable. By default, it will pick up
any connectmodules in the tiburon-da/connectmodules directory in the installation
directory.

CONNECT_MODULE_PATH=$HPEESOF_DIR/tiburon-da/connectmodules

The default discipline for digital nets can be changed by setting the DEFAULT_DISCIPLINE
variable to an appropriate discipline value.

DEFAULT_DISCIPLINE=logic

To enable the detailed discipline resolution mode, set the variable
DETAILED_DISCIPLINE_RESOLUTION to 1.

DETAILED_DISCIPLINE_RESOLUTION=0;

The file name and module name of the top level design created by the digital simulator
are set by the variables TOP_VERILOG_FILE and TOP_MODULE and default to __mytop.v and
__mytop, respectively.

TOP_VERILOG_FILE=__mytop.v

TOP_MODULE=__mytop

The basic time resolution for the analog-digital interfaces is set by TOP_TIMESCALE. This
defines the timescale for the auto-generated top level module.

TOP_TIMESCALE=`timescale 1fs/1fs

The maximum number of iterations between the digital and analog simulator to achieve a
steady-state initial operating point is controlled by OP_MAX_ITER and defaults to 10.

OP_MAX_ITER=10

 Compile Search Path

The Verilog-AMS compiler uses the same search path as the Verilog-A compiler. Files with
extensions of .va and .vams found in directories named veriloga in the workspace,
$HOME/hpeesof, and $HPEESOF_DIR/custom directories will all be compiled and the modules
in the files will be available for loading by the simulator.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

27

 About Model Development in Verilog-A
This topic provides a brief introduction to the Verilog-A language by means of examples.
A more complete description of the language is available in the Verilog-A and Verilog-AMS
Reference Manual (verilogaref). A simple resistor is first defined, then enhanced with
noise. Models for capacitors and inductors are then developed. These models use the
ddt() operator to automatically generate the time-dependent functionality of the devices.
Finally, a nonlinear diode is created demonstrating modeling of more complex behavior.

 Creating a Linear Resistor in Verilog-A
The linear resistor in the example code below was introduced in the previous section. This
provides a simple example of the anatomy of a Verilog-A model. Line numbers are used
here to help explain the code, but should not be included in the actual source code.

`include "disciplines.vams"

1.

module R(p,n);

2.

 electrical p,n;
3.

 parameter real R=50.0;
4.

 analog V(p,n) <+ R * I(p,n);
5.

endmodule

6.

Line 1 instructs the compiler to insert the contents of the file disciplines.vams into the
text. This file contains the definitions that make the Verilog-A specific for electrical
modeling.

Line 2 and line 6 declares the module block, within which the model behavior will be
defined. The model is named R and has two ports, named "p" and "n". Ports provide
connections to other modules.

Line 3 declares that the ports p and n have the nature of those declared in the electrical
discipline, as defined in the disciplines.vams header file. Natures and disciplines provide a
way to map the general flows and potentials to particular domains, like electrical, thermal,
or mechanical.

Line 4 declares one parameter, called R, and assigns it a default value of 50.0. The default
value is set if the simulator is not passed an assignment in the netlist. In this case, the
parameter is explicitly declared as real. However, if this attribute (which could also be
integer) is not provided, the language infers the type from the default value. In this case,
50.0 would indicate a real type, whereas 50 would indicate an integer. The parameter
declaration also includes a simple method to restrict the range values. This is described in
Using Parameter Ranges to Restrict Verilog-A Parameter Values Parameter values cannot
be modified by the Verilog-A code. If the value needs to be modified, it should be assigned
to an intermediate variable.

The keyword analog in line 5 declares the analog block. In this case, it is a single

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

28

statement. However, statements can be grouped together using begin/end keywords to
denote blocks which, in turn, can be named to allow local declarations. The simple, single
statement includes several key aspects of the language. On the right hand side, the
access function I(p,n) returns the current flowing from node p to n. This is multiplied by
the value of the parameter R . The "<+" in line 5 is called the contribution operator and in
this example contributes the value of the evaluated right hand side expression as the
voltage from p to n.

 Adding Noise to the Verilog-A Resistor

Verilog-A provides several ways to add noise, including frequency-independent,
frequency-dependent, and piecewise linear frequency-dependent noise. In the case of a
resistor, the thermal noise is 4*K*T/R . The value of Boltzmann's constant is available in
another header file, constants.vams , as a macro definition. Verilog-A supports
preprocessor commands similar to other languages like C. The details of macros are
discussed in the Verilog-A and Verilog-AMS Reference Manual (verilogaref), but in general
macros can be thought of as simple text substitutions, typically used to help make the
code more readable and to gather all the constant definitions into one place. In the header
file, the definition is

`define P_K 1.3806226e-23

whereas in the Verilog-A code, the value is used as `P_K . The temperature of the circuit
is a value that can be changed outside of the model and so must be dynamically accessed.
Verilog-A models use system functions to retrieve information that the simulator can
change. The temperature environment parameter function is $temperature and returns
the circuit's ambient temperature in Kelvin.

The actual contribution of the noise is made with the white_noise() operator, which takes
the noise contribution as an argument. Noise functions also allow for an optional string to
label the noise contribution. Some simulators can sort the noise according to the labels.

`include "disciplines.vams"

1.

`include "constants.vams"

2.

module R(p,n);

3.

 electrical p,n;
4.

 parameter real R=50.0;
5.

 analog V(p,n) <+ R * I(p,n) + white_noise(4 * `P_K * $temperature / R,
6.

"thermal");

endmodule

7.

Note that line 6 of the example code above shows the added noise.

 Creating a Linear Capacitor and Inductor in Verilog-A

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

29

Capacitors and inductors are implemented in a similar way to resistors. However, these
devices have dependencies on time. In the case of a capacitor, the relationship is,

I = C * dV / dt

In this case, the contribution is a current through the branch. The right hand side includes
a derivative with respect to time. This is implemented with the ddt() operator. The model
then becomes,

`include "disciplines.vams"

module C(p,n);

 inout p,n;

 electrical p,n;

 parameter real C=0 from [0:inf);

 analog I(p,n) <+ C * ddt(V(p,n));

endmodule

This example also illustrates one use of the range functions in the parameter declaration.
The " from [0:inf) " addition restricts the value of C from 0 up to, but not including,
infinity.
Similarly, the inductor relationship is,

V = L * dI/dt

and the source code is:

`include "disciplines.vams"

module L(p,n);

 inout p,n;

 electrical p,n;

 parameter real L=0 from [0:inf);

 analog V(p,n) <+ L * ddt(I(p,n));

endmodule

 Creating a Nonlinear Diode in Verilog-A
Verilog-A is well-suited for describing nonlinear behavior. The basic PN junction diode
behavior will be used as an example. The I-V relation is,

I = Is * (exp(V/Vth - Rs * I) - 1)

The implementation is shown below.

