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ABSTRACT 

 

Using Visible and Near Infrared Diffuse Reflectance Spectroscopy to Characterize and 

Classify Soil Profiles. (August 2010) 

Katrina Margarette Wilke, B.S., Texas A&M University  

Chair of Advisory Committee: Dr. Cristine L.S. Morgan 

 

 Visible and near infrared diffuse reflectance spectroscopy (VisNIR-DRS) is a 

method being investigated for quantifying soil properties and mapping soil profiles. 

Because a VisNIR-DRS system mounted in a soil penetrometer is now commercially 

available for scanning soil profiles in situ, methodologies for using scans to map soils 

and quantify soil properties are needed. The overall goal of this research is to investigate 

methodologies for collecting and analyzing VisNIR-DRS scans of intact soil profiles to 

identify soil series. Methodologies tested include scanning at variable versus uniform 

moistures, using individual versus averaged spectra, boosting an intact spectral library 

with local samples, and comparing quantitative and categorical classifications of soil 

series. Thirty-two soil cores from two fields, representing three soil series, were 

extracted and scanned every 2.5 cm from the soil surface to 1.5 m or to the depth of 

parent material at variable field moist conditions and at uniform moist condition. 

Laboratory analyses for clay, sand, and silt were performed on each horizon. Soil series 

were classified using partial least squares regression (PLS) and linear discriminant 

analysis (LDA). A Central Texas intact spectral library (n=70 intact cores) was used for 
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PLS modeling, alone and boosted with the two fields. Because whole-field independent 

validation was used, relative percent difference (RPD) values were used to compare 

model performance. Wetting soils to uniform moisture prior to scanning improved 

prediction accuracy of total clay and RPD improved by 53%. Averaging side-by-side 

scans of the same soil profile improved prediction accuracy of RPD by 10%. When 

creating calibration models, boosting a library with local samples improved prediction 

accuracy of clay content by 80 and 34% for the two fields. Principal component plots 

provided insight on the spectral similarities between these datasets. Overall, using PLS 

alone performed the same as LDA at predicting soil series. Most importantly, results of 

this project reiterate the importance of fully-independent calibration and validation for 

assessing the true potential of VisNIR-DRS. Using VisNIR-DRS is an effective way for 

in situ characterization and classification of soil properties. 
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CHAPTER I 

INTRODUCTION 

 The USDA National Resource Conservations Services (NRCS) National 

Cooperative Soil Survey (NCSS) is a valuable resource for identifying soils and soil 

locations in a landscape. Current soil mapping tools are not designed to capture soil 

variability at fine resolutions. A normal NRCS soil map has a scale of 1:24,000 which 

does not capture variations between or within mapping units at finer scales. Though 

information on soil properties at fine resolutions would be beneficial to application such 

as precision agriculture, watershed modeling, and other precision resource management 

applications, soil sampling at this resolution is currently cost and labor prohibitive. Some 

techniques can rapidly measure soil characteristics at finer spatial scales; however, tools 

that provide fine resolution information on soils provide lower quality data. For 

example, sensors that measure soil apparent electrical conductivity (ECa) are soil survey 

tools that can provide non-invasive, real-time measurements of large areas at a meter-

scale, but the information collected shows relative difference across the field. Mapping 

soil ECa can show where an important soil property varies, but does not provide absolute 

information. On the other hand, soil coring combined with lab analysis yields high 

quality information about the soil profile, but at a coarser spatial resolution. For mapping 

purposes, soil cores are not collected at a fine resolution; therefore soil data must be 

interpolated and extrapolated for the areas not sampled. Proximal soil sensing using 
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visible and near infrared diffuse reflectance spectroscopy (VisNIR-DRS) has the 

potential to fill the need for providing soil profile characterization faster than traditional 

soil coring and lab analysis and complements the high-resolution information provided 

by ECa.  