`include "disciplines.vams"

`include "constants.vams"

module diode(anode,cathode);

 electrical anode, cathode;

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

30

 parameter real Area = 1.0 from (0:inf]; //Area scaling factor

 parameter real Is = 1e-14 from [0:inf]; //Saturation current [A]

 parameter real Rs = 0.0 from [0:inf); // Series resistance [Ohm]

 parameter real N = 1.0 from (0:inf); //Ideality

 parameter real Tt = 0.0 from [0:inf]; //Transit time [s]

 parameter real Cjo = 0.0 from [0:inf]; //Junction capacitance [F]

 parameter real Vj = 1.0 exclude 0; //Junction potential [v]

 parameter real M = 0.5 from [0:inf]; //Grading coef

 parameter real Fc = 0.5 from [0:1]; //Forward bias junct parm

 parameter real Kf = 0.0; //Flicker noise coef

 parameter real Af = 1.0 from (0:inf); //Flicker noise exponent

 real Vd, Id, Qd;

 real f1, f2, f3, Fcp;

 analog begin

 f1 = (Vj/(1 - M))*(1 - pow((1 - Fc), 1 - M));

 f2 = pow((1 - Fc), (1 + M));

 f3 = 1 - Fc * (1 + M);

 Fcp = Fc * Vj;

 Vd = V(anode, cathode);

 // Intrinsic diode

 Id = Area * Is * (exp(Vd / (N * $vt - Rs * I(anode, cathode)) / $vt)))- 1);

 // Capacitance (junction and diffusion)

 if (Vd <= Fcp)

 Qd = Tt * Id + Area * Cjo * Vj * (1 - pow((1 - Vd / Vj), (1 - M)))/(1 - M);

 else

 Qd = Tt * Id + Area * Cjo * (f1 + (1 / f2) * (f3 * (Vd - Fcp) + (0.5* M / Vj) *

(Vd * Vd - Fcp * Fcp)));

 I(anode, cathode) <+ Id + ddt(Qd);

end

endmodule

The more complicated behavior requires more complicated code. Comments are added to
help clarify the source. Verilog-A supports two types of comment characters. Text to the
right of // and text between /* and */ blocks will be ignored.

The analog block is extended from a single line to multiple lines using the begin and end
keywords to indicate a compound expression. Intermediate variables are declared to make
the code more readable. These variables are declared in the module but outside the
analog block.

A new system function, $vt , is used. This function returns the thermal voltage calculated
at an optional temperature. If no arguments are passed, the ambient circuit temperature
is used. The mathematical operators exp() and pow() are also used. Verilog-A includes a
wide range of mathematical functions.

 Adding an Internal Node to the Diode

Note that the transcendental diode relationship includes the drop in the junction voltage
due to the series resistance. An alternate method of implementing the series resistance
would be to add an internal node. An internal node (also called a net) is added by simply
declaring the node as electrical, without adding the node to the port list on the module
declaration line. The diode code changes as shown:

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

31

`include "constants.vams"

`include "disciplines.vams"

module diode_va(anode,cathode);

 electrical anode, cathode, internal;

 parameter real Area = 1.0 from (0:inf]; //Area scaling factor

 parameter real Is = 1e-14 from [0:inf]; //Saturation current [A]

 parameter real Rs = 0.0 from [0:inf]; //Ohmic res [Ohm]

 parameter real N = 1.0 from [0:inf]; //Emission coef

 parameter real Tt = 0.0 from [0:inf]; //Transit time [s]

 parameter real Cjo = 0.0 from [0:inf]; //Junction capacitance [F]

 parameter real Vj = 1.0 exclude 0; //Junction potential [v]

 parameter real M = 0.5 from [0:inf]; //Grading coef

 parameter real Kf = 0.0; //Flicker noise coef

 parameter real Af = 1.0 from (0:inf); //Flicker noise exponent

 parameter real Fc = 0.5 from [0:1]; //Forward bias junct parm

 real Vd, Id, Qd;

 real f1, f2, f3, Fcp;

 analog begin

 f1 = (Vj/(1 - M))*(1 - pow((1 - Fc), 1 - M));

 f2 = pow((1 - Fc), (1 + M));

 f3 = 1 - Fc * (1 + M);

 Fcp = Fc * Vj;

 Vd = V(anode, internal);

 // Intrinsic diode

 Id = Area * Is * ((Vd / (N * $vt)) - 1);

 // Capacitance (junction and diffusion)

 if (Vd <= Fcp)

 Qd = Tt * Id + Area * Cjo * Vj * (1 - pow((1 - Vd / Vj), (1 - M)))/(1 - M);

 else

 Qd = Tt * Id + Area * Cjo * (f1 + (1 / f2) * (f3 * (Vd - Fcp) + (0.5 * M / Vj) *

(Vd * Vd - Fcp * Fcp)));

 I(anode, internal) <+ Id + ddt(Qd);;

 V(internal, cathode) <+ I(internal, cathode) * (Rs / Area);

end

endmodule

 Adding Noise to the Diode

Noise is contributed in the same way as it was for the basic resistor. In this case, the shot
noise equation shows the dependence on the diode current. The 1/f noise is added using
the flicker_noise() operator, which takes as arguments the value of the noise
contribution as well as the exponent to apply to the 1/f term.

// Noise

 I(anode, cathode) <+ white_noise(2 * `P_Q * Id, "shot");

 I(anode, cathode) <+ flicker_noise(Kf * pow(Id, Af), 1.0, "flicker");

The thermal noise from the series resistor is added in the same fashion as was done for
the resistor. Note that the label is modified to indicate which resistor the noise is
generated from. This is useful when the analysis supports Sort Noise by Name.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

32

// Series resistor

 V(internal, cathode) <+ white_noise(4 * `P_K * T * (Rs / Area), "Rs");

 Adding Limiting to the Diode for Better Convergence

The exponential function used in the diode code can result in large swings in currents for
small changes in voltage during the simulator's attempts to solve the circuit equations. A
special operator, limexp() can be used instead of exp() to allow the simulator algorithms
to limit the exponential in simulator-specific ways. The specific algorithm used is simulator
dependent.

 Using Parameter Ranges to Restrict Verilog-A
Parameter Values
The parameter declaration allows the range of the parameter to be conveniently
restricted. At run time, the parameter value is checked to be sure it is acceptable. If it is
not, the simulator issues an error and stops.

By default, parameters can range from -infinity to infinity. To restrict a range either the
exclusive from (:) can be used, or the inclusive from [:] or a combination of the two.
For example,

from (0 : 10]

will restrict the parameter from 0 to 10, excluding the value of 0 but including the value of
10.

Exceptions to ranges are indicated by the except attribute. For example,

except 5

will not allow the value of 5 to be passed.