 Recently using VisNIR-DRS has become a popular method for non-destructively 

and rapidly quantifying soil properties. The formation of a global library by Brown et al., 

(2005) sparked interest in developing a larger global library and now VisNIR-DRS is 

one of the cornerstone methods for the GlobalSoilMap.net project (Sanchez et al., 2009). 

VisNIR-DRS can provide soil property data on a soil profile faster than traditional soil 

coring methods and complements both laboratory analysis and high resolution 

information provided by ECa. Using VisNIR-DRS has been proven to predict soil 

properties on air-dried, ground samples and intact cores taken into the lab; however, few 

studies have evaluated spectroscopy’s predictability in the field. The optical fiber of a 

VisNIR spectrometer can now be mounted into a soil penetrometer, which can take 

spectral measurements of soil profiles (cm vertical increments) at individual locations in 

a field. A multi-sensor platform that combines high-resolution aerial data collected 

horizontally using an ECa sensor and high-resolution profile data using the VisNIR-DRS 

would be advantageous for soil mapping.  

 Though VisNIR-DRS on air-dried, ground soils is moving from research labs to 

practitioner labs, such as the USDA-NRCS NCSS national lab, much more knowledge is 

needed regarding how well spectroscopy works on intact cores, how VisNIR-DRS will 

perform when mounted on a penetrometer, and how to best use spectroscopy to map 
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soils in the field. Field application of VisNIR-DRS requires development in scanning 

protocol and in the use of statistical techniques to create a desirable end result. 

 Though methodologies for collecting and using ECa measurements are fairly well 

defined (Corwin and Lesch, 2005), VisNIR-DRS methodology on in situ and on intact 

cores in the spatial context of a field has not been explored. To achieve the ultimate goal 

of developing a multi-sensor platform for mapping soils, VisNIR-DRS methodologies 

for mapping soil profiles in the field need to be better defined. The goal of this research 

is to determine how VisNIR-DRS scans of soil cores can be used to identify soil 

properties, horizons, and classification at the soil series level, while using soil ECa to 

help define the VisNIR-DRS soil sampling strategy. More specifically, this research will 

address the following questions: 1) When scanning intact soil scores, is prediction 

accuracy of soil properties affected by whether soil profiles are uniformly moist (field 

capacity) or variable (during natural wetting or drying phases); 2) How is prediction 

accuracy of soil properties affected by combining the same lab-measured clay content 

based on horizons with individual, 2.5-cm thick soil scans; 3) What is the gain in 

prediction accuracy by boosting an in situ spectral library with local samples of the same 

soil series; and 4) How do quantitative predictions of soil properties and categorical 

classification of VisNIR-DRS data compare when classifying soil profiles at the soil 

series level? The completion of this work will provide guidance for future application of 

VisNIR-DRS, penetrometer mounted technology as part of a multi-sensor mapping 

strategy.  
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CHAPTER II 

LITERATURE REVIEW 

Bulk Soil Electrical Conductivity 

 Soil ECa is a measurement which provides high resolution meter-scale 

information and is currently used to map the spatial variability of soils across large areas 

(Corwin and Plant, 2005). Soil ECa can be collected with a variety of commercially 

available instruments. The EM38DD (Geonics Ltd., Mississauga, Ontario, CA) is a 

conductivity meter that provides measurements of soil ECa, from the surface to 

approximately 1.5-m deep, but the actual depth of response for a given soil varies with 

the soil resistivity (Callegary et al., 2007). Soil ECa is a measure of the ability of the bulk 

soil to conduct an electrical current. Soil is generally a poor conductor of electrical 

current; therefore, the ECa of soil is primarily a function of the conductivity of the 

moisture-filled pores within the soil (McNeill, 1980). Soil ECa is influenced by soil 

moisture content, the amount and composition of clay, soil porosity, concentration of 

electrolytes, and temperature (McNeill, 1980; Rhoades et al., 1976). In areas where the 

soils are well drained, and therefore not saline, soil ECa properties are primarily 

influenced by the amount of water, amount of clay, and type of clay minerals. 

 Originally, EM38DD meters were used to map soil salinity in agricultural fields 

of the Western U.S. (Rhoades et al., 1976; Rhoades et al., 1989; Rhoades and Corwin, 

1981; Lesch et al., 1992). As mentioned, in well drained fields with no salinity, ECa 

measurements have been shown to respond to soil moisture (Kachanoski et al., 1988; 

Sheets and Hendrickx et al., 1992; Khakural et al., 1998; Carroll and Oliver, 2005). 
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Generally soil water storage and soil ECa have a linear relationship that may or may not 

deteriorate at higher water contents (Kachanoski et al., 1988; Sheets and Hendrickx, 

1995). Soils with higher clay content hold more soil water; therefore, ECa responds to 

soil clay content directly and indirectly. 

 Because soil ECa can be used in mapping soil water and clay content, it has been 

used in precision agriculture applications that need maps of soil spatial variability. The 

depth to the soil substratum (Doolittle et. al., 1994), depth to clay pan (Vitharana et al., 

2008), as well as thickness of the loess layer (Mertens et. al., 2008) have also been 

mapped using ECa. Because soil ECa values are correlated to soil water , soil clay, and 

soil solum thicknesses, along with many associated soil properties, an ECa map can be 

used to employ stratified random sampling to select soil or crop sampling locations 

(Corwin and Lesch 2005; Johnson et al., 2005). 

VisNIR Diffuse Reflectance Spectroscopy 

 Using VisNIR-DRS as a method for non-destructively and rapidly quantifying 

soil properties of air-dried, ground soils has become popular. The formation of a global 

library by Brown et al., (2005) has sparked interest in developing a larger global library 

and now VisNIR-DRS is one of the cornerstone methods being used in the 

GlobalSoilMap.net project (Sanchez et al., 2009). Though VisNIR-DRS on air-dried, 

ground soils is moving from research labs to practitioner labs, e.g. the NCSS national 

laboratory, much more knowledge is needed regarding how well VisNIR-DRS works on 

intact cores, how VisNIR-DRS performs when mounted on a penetrometer, and how to 

best use VisNIR-DRS to map soils in the field (Christy, 2008; Bricklemeyer and Brown, 
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2010). Field application of VisNIR-DRS requires development in scanning protocol, 

data management, and in the use of statistical techniques to predict soil properties or to 

classify soil profiles. 

 The following review briefly summarizes the prediction accuracies of VisNIR-

DRS, but it is important to note that it is difficult to adequately compare results in some 

studies because of the inconsistency in validation techniques. Techniques to create a 

validation sample can be non-independent, semi-independent, and fully-independent. 

Non-independent validations include full-cross or hold-one-out validations, and splitting 

scans from one soil core between the calibration and validation data sets. Semi-

independent includes holding out a percentage of the scans to be randomly divided 

between validation and calibration data sets. Fully independent validation requires an 

independently made calibration model and a separate data set for validation. Because 

holding full fields or similar type areas out of a calibration model and using those scans 

to estimate prediction error is closer to true independence of the validation data, this 

method will result in the highest prediction error. When evaluating prediction errors, 

fully-independent validation samples will provide prediction accuracies more likely to 

be encountered in practical use than semi- and non-independent validation samples. The 

other aspect which complicates comparisons is some manuscripts only report the r2 value 

of the calibration or just the standard error of prediction (SEP) rather than the SEP and 

the standard deviation of the soil property being predicted. For example, an SEP of 5 % 

clay has little prediction power if the standard deviation of the population is 10 % clay 

compared to a standard deviation of 60 %.  
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 To classify a soil series from a soil core, soil properties such as clay content, 

inorganic carbon, and organic carbon with depth must be known. VisNIR-DRS has been 

proven effective in predicting all these properties to varying accuracies, because the 

properties have absorption features based on molecular overtones and vibrations in the 

350-2500 nm range. Clay minerals have distinct spectral signatures because of overtones 

of OH and combinations of H2O and CO2 within the soil minerals (Clark, 1999). Silicate 

clay mineral have been shown to have distinct absorbance features, e.g. kaolinite has two 

hydroxyl bands near 1400 nm and 2200 nm (Hunt and Salisbury, 1970); smectite has 

three strong water bands at 1400, 1900, and 2200 nm (Goetz et al, 2001); and illite has 

hydroxyl bands at 1400 nm and between 2200 and 2600 nm (Hunt and Salisbury, 1970). 