Ranges and exceptions can be repeated and combined. For example,

parameter real X = 20.0 from (-inf: -10] from [10:inf);

can also be written as,

parameter real X = 20.0 exclude (-10:10);

If a simulator supports sweeping of parameters, the model developer will have to be
aware of issues related to sweeping through ranges.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

33

 Creating Sources in Verilog-A
Analog sources can also be described with Verilog-A using the same concepts. Sources
typically have some relation to the specific time during the simulation. The time is
available from the $abstime function, which simply returns the real time (in seconds) of
the simulation.

A simple sine wave source would have the form:

`include "disciplines.vams"

`include "constants.vams"

module sine_wave(n1,n2);

 electrical n1,n2;

 parameter real gain = 1.0, freq = 1.0;

 analog V(n1,n2) <+ gain * sin(2 * `M_PI * freq* $abstime);

$bound_step(0.05/freq);

endmodule

The mathematical constant for PI is available as M_PI from the constants.vams header
file. Note that the multiple parameter declarations were combined on one line as an
alternative to declaring each on its own line.

The system function $bound_step() restricts the simulator's transient steps to the size
0.05/freq . This allows the model to define the resolution of the signal to be controlled.

An additional use of defining sources in Verilog-A is to create test bench circuits as part of
the model source file. This test module would provide sources with appropriate values and
sweep ranges to allow the validation of the model to be contained within the code
definition. This is a useful method of providing portable tests when distributing models
among different simulators.

 Creating Behavioral Models in Verilog-A
Verilog-A enables the user to trade off between various levels of abstraction. Certain
circuit blocks lend themselves to simple analog descriptions, resulting in improvements in
simulator execution time compared to transistor level descriptions. Since Verilog-A
supports all of the analysis functionality, the user is typically only trading off simulation
accuracy when using a behavioral description of a circuit.

The Phase-Locked Loop (PLL) is a good example of a circuit that can be represented in
behavioral blocks.

The Verilog-A source code below demonstrates a PLL circuit. The PLL consists of a phase
detector, an amplifier, and a voltage controlled oscillator. In this example, a swept sine

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

34

source is used to test the circuit.

The VCO and phase detector are defined as:

// Voltage Controlled Oscillator

module vco(in, out);

 inout in, out;

 electrical in, out;

 parameter real gain = 1, fc = 1;

 analog V(out) <+ sin(2*`M_PI*(fc*$abstime() + idt(gain*V(in))));

endmodule

// Phase Detector

module phaseDetector(lo, rf, if_);

 inout lo, rf, if_;

 electrical lo, rf, if_;

 parameter real gain=1;

 analog function real chopper;

 input sw, in;

 real sw, in;

 chopper = sw > 0 ? in : -in;

 endfunction // chopper

 analog V(if_) <+ gain*chopper(V(lo),V(rf));

endmodule

The modules use the keyword inout to declare that the ports are both input and output.
Some simulators will check consistency of connection of ports (useful when ports are
declared input or output only). ADS will not.

The phaseDetector makes use of an analog function definition of chopper to simplify the
code. Analog functions can be thought of a sub-routines that can take many values but
return one value. This is in contrast to macros, which should be thought of as in-line text
substitutions.

The PLL module uses hierarchy to instantiate these components:

// Phase Locked Loop

module pll(rf, out, ref, if_);

 inout rf, out, ref, if_;

 electrical rf, out, ref, if_;

 parameter real tau = 1m from (0:inf);

 parameter real loopGain = 1 from (0:inf);

 parameter real fc = 2.0k from (0:inf);

 real cap, res ;

 electrical lo;

 phaseDetector #(.gain(2)) pd1(lo, rf, if_);

 vco #(.gain(loopGain/2), .fc(fc)) vco1(out, lo);

 analog begin

 cap = 150e-9;

 res = tau / cap;

 V(out, if_) <+ I(out, if_)*res;

 I(out, ref) <+ ddt(cap*V(out,ref));

 end

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

35

endmodule

For testing, a swept frequency source is defined:

module sinRampSrc(p,n);

 inout p,n;

 electrical p,n;

 parameter real fStart = 1, hzPerSec = 1;

 analog V(p,n) <+ sin(2*`M_PI*(fStart+hzPerSec/2*$abstime)*$abstime);

endmodule

The modules are connected in a circuit (using appropriate AEL and symbol definitions) and
a transient simulation is run.

 Phased-Locked Loop Test Circuit

Plotting the Out node shows the VCO control voltage response to the swept frequency
input, indicating the locking range of the circuit.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

36

 VCO Locking Range

 Using Hierarchy to Manage Model Complexity
Verilog-A supports module hierarchy, which allows modules to be embedded in other
modules, enabling you to create complex circuit topologies.

To use a hierarchy, the model developer creates textual definitions of individual modules
in the usual fashion. Each module definition is independent, that is, the definitions can not
be nested. Special statements within the module definitions instantiate copies of the other
modules. Parameter values can be passed or modified by the hierarchical modules,
providing a way to customize the behavior of instantiated modules.

The instantiation format is:

module_name #(parameter list and values) instance name(port

connections);

For example, the previous definitions of R, L, and C can be used with a new module called
RLC to create a simple filter.

module RLC(in, out);

 electrical in, out, n1, n2;

 parameter real RR = 50.0 from [0:inf);

 parameter real LL = 0.0 from [0:inf);

 parameter real CC = 0.0 from [0:inf);

 R #(.R(RR)) R1(in, n1);

 L #(.L(LL)) L1(n1, n2);

 C #(.C(CC)) C1(n2, out);

endmodule

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

37

The RLC module creates a series R-L-C from the input port in to the output port out ,
using two internal nodes, n1 and n2. The RLC module's parameter values of RR, LL, and
CC are passed to the modules R, L, and C's parameters R, L, and C via #(.R(RR)),
#(.L(LL)), and #(.C(CC)).

A unique advantage of the Compiled Model Library file is that the Verilog-A source is
effectively hidden from end users. This, coupled with Verilog-A's hierarchical structure,
gives model developers a simple way to distribute intellectual property without exposing
proprietary information.

 Trapping Floating Point Exception Errors in Verilog-A
During simulation, if the Verilog-A module expressions generate floating point exceptions
(FPEs), the simulator will try to continue. In many cases, the bias conditions that caused a
FPE may change during the simulator’s iterative solving procedure and so the simulation
can continue and eventually converge. However, if there are convergence problems, it is
possible the model is generating FPEs. To trap this condition, pass the –f flag to the
compiler. To do this, add or modify this line in the workspace hpeesofsim.cfg file (note
that you may need to Stop and Release the simulator after modifying the file):

VAMS_COMPILER_OPTIONS=-f

and then run a simulation. If a FPE is encountered, the simulation will stop, and the type
of exception and the line in the Verilog-A source code where the exception occurred will be
displayed in the status window.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

38

 About Model Development in Verilog-
AMS
This information explains how to co-simulate Verilog-AMS modules with ADS and a digital
simulator. A supported digital simulator must be installed and set up appropriately. The
steps necessary to setup and configure the ADS and digital simulator environments are
discussed in section Verilog-AMS Configuration Files and Setup (veriloga).