The active bonds in organic carbon are O-H, C-N, N-H, and C=O groups, which are 

primarily in the mid infrared region (Malley et al., 2002). The overtones and 

combinations of the hydroxyl bonds are located in the NIR region. Inorganic carbon 

consists primarily of the two minerals calcite and dolomite. These minerals have distinct 

absorption features at 2500 to 2550 nm, 2300 to 2350 nm, 2120 to 2160 nm, 1970 to 

2000 nm, and 1850 to 1870 nm (Clark et al., 1990; Hunt and Salisbury 1971; Gaffey 

1986).  Lagacherie et al. (2008) used continuum removal at 2340 nm to quantify calcium 

carbonate of 52 soil samples. In VisNIR-DRS measurement of 72 soil cores, the majority 

of significant wavelengths for calcite were located in the NIR range (> 1600 nm) for air-

dried soil samples and for field moist samples also in the visible range (350-600 nm) 

(Morgan et al. 2009). 
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 On air-dried, ground soils VisNIR-DRS can predict clay content between 75 and 

108 g kg-1. Shepherd et al. (2002) predicted clay content of 1000 air-dried, ground 

samples from East and South Africa with an SEP of 75 g kg-1 using semi-independent 70 

% holdout and 30 % validation. Islam et al. (2003) predicted clay content of 161 air-

dried, ground samples from Australia with an SEP and relative percent difference (RPD) 

values of 89 g kg-1and 1.9, respectively with semi-independent validation. Brown et al. 

(2005) created a global spectral library from 3768 air-dried, ground soil samples from all 

50 states and Europe. This global library could predict clay content with an SEP value of 

95 and 108 g kg-1 using two regression techniques and semi-independent 70 % holdout 

and 30 % validation. Waiser et al. (2007) predicted clay content of 82 air-dried, ground 

samples from Central Texas with an SEP and RPD value of 62 g kg-1and 2.32, 

respectively using semi-independent 70 % holdout and 30 % validation. 

Spectroscopy has also been used to predict soil clay content on intact cores in the 

lab. Chang et al. (2001) used 802 soil samples to create “natural soil cells” and predicted 

clay content with an RPD and SEP value of 1.71 and 41 g kg-1 using 30 % of the data for 

semi-independent validation. Waiser et al. (2007) compared clay content prediction of 

72 Texas soil samples for field-moist in situ, field-moist smeared in situ, air-dried in situ 

and air-dried ground using 30 % of the data for semi-independent validation. They 

obtained SEP values of 61 and 41 g kg-1 for field-moist and air-dried in situ cores, 

respectively, and RPD values of 2.36 and 3.51 for field-moist and air-dried in situ cores, 

respectively. Waiser et al. (2007) showed that prediction accuracy decreased the SEP 

from 2.0 to 82.0 g kg -1 using whole-field holdout validations (fully-independent).  
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More recently, researchers have begun to investigate how well spectroscopy can 

predict clay content in the field. Viscarra-Rossel et al. (2009) used an open soil pit to 

predict the soil properties along the soil profile with non-independent leave-one-out, 

cross validation. They were able to accurately measure soil color and predicted the clay 

content in situ with an SEP of 79 g kg-1. The in situ predictions were better than the lab 

prediction’s the lab predictions had an SEP of 83 g kg-1 Ben-Dor et al. (2008) used a 

contact probe dropped down a hole drilled into the ground. Their results were favorable 

however they did not set aside independent samples for validation. 

 On air-dried, ground soils, VisNIR-DRS can predict organic carbon between 3.1 

and 6.2 g kg-1 (Viscarra-Rossel et al., 2006). Using a 30 % semi-independent validation 

data set, organic carbon has been predicted with an SEP and RPD of 2.0 g kg-1 and 4.2, 

respectively (Chang and Laird, 2002). Organic carbon has also been predicted on intact 

cores in the lab. Morgan et al. (2009) predicted the soil carbon with an SEP of 5.4 and 

4.1 g kg-1 for field-moist and air-dried intact soil cores, respectively using a 30 % semi-

independent validation data set. Again prediction accuracy decreased the value of the 

SEP up to 4.5 g kg-1 using fully-independent whole-field holdout validation instead of 

semi-independent random cross validation (Morgan et al., 2009). In the field, Christy 

(2008) developed an on-the-go spectrometer to measure organic matter of surface soils. 

Using fully-independent one-field-out methodology, Christy (2008) obtained an SEP of 

5.2 g kg-1.  

 Inorganic carbon from air-dried, ground samples has been predicted with SEP 

values ranging from 1.1 to 7.3 g kg-1, using 30 % of the data for semi-independent 
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validation (McCarty et al., 2002; Chang and Laird, 2002; Morgan et al., 2009). Inorganic 

carbon has also been predicted on intact cores scanned in the lab. Morgan et al. (2009) 

predicted the soil inorganic carbon with an SEP and RPD of 7.8 and 8.7 g kg-1 and 2.23 

and 2.02 for air-dried and field-moist intact soil cores, respectively. Using the soils’ 

reaction with HCl as an auxiliary predictor, improved the SEP and RPD of field-moist 

intact cores to 6.5 g kg-1 and 2.70, respectively. Again, prediction accuracy decreased the 

value of the SEP from 0 to 15.1 g kg-1 using fully-independent whole-field holdout 

validation versus semi-independent random cross validation (Morgan et al., 2009). 

 While prediction of air-dried, ground lab samples under uniform conditions has 

been proven effective, field predictions can be problematic because of the wide range of 

water content, smearing of the soil, field heterogeneity, and geographic extent of 

calibration models (Waiser et al., 2007; Brown et al., 2006). To address the smearing 

effect from a penetrometer on prediction accuracy, soil cores were smeared prior to 

scanning. Smearing cores showed an increase in prediction error for clay, inorganic 

carbon, and organic carbon (Waiser et al., 2007; Morgan et al., 2009). Water in soil may 

obscure spectral information because of the O-H bonds at 1400 and 1900 nm which are 

important spectral signatures of clay minerals (Bricklemeyer et al., 2010). If water 

heterogeneity does affect prediction accuracy using VisNIR-DRS, wetting cores to 

uniform moisture content or surveying soils at uniform moisture (field capacity) may 

help the accuracy. One study has compared the prediction accuracy of both variable field 

moist cores and uniformly air-dried cores and found that heterogeneous water content 

did not affect the clay prediction accuracy, but did affect IC and OC prediction accuracy 
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(Waiser et al., 2007). Wetting samples in the field is more efficient than drying samples 

and calibrating field prediction models using field samples is necessary (Minasny et al., 

2009). This research plans to address the question of whether uniform moisture in intact 

cores can increase prediction accuracy compared to non-uniform moisture in soil cores.  

 Construction of large regional and/or global libraries to increase VisNIR-DRS 

predictability has been promoted (Brown et al., 2005; Shepherd 2002). The formation of 

a global library by Brown et al., (2005) sparked interest in developing a larger global 

library and now VisNIR-DRS is one of the cornerstone methods being used in the 

GlobalSoilMap.net project (Sanchez et al., 2009). Global libraries alone are not 

sufficient to predict soil properties; global samples boosted with local samples give the 

best prediction accuracy for clay, IC, and OC (Brown 2007; Sankey et al., 2008).  