Before using this information, you should be familiar with the topics discussed in About
Model Development in Verilog-A (veriloga). It uses features of the language described in
more detail in the Verilog-A and Verilog-AMS Reference Manual (verilogaref). The
following sections provide an overview of creating and using an AMS model using a PLL as
an example:

Creating a Mixed-Signal PLL Model explains how to create an AMS model.
Cosimulating a Model with ADS Transient and a Digital Simulator shows how to
simulate the model with ModelSim.
Viewing the Results shows how to view the results.
Debugging AMS Models discusses how to debug the model.

 Creating a Mixed-Signal PLL Model
AMS co-simulation will automatically be used whenever mixed signal syntax is detected in
a model definition. The AMS model will be partitioned into digital and analog-mixed-signal
components and the appropriate simulator will be used to simulate the model.

The model development is essentially the same as that necessary to develop and
implement Verilog-A models. This section will review the procedure used to create the
models in the VAMS_Example_wrk workspace located in the Examples directory.

Create a new workspace, such as MyVAMS_Example, and copy the veriloga directory1.
and its contents from the $HPEESOF_DIR/examples/Verilog-AMS/VAMS_Example_wrk to
MyVAMS_Example_wrk.
The directory veriloga contains digital, analog, and mixed signal model files. Source
files with only digital content use the .v extension. Source files with only Verilog-A
content use the .va extension, and files with AMS content use .vams. The following
table lists the files, their type, and the modules contained in the files.
Type File Name Modules

Digital DivBy8.v, DivByN.v div_by_8, div_by_N

Analog pulse_src.va pulse_src

Mixed signal ConnectA2D.vams, ConnectD2A.vams basic_A2D, basic_D2A

Each module must also have the associated AEL and symbol files available to the
simulation environment. The files can be created manually following the instructions
in the AEL (ael) documentation or they can be created using dialog boxes from the
schematic window. It is necessary to know the name of the module, the port names
and order, and the parameter names and types.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

39

In the case of the ConnectA2D.vams, the module definition of basic_A2D has two
external ports:

module basic_A2D(in,out);

The Verilog-AMS module definition uses the names in and out to refer to the port
names. The names on the external symbol do not have to match, but the number
and type must correspond.
The module has just one parameter, thresh, with a default value of 0.5 (because of
its default value, the parameter is of type real).

parameter thresh = 0.5;

The following steps use the dialog boxes to generate the necessary files. The process
actually follows the steps to create a sub-circuit definition, but takes advantage of
the way the netlist is generated to use the module instead of the sub-circuit (which
will be an empty circuit).
Create a new schematic design using the name of the component. The design name2.
must be different from the module name. For example, if the module name is
basic_A2D, the schematic design name can be basicA2D, myA2D, _basic_A2D, etc. We
will use BasicA2D.

Note
If the design name is the same as the module name, ADS will use the empty sub-circuit definition in
the simulation rather than the expected Verilog-AMS module.

Add the correct number of pins to the schematic, naming and numbering them3.
appropriately.
In this case, Pin number 1 will be called A and will correspond to the module port in
while Pin number 2 will be named D and will correspond to the module port out.

Switch to the symbol view (Window > Symbol).4.
Either use the Symbol Generator dialog box to copy an existing symbol, or use the

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

40

Auto-Generate tab to create a basic symbol and use the symbol palette to add text,
rectangles, etc. Rearrange the pin positions, text, and graphics, and then save the
design.

Return to the schematic view (Window > Schematic). Open the Design Parameters5.
dialog box (File > Design Parameters).
From the General dialog box tab, add to or modify the Description field as necessary.6.
In the Simulation section, change the Model pull-down field to Built-in Component.
In the Simulate As field, type the name of the module, in this case, basic_A2D.
The Component Instance Name should be X.

Select the Parameters tab and enter the information for the parameter thresh.7.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

41

Click OK and save the design.8.
The component can now be added to a schematic design by typing the component
name (not the module name) into the history field.
Repeat these steps for each module definition.9.

 Cosimulating a Model with ADS Transient and a
Digital Simulator

Open the schematic cell Test_Divider (shown in the following figure).1.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

42

Select Simulate > Simulate from the menu to run the simulation. The analog2.
simulation will start which will launch the digital simulator.
If it does not already exist, the simulator will create a new directory, ams_files, in
the workspace's directory. The digital simulator is launched from this directory and so
relative path names for files used in modules should be referenced from this
directory. This directory will hold the output of the digital simulator, including log-
files, intermediate files, and any files with relative path names created by Verilog-
AMS modules. After the simulation is completed, you may choose to delete the
directory.
The simulation status will appear in the Status Window. Output from the digital
simulation will also appear in status log files, whose names follow the convention of
the particular digital simulator.

 Viewing the Results
The analog results can be viewed in the Data Display window in the usual manner.

Open a new Data Display window and insert a rectangular plot.1.
Select the Clk and DivOut nodes to be plotted as shown in the following figure.2.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

43

The data output is displayed in the usual fashion, similar to plots shown in the3.
following figure.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

44

 Debugging AMS Models
You can choose to bring up the associated digital tool's control UI to allow control and
debugging of the simulation. For example, for the NCSim tool suite, create or edit the
hpeesofsim.cfg file in the workspace's directory to include the following line:

NCSIM_OPTIONS=-gui -input $HPEESOF_DIR/tiburon-

da/verilogams/misc/interactive.tcl worklib.%%s:v

When the simulation is run, the AMS Designer debugging window is launched. You can
pause the simulation inside the digital engine so you can view intermediate values.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

45

 Migrating from the SDD and UCM
Symbolically defined devices (SDDs) and the user-compiled model (UCM) interface provide
alternate methods to implement and distribute models with their own unique advantages.
It is possible for advanced users to translate these models into Verilog-A with a fraction of
the original effort required to develop the models. Unfortunately, due to the flexible
natures of these interfaces, it is not possible to provide an automatic translation
capability. However, this section will provide a general discussion of the issues and steps
necessary to translate a model. This topic will only deal with generating the Verilog-A
source code, as the other aspects of the model translation (AEL, symbols, etc.) are the
same as with other models.