Statistical Analysis of Spectral Data  

 Large amounts of data are acquired when using VisNIR-DRS, especially when 

scanning soil profiles. For every single soil sample scanned, a large amount of non-

independent data that describes the spectral properties of that soil sample are collected. 

To develop prediction models of soil properties using this spectral data, analysis 

techniques that reduce and/or transform the data are used. Regression techniques, such 

as multiple linear regressions (MLR), partial least squares (PLS) regression, regression 

rules, and boosted regression trees (BRT) are data reduction techniques most commonly 

used to quantitatively predict soil properties. PLS regression is one of the most common 

analysis technique seen in the soil science literature (Goetz et al., 2001; Dunn et al., 

2002; Waiser et al., 2007; Morgan et al., 2009; Viscarra-Rossel et al., 2009). The 
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majority of work comparing PLS regression to BRT and MLR show that PLS regression 

performs just as well or better than the other two methods (Brown et al., 2005, Viscarra-

Rossel et al., 2007). In Brown et al. (2005), PLS and BRT predictions resulted in SEP 

values of 95 and 108 g kg-1, 9.0 and 12.07 g kg-1, and 6.2 and 7.1 g kg-1 for clay, 

inorganic carbon, and organic carbon, respectively. Predictions using regression rules, 

PLS, and BRT resulted in SEP values of 80, 72, and 86 g kg-1 for clay and 3.9, 3.5 and 

7.6 g kg-1 for total carbon, respectively (Minasny and McBratney, 2008).   

 Spectral data can be analyzed in many different ways with many end results. 

How the data are analyzed depends on user needs. Individual soil properties can be 

predicted quantitatively using PLS, as reported for clay, IC, and OC previously or 

spectral data can be used for categorically classifying soil taxonomic units. One study 

(Ben-Dor et al., 2008) explored using VisNIR-DRS to taxonomically classify soil 

profiles in the field. A contact probe was dropped down a drilled hole and the spectral 

predictions of soil moisture, soil organic matter, soil carbonates, free iron oxides, and 

specific surface area were used to describe the soil profile. Conventional descriptions, 

which were prepared according to the U.S. Soil Taxonomy, were also generated at each 

soil profile (USDA, 1999). The VisNIR-DRS generated descriptions of each soil profile 

and conventional descriptions were compared and found to be very similar. Differences 

between the spectral descriptions and conventional descriptions were noted because 

higher vertical resolution was obtained by the VisNIR-DRS and some soil properties 

could not be distinguished with the naked eye, but were distinguished by the spectral 
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data. The results in Ben-Dor et al. (2008) were favorable; however, as stated before, 

there were no independent samples for validation.   

 There are two possible approaches to classifying soils taxonomically. One 

method is similar to that used by Ben Dor et al. (2008), in which soil properties such as 

total clay, inorganic carbon, and organic carbon are quantified with depth, and the 

VisNIR-DRS description of soil properties is used for classification. Another approach is 

to classify soils into taxonomic units by direct classification. Principal components 

analysis (PCA) and linear discriminant analysis (LDA) are two methods that can be used 

together to reduce the large amount of spectral data and classify soils into categorical or 

taxonomical units. Principal component analysis (PCA) is an orthogonal coordinate 

system that seeks to maximize the variance along its ordinates. Correlated variables are 

transformed into a smaller number of uncorrelated variables (Martinez 2001). The first 

PC describes the largest portion of the total variation in the data. A biplot of principal 

components is an easy way to visualize the similarities and dissimilarities among soil 

samples (Gower and Hand, 1996). The distribution of the soils within the biplot gives an 

indication of the variation between soils (Islam et al., 2005).  