 Symbolically Defined Devices
The SDD interface is similar to Verilog-A. The SDD describes the model in terms of
charges and currents and automatically generates the derivatives and load information, as
does Verilog-A. However, SDDs automatically determine the relationship between
equations whereas Verilog-A is a procedural language where the order of the equations is
important. As an example, the Gummel_Poon SDD model provided in the
Examples/Tutorial/SDD_Examples_wrk will be used to illustrate the necessary steps. To
begin,

Copy the SDD_Examples_wrk to a local directory.1.
Open a new schematic window and insert the GumPoon subcircuit.2.
Start a simulation. The simulator will report that no simulation component has been3.
specified and will stop. This can be ignored as the step was used to create the netlist.
Copy the netlist.log file found in the workspace directory to a new file named 4.
gumpoon.va and open the file.
The first line of the gumpoon.va file can be deleted. Add the necessary include files5.
and module definition block as shown below. Note that three internal nodes, bi , ci ,
and ei, have been defined.

`include "disciplines.vams"

`include "constants.vams"

module gumpoon\(b, c, e\);

 electrical b, c, e, bi, ci, ei;

 analog begin

 // SDD netlist fragment

 end

endmodule

The subcircuit parameter list provides a convenient starting point to convert parameters
to Verilog-A using word processor functions to substitute a comma for the spaces between
parameters:

parameter real n=1, xti=3, Rth=0, Tau=0, Tamb=27, eg0=1.16, xtb=1,

rbm=1e-12, jrb=10e-3, mje=0.5, mjc=0.333, vjc=585.8e-3, vtf=1.124,

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

46

vje=1.993, nf=1.002, nr=0.9649, ne=1.630, nc=1.055, tf=14.19e-12,

tr=1e-9, cje=1.178e-12, cjc=392.9e-15, jtf=914.3e-3, xtf=32.13,

rb=6.549, rc=6.314, re=.15, vbf=32.37, vbr=10, jbr=8.26e-3, jbf=914.3e-

3, jle=0, jlc=0, bf=127, br=10, js=16.55e-15;

The _vn quantities for the SDDcorrespond to system values of the port values. These are
converted to voltage accesses and should be moved to the beginning of the module:

analog begin

 vei=V(ei);

 vci=V(ci);

 vbi=V(bi);

 ve=V(e);

 vc=V(c);

 vb=V(b);

Note that the SDD is defined with the port pin grounded so the Verilog-A voltages are
implicitly referenced to ground.

The SDD:SDD1 line corresponds to the load contribution of a Verilog-A device. This line
can be moved to the end of the file and converted to contribution statements. The
statements of the form I[...] are explicit current port relations and easily convert to
contribution statements. For example,

I[1,0]=ib+_v1*1e-12

becomes

I(b) <+ ib + V(b)*1e-12;

and contributions with weighting functions of 1 correspond to applying the d/dt operator,
so

I[1,1]=qb2+qbe

becomes

I(b) <+ ddt(qb2+qbe);

The implicit equations of the form F[...] relate currents and voltages at ports with an
implicit form F[...]=0. So

F[4,0]=vbi+ib*Rbb-vb

F[4,1]=(qb2+qbe)*Rbb

is rearranged as

vbi-vb= ib*Rbb-ddt(qb2 + qbe)*Rbb

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

47

and is implemented as

V(bi,b) <+ Rbb*(ib + ddt(qb2 + qbe)) ;

This process is repeated for the other contributions.

The SDD uses a function named diode to implement the diode junction relation. This
function, and the exponential function exp_soft , can easily be converted to analog
functions. For example,

diode(v,is,n)=is*(exp_soft(v/(n*vt)) - 1)

becomes

analog function real diode;

 input v, is, n, vt;

 real v, is, n, vt;

 begin

 diode = is * (exp_soft(v / (n * vt)) - 1);

 end

endfunction

while

exp_soft(x)=if (x < exp_max) then exp(x) else (x+1-

exp_max)*exp(exp_max) endif

becomes

analog function real exp_soft;

 input x;

 real x;

 `define max_arg ln(1e16)

 begin

 if (x < `max_arg)

 exp_soft = exp(x);

 else

 exp_soft = (x + 1 - `max_arg) * exp(`max_arg);

 end

endfunction

Note that Verilog-A requires that the analog function exp_soft be defined prior to its use
in the analog function diode . Also, the variable max_arg is converted to a macro
definition.

At this point, the source code is as shown below:

`include "disciplines.vams"

`include "constants.vams"

`define max_arg ln(1e16)

module gumpoon(b, c, e);

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

48

 electrical b, c, e, bi, ci, ei;

 parameter real n=1, xti=3, Rth=0, Tau=0, Tamb=27, eg0=1.16, xtb=1,

 rbm=1e-12, jrb=10e-3, mje=0.5, mjc=0.333, vjc=585.8e-3, vtf=1.124,

 vje=1.993, nf=1.002, nr=0.9649, ne=1.630, nc=1.055, tf=14.19e-12,

 tr=1e-9, cje=1.178e-12, cjc=392.9e-15, jtf=914.3e-3, xtf=32.13,

 rb=6.549, rc=6.314, re=.15, vbf=32.37, vbr=10, jbr=8.26e-3,

 jbf=914.3e-3, jle=0, jlc=0, bf=127, br=10, js=16.55e-15;

 analog function real exp_soft;

 input x;

 real x;

 begin

 if (x < `max_arg)

 exp_soft = exp(x);

 else

 exp_soft = (x + 1 - `max_arg) * exp(`max_arg);

 end

 endfunction

 analog function real diode;

 input v, is, n, vt;

 real v, is, n, vt;

 begin

 diode = is * (exp_soft(v / (n * vt)) - 1);

 end

 endfunction

 real vei, vci, vbi, ve, vc, vb;

 analog begin

 vei=V(ei);

 vci=V(ci);

 vbi=V(bi);

 ve=V(e);

 vc=V(c);

 vb=V(b);

 vjc_T=vjc

 vje_T=vje

 Br_T=br

 Eg(t)=eg0-7.02e-4*(t+TzeroC)^2/(1108+(t+TzeroC))

 Bf_T=bf

 Js_T=js*TempRatio^xti *

 exp_soft(Eg(Tamb)*((Tj-Tamb)/((Tamb+TzeroC)*vt)))

 TempRatio=(Tj+TzeroC)/(Tamb+TzeroC)

 TzeroC=273.15

 Tj=Tamb

 ibb=if (ib < 1pA) then 1pA else ib endif

 Rbb=3*(rb - rbm)*(tan(Z) - Z)/(Z*tan(Z)^2) + rbm

 Z=(-1 + sqrt(144*ibb/(pi^2*jrb) + 1))/((24/pi^2)*sqrt(ibb/jrb))

 qbc=tr*diode(vbci, Js_T, nr) -

 cjc*vjc_T*((1-vbci/vjc_T)^(1-mjc))/(1-mjc)

 qb2=qbc

 iff=diode(vbei, Js_T, nf)

 TFF=tf*(1+xtf*(exp(vbci/(1.44*vtf)*(iff/(iff+jtf))^2)))

 qbe=diode(vbei, TFF*js/QB, nf) -

 cje*vje_T*((1-vbei/vje_T)^(1-mje))/(1-mje)

 ib2=diode(vbei, jle, ne) + diode(vbci, jlc, nc)

 ib1=diode(vbei, Js_T/Bf_T, nf) + diode(vbci, Js_T/Br_T, nr)

 ic2=-diode(vbci, Js_T/Br_T, nr) - diode(vbci, jlc, nc)

 ic1=diode(vbei, Js_T/QB, nf) - diode(vbci, js/QB, nr)

 QB=(Q1/2)*(1 + sqrt(1+4*Q2))

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

49

 vt=boltzmann*(Tamb+TzeroC)/qelectron

 Q2=diode(vbei, Js_T/jbf, nf) + diode(vbci, Js_T/jbr, nr)

 Q1=1/(1 - vbci/vbf - vbei/vbr)

 vbei=vbi-vei

 vbe=vb-ve

 vbc=vb-vc

 vbci=vbi-vci

 ib=ib1+ib2

 ic=ic1+ic2

 ie=-(ib+ic)

 X=1.0 Hz

endmodule

The remaining equations can easily be converted to valid Verilog-A equations by
appending semi-colons and declaring the variables. Certain equations, such as the
equations for Tamp , vt , and TzeroC can be updated to system parameter function calls or
 macro constants. Other equations, such as X=1.0Hz, are superfluous and can be deleted.
The final step is to rearrange the order of the equations. The compiler will issue a
message indicating a memory state exists. This is a valid outcome but is also indicative of
an un-initialized variable, which, in turn, indicates that the equation declaring the variable
should be moved before that equation. The final code is shown below.

`include "disciplines.vams"

`include "constants.vams"

`define max_arg ln(1e16)

`define TzeroC `P_CELSIUS0

module gumpoon(b, c, e);

 electrical b, c, e, bi, ci, ei;

 parameter real n=1, xti=3, Rth=0, Tau=0, Tamb=27, eg0=1.16, xtb=1,

 rbm=1e-12, jrb=10e-3, mje=0.5, mjc=0.333, vjc=585.8e-3, vtf=1.124,

 vje=1.993, nf=1.002, nr=0.9649, ne=1.630, nc=1.055, tf=14.19e-12,

 tr=1e-9, cje=1.178e-12, cjc=392.9e-15, jtf=914.3e-3, xtf=32.13,

 rb=6.549, rc=6.314, re=.15, vbf=32.37, vbr=10, jbr=8.26e-3,

 jbf=914.3e-3, jle=0, jlc=0, bf=127, br=10, js=16.55e-15;

 analog function real exp_soft;

 input x;

 real x;

 begin

 if (x < `max_arg)

 exp_soft = exp(x);

 else

 exp_soft = (x + 1 - `max_arg) * exp(`max_arg);

 end

 endfunction

 analog function real diode;

 input v, is, n, vt;

 real v, is, n, vt;

 begin

 diode = is * (exp_soft(v / (n * vt)) - 1);

 end

 endfunction

 analog function real Eg;

 input t, eg0;

 real t, eg0;

 begin

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

50

 Eg=eg0-7.02e-4*(t+`TzeroC)*(t+`TzeroC)/(1108+(t+`TzeroC));

 end

 endfunction

 real vei, vbe, vbei, vbci, vbc, vci, vbi, ve, vc, vb;

 real Tj, vjc_T, vje_T, Br_T, Bf_T, Js_T, TempRatio, vth;

 real ic, ie, ib, ibb, Z, vt, pi2, Rbb, Q1, Q2;

 real qbc, qb2, iff, TFF, qbe, ib2, ib1, ic1, ic2, QB;

 analog begin

 vei=V(ei);

 vci=V(ci);

 vbi=V(bi);

 ve=V(e);

 vc=V(c);

 vb=V(b);

 vbei=vbi-vei;

 vbe=vb-ve;

 vbc=vb-vc;

 vbci=vbi-vci;

 Tj=$temperature;

 vth = $vt;

 vjc_T=vjc;

 vje_T=vje;

 Br_T=br;

 Bf_T=bf;

 TempRatio=(Tj+`TzeroC)/(Tamb+`TzeroC);

 Js_T=js*pow(TempRatio,xti) *

 exp_soft(Eg(Tamb,eg0)*((Tj-Tamb)/((Tamb+`TzeroC)*vth)));

 qbc=tr*diode(vbci, Js_T, nr, vth) -

 cjc*vjc_T*(pow(1-vbci/vjc_T,1-mjc))/(1-mjc);

 qb2=qbc;

 iff=diode(vbei, Js_T, nf, vth);

 TFF=tf*(1+xtf*(exp(vbci/(1.44*vtf)*pow(iff/(iff+jtf),2))));

 ib2=diode(vbei, jle, ne, vth) + diode(vbci, jlc, nc, vth);

 ib1=diode(vbei, Js_T/Bf_T, vth) + diode(vbci, Js_T/Br_T, nr, vth);

 ic2=-diode(vbci, Js_T/Br_T, nr, vth) - diode(vbci, jlc, nc, vth);

 Q1=1/(1 - vbci/vbf - vbei/vbr);

 Q2=diode(vbei, Js_T/jbf, nf, vth) + diode(vbci, Js_T/jbr, nr, vth);

 QB=(Q1/2)*(1 + sqrt(1+4*Q2));

 qbe=diode(vbei, TFF*js/QB, nf, vth) -

 cje*vje_T*(pow(1-vbei/vje_T,1-mje))/(1-mje);

 ic1=diode(vbei, Js_T/QB, nf, vth) - diode(vbci, js/QB, nr, vth);

 ib=ib1+ib2;

 if (ib < 1e-12)

 ibb = 1e-12;

 else

 ibb = ib;

 pi2 = `M_PI * `M_PI;

 Z=(-1 + sqrt(144*ibb/(pi2*jrb) + 1))/((24/pi2)*sqrt(ibb/jrb));

 Rbb=3*(rb - rbm)*(tan(Z) - Z)/(Z*pow(tan(Z),2)) + rbm;

 ic=ic1+ic2;

 ie=-(ib+ic);

 V(bi,b) <+ Rbb * (ib + ddt(qb2+qbe));

 V(e,ei) <+ re * (ie - ddt(qbe));

 V(c,ci) <+ rc * (ic - ddt(qb2));

 I(c) <+ -ddt(qb2) + ic+vc*1e-12;

 I(b) <+ ddt(qb2+qbe) + ib+vb*1e-12;

 I(e) <+ -ddt(qbe) + ie+ve*1e-12;

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

51

end

endmodule

 User-Compiled Models
Translating user-compiled models (UCMs) is more complicated both due to the additional
information in UCM source files, as well as the additional freedom (and, therefore,
variations) that C-code provides. Because the UCM interface requires separate loads for
transient simulations, this usually forces the model author to modularize the code, making
it easier to find the code that needs to be translated.

The PNDIODE UCM distributed in the examples/Tutorial/UserCompiledModel_wrk
workspace will be used as an example. PNDIODE.c is the main file. The functions to
consider are the analyze_lin, analyze_nl, analyze_ac_n, and diode_nl_iq_gc
functions. The analyze_lin function calculates and loads the linear parts of the nonlinear
diode model while the analyze_nl function calls diode_nl_iq_gc to calculate the values to
load. These functions will be easy to map to corresponding contribution statements. The
analyze_ac_n function includes the noise contributions and can also easily be mapped.

The diode_nl_iq_gc function is typical of UCM code structures in that most of the model
evaluation is done in this one function. Stripping the function declaration information, this
function becomes:

csat = IS_P * AREA_P;

vte = N_P * VT;

vd = vPin[2] - vPin[1]; /* junction voltage */

/*

 * compute current and derivatives with respect to voltage

 */

if (vd >= -5.0*vte)

{

 exparg = (vd/vte < 40.0) ? vd/vte : 40.0;

 evd = exp(exparg);

 *id = csat * (evd - 1.0) + GMIN * vd;

 *gd = csat * evd / vte + GMIN;

}

else

{

 *id = -csat + GMIN * vd;

 *gd = -csat / vd + GMIN;

 if (BV_P != 0.0 && vd <= (-BV_P+50.0*VT))

 {

 exparg = (-(BV_P+vd)/VT < 40.0) ? -(BV_P+vd)/VT : 40.0;

 evrev = exp(exparg);

 *id -= csat * evrev;

 *gd += csat * evrev / VT;

 }

}

/*

 * charge storage elements

 */

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

52

fcpb = FC_P * VJ_P;

czero = CJO_P * AREA_P;

if (vd < fcpb)

{

 arg = 1.0 - vd / VJ_P;

 sarg = exp(-M_P * log(arg));

 *qd = TT_P * (*id) + VJ_P * czero * (1.0 - arg * sarg) / (1.0 - M_P);

 *capd = TT_P * (*gd) + czero * sarg;

}

else

{

 xfc = log(1.0 - FC_P);

 f1 = VJ_P * (1.0-exp((1.0-M_P)*xfc)) / (1.0-M_P);

 f2 = exp((1.0+M_P)*xfc);

 f3 = 1.0 - FC_P * (1.0+M_P);

 czof2 = czero / f2;

 *qd = TT_P * (*id) + czero * f1 + czof2 * (f3 * (vd - fcpb) + (M_P / (VJ_P + VJ_P))

* (vd * vd - fcpb * fcpb));

 *capd = TT_P * (*gd) + czof2 * (f3 + M_P * vd / VJ_P);

}

The first step is to remove any capacitance and conductance equations that were used to
load the off diagonal elements in the Jacobian. Next, convert { / } blocks to begin / end
blocks and convert any math functions and operators to their Verilog-A equivalent.

Note
In Verilog-A log is log base 10 whereas in the C language it is natural log.

The diode terminals will be called anode, cathode, and internal. Access to the vPin array
will be converted to voltage access functions and the parameter macros will have their _P
suffix stripped.

The parameter declarations can be generated by using the PNDIODE.ael create_item's
declaration. Temperature dependent variables, such as VT , can be mapped to $vt , GMIN
to a macro definition, and the double declaration of variables in the C-code can be
mapped to real declarations in Verilog-A. The final code then becomes:

`include "constants.vams"

`include "disciplines.vams"

`define GMIN 1.0e-12

module PNDIODE(anode,cathode);

 inout anode, cathode;

 electrical anode, cathode, internal;

 parameter real AREA = 1.0 from (0:inf]; //Area scaling factor

 parameter real IS = 1e-14 from [0:inf]; //Saturation current [A]

 parameter real RS = 0.0 from [0:inf]; //Ohmic res [Ohm]

 parameter real N = 1.0 from [0:inf]; //Emission coef

 parameter real TT = 0.0 from [0:inf]; //Transit time [s]

 parameter real CJO = 0.0 from [0:inf]; //Junction capacitance [F]

 parameter real VJ = 1.0 exclude 0; //Junction potential [v]

 parameter real M = 0.5 from [0:inf]; //Grading coef

 parameter real EG = 0 from (0:inf]; //Activation energy [eV]

 parameter real XTI = 3.0 from [0:inf]; //IS temp exp.

 parameter real KF = 0.0; //Flicker noise coef

 parameter real AF = 0.0 from (0:inf); //Flicker noise exponent

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

53

 parameter real FC = 0.0 from [0:1]; //Forward bias junct parm

 parameter real BV = 0.0 from [0:inf]; //Reverse breakdown voltage [v]

 parameter real IBV = 0.0 from [0:inf]; //Current at BV [A]

 real vd, csat, vte, evd, evrev;

 real id, qd, exparg, vth, T;

 real fcpb, xfc, f1, f2, f3;

 real czero, arg, sarg, czof2;

 analog begin

 csat = IS * AREA;

 vth = $vt;

 vte = N * vth;

 vd = V(anode, internal); /* junction voltage */

 /*

 * * compute current and derivatives with respect to voltage

 * */

 if (vd >= -5.0*vte) begin

 exparg = (vd/vte < 40.0) ? vd/vte : 40.0;

 evd = exp(exparg);

 id = csat * (evd - 1.0) + `GMIN * vd;

 end

 else begin

 id = -csat + `GMIN * vd;

 if (BV != 0.0 && vd <= (-BV+50.0*vth)) begin

 exparg = (-(BV+vd)/vth < 40.0) ? -(BV+vd)/vth : 40.0;

 evrev = exp(exparg);

 id = id - csat * evrev;

 end

 end

 /*

 * * charge storage elements

 * */

 fcpb = FC * VJ;

 czero = CJO * AREA;

 if (vd < fcpb) begin

 arg = 1.0 - vd / VJ;

 sarg = exp(-M * ln(arg));

 qd = TT * id + VJ * czero * (1.0 - arg * sarg) / (1.0 - M);

 end

 else begin

 xfc = ln(1.0 - FC);

 f1 = VJ * (1.0-exp((1.0-M)*xfc)) / (1.0-M);

 f2 = exp((1.0+M)*xfc);

 f3 = 1.0 - FC * (1.0+M);

 czof2 = czero / f2;

 qd = TT * id + czero * f1 + czof2 * (f3 * (vd - fcpb) + (M / (VJ + VJ)) * (vd * vd

- fcpb * fcpb));

 end

 I(anode, internal) <+ id;

 V(internal, cathode) <+ I(internal, cathode) * (RS / AREA);

 I(anode, internal) <+ ddt(qd);

 // Noise

 T = $temperature;

 V(internal, cathode) <+ white_noise(4 * `P_K * T * (RS / AREA), "thermal");

 I(anode, internal) <+ white_noise(2 * `P_Q * id, "thermal");

 if (id > 0)

 I(anode, internal) <+ flicker_noise(KF * pow(id, AF), 1.0, "flicker");

 else

 I(anode, internal) <+ flicker_noise(KF * -pow(-id, AF), 1.0, "flicker");

 end

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

54

endmodule

Although it is not possible to predict what code style a UCM author might use, it is
possible to convert a model to Verilog-A.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

55

 Verilog-A and Verilog-AMS in ADS
Design Kits
This topic describes the steps necessary to distribute Verilog-A models in an ADS Design
Kit. Design Kits provide a convenient way to distribute Verilog-A models and the steps are
very similar to the steps to create conventional Design Kits.

For an overview of the process and the specific steps involved in creating an ADS Design
Kit, refer to the Design Kit Development (dkarch) documentation.

Verilog-A models require a similar infrastructure as User-Compiled Models (UCM).
Because the Verilog-A interface includes the appropriate tools to recompile on the end
user's platform, Verilog-A models can be distributed as source code, compiled form (
Compiled Model Library, or CML), or both. As with the UCM, the compiled object library
must be provided for each platform supported by Advanced Design System.

Verilog-A modules in a Design Kit are automatically made available to workspaces using
that design kit. Beginning with ADS 2008 Update 2, the Verilog-A files must be placed in
the design kit veriloga directory :

design_kit/veriloga

If you want to distribute the Verilog-A source, then that is all that needs to be done. The
files will be compiled on the user's operating system after the design kit is installed and
the first simulation is run.

If you want to ship CML files then further steps are required. You may want to ship only
CML if you want to protect your intellectual property. Alternatively, you may want to ship
both Verilog-A source and CML files. This will avoid having all Design Kit users go through
the compilation step the first time they simulate with your kit, and it will provide the
ability to view and edit Verilog-A source code.

Let's assume you have a number of Verilog-A files in the Design Kit as,

dk_wrk/veriloga/resistor.va

dk_wrk/veriloga/varactor.va

By default, the CML files associated with these Verilog-A sources are stored in the CML
cache (see The Verilog-A/AMS Compiled Model Library Cache (veriloga)). You can have
the CML files written locally by adding a vamake.spec file to the Verilog-A source
directory. Add a single line to vamake.spec as,

USE_CACHE=NO

From now on, all CML files will be written locally and assuming you have simulated on a
32-bit Windows platform, your directory structure will look like this,

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

56

dk_wrk/veriloga/vamake.spec

dk_wrk/veriloga/resistor.va

dk_wrk/veriloga/varactor.va

dk_wrk/veriloga/lib.win32/1.xx/cml-table.idx

dk_wrk/veriloga/lib.win32/1.xx/resistor.cml

dk_wrk/veriloga/lib.win32/1.xx/varactor.cml

Prior to shipping your Design Kit, you can seal the directory by adding another line to the
vamake.spec file as,

USE_CACHE=NO

PREPARE_DIR=NO

Now when the simulator boots it will no longer check that the CML files are up to date
against the Verilog-A source. If you wish to protect your intellectual property, you can
now remove the Verilog-A source files from the Design Kit.

To complete your Design Kit, ensure that the necessary directories and files are available.
These required directories and files are described in the following table.

Directory/File Description

circuit/ael AEL descriptions of each component

circuit/symbols Symbol information for each component (it is possible to reference existing component
symbols instead)

circuit/bitmaps/pc
circuit/bitmaps/unix

Bitmaps for each component

veriloga/ arch Compiled model libraries.

de/ael/boot.ael An AEL file with the load commands for each of the circuit/ael component files.

de/ael/palette.ael Palette and library loads for each of the components.

design_kit/ads.lib Information file for the Design Kit loading mechanism to describe the Design Kit.

examples Place example workspaces here.

doc Optional documentation files.

Advanced Design System 2011.01 - Using Verilog-A and Verilog-AMS in Advanced Design System

57

 Compilation Tools
The Verilog-A compilation suite achieves a compile-complete solution by utilizing open
source compilation tools on all platforms. The tools are not modified and supplied in
compiled form only.

On Linux, and Sun, the gcc compiler is used. On these platforms, the system supplied
linker and assembler are used. For more information on gcc, refer to gcc.gnu.org.

 On Microsoft Windows, the Minimum GNU for Windows (MINGW) tool suite is used. The
MINGW package provides a full compilation environment on Windows. The compilation
system uses as.exe (assembler) and ld.exe (linker) from the MINGW binutils package
version. For more information on the MINGW tool suite, refer to www.mingw.org.

 Compiled Model Library files created using these tools may be distributed without any
licensing restrictions. The CML compilation is also designed to not require any shared
libraries and so they may be easily moved from machine to machine of the same
architecture.

All of these tools are installed within the system directory $HPEESOF_DIR/tiburon-da and
are used only by the Verilog-A compilation system.

	 Getting Started with Verilog-A and Verilog-AMS in Advanced Design System
	 Using a Verilog-A/AMS Device in a Simulation
	 Modifying a Verilog-A/AMS Device
	 Installing Verilog-A/AMS Devices Provided in a Design Kit
	 Licensing

	 Using Verilog-A and Verilog-AMS with the ADS Analog RF Simulator (ADSsim)
	 Loading Verilog-A/AMS modules
	 Overriding Built-in Devices with Verilog-A Devices
	 Using Models with Verilog-A/AMS Devices
	 The Verilog-A/AMS Compiled Model Library Cache
	 Controlling the Auto Compilation Process
	 Verilog-A Operator Limitations in Harmonic Balance and Circuit Envelope
	 Module and Parameter Naming
	 Parameters
	 Hierarchy and Module Resolution
	 Modifying the Simulator's Model Search Path
	 The Compiler Include Search Path
	 Interaction with the Loading of Dynamically Linked UCMs
	 Verilog-AMS Configuration Files and Setup

	 About Model Development in Verilog-A
	 Creating a Linear Resistor in Verilog-A
	 Creating a Linear Capacitor and Inductor in Verilog-A
	 Creating a Nonlinear Diode in Verilog-A
	 Using Parameter Ranges to Restrict Verilog-A Parameter Values
	 Creating Sources in Verilog-A
	 Creating Behavioral Models in Verilog-A
	 Using Hierarchy to Manage Model Complexity
	 Trapping Floating Point Exception Errors in Verilog-A

	 About Model Development in Verilog-AMS
	 Creating a Mixed-Signal PLL Model
	 Cosimulating a Model with ADS Transient and a Digital Simulator
	 Viewing the Results
	 Debugging AMS Models

	 Migrating from the SDD and UCM
	 Symbolically Defined Devices
	 User-Compiled Models

	 Verilog-A and Verilog-AMS in ADS Design Kits
	 Compilation Tools