 Linear discriminate analysis is similar to PCA in that it looks for variables which 

best explain the data; however, LDA attempts to model the differences between classes, 

whereas PCA does not account for any difference in classes (Martinez 2001). In soils, 

LDA has been successfully implemented for direct classification of soil properties, but 

use of LDA is not common. For example, spectral data on 149 Brazilian soils were 

collected using laser induced breakdown spectroscopy (LIBS). These soils were 



14 
 

classified to soil order using LDA with a 90 and 72 % classification rate for the 

independent validation and cross-validation data, respectively (Pontes et al., 2009). In 

another application, concentrations of hydrocarbons in soil have been classified with a 

100 % exact match using spectral data collected on 220 sands with a mass spectrometer 

(Pavon et al., 2003). This research plans to test how well LDA can classify soils into soil 

units such as series and horizons. 
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CHAPTER III 

MATERIALS AND METHODS 

Site Selection and Soil Coring 

 Two agricultural fields in Central Texas were chosen based on the heterogeneity 

and similarity of soil series located in these fields. Both fields were mapped as a 

complex of two soils series that cannot be shown separately on the NRCS Soil Survey 

map (Soil Survey Staff, 2008). Each area of a complex contains some of each of the two 

or more dominant soils, and the pattern and relative proportions are about the same in all 

areas. Field 100, located in Milam County near Thorndale, TX, 30°36′45″N 

97°12′16″W, is approximately 24 ha, and was under a corn (Zea mays (L.)) and wheat 

(Triticumaestivum (L.)) rotation. Field 200, located in Lee County near Lincoln, TX, 

30° 17′ 15″ N 96° 57′ 48″ W, is approximately 17 ha, and was primarily under 

continuous corn. The soil series mapped in the fields are Burleson, Wilson, and Davilla, 

where Burleson is only located in Field 100 (Soil Survey Staff, 2008).  Burleson is a 

fine, smectitic, thermic Udic Haplustert located on Pleistocene age terraces of clayey 

alluvium; further, it is a Veritsol with either clay loam or clay surface and clay subsoil. 

Wilson is a fine, smectitic, thermic Oxyaquic Vertic Haplustalf located on terraces or 

remnant uplands with clayey alluvium parent material of Quaternary age. This Alfisol 

has a fine particle size class (>35 % clay weighted average, for the first 50 cm of the 

argillic horizon). Davilla is a fine-loamy, siliceous, superactive, thermic Udic Haplustalf 

located on Pleistocene age terraces of loamy alluvium. Davilla is also an Alfisol, but has 
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a fine-loamy particle size class (<35 % clay weighted average, for the first 50 cm of the 

argillic horizon). 

 Before obtaining soil cores, 10-m resolution maps of elevation and ECa were 

created for each field to provide information for directed sampling (Fig. 3.1 and 3.2). 

Bulk soil electrical conductivity was measured using an EM38DD (Geonics Ltd., 

Mississauga, Ontario, CA) landscape survey sensor and a R7/R8 dual frequency GPS 

(Trimble, Sunnyvale, CA) with a base station and rover antenna (± 2 cm vertical 

accuracy). The EM38DD was mounted to a wooden sled and pulled behind an ATV 

while the GPS rover antenna was attached to the top of the ATV. Before each survey, 

the EM38DD was calibrated according to manufacturer instructions. During each survey 

the EM38DD was monitored for drift (Sudduth et al., 1995) and kept covered to protect 

from direct sunlight (Abdu et al., 2007). Ten-meter wide transects were driven while 

logging all data at 1-s intervals, at a 20 to 30 km hr-1 traveling speed. 

 The ECa map was used to select locations for obtaining soil cores, and 

subsequent VisNIR-DRS analysis. Each field was partitioned into four ECa zones using 

fuzzy k-means (R Development Core Team, 2004). Four points were randomly located 

in each ECa zone. If a sampling location was less than 10 m from a boundary with 

another ECa zone, the sampling location was moved so it would be 10 m from the 

boundary. A total of 32 sampling sites were chosen to collect soil cores with 16 cores in 

each field (Fig. 3.1 and 3.2). The soil cores were collected with a truck-mounted 

Giddings hydraulic soil probe in August and September 2008, after harvesting. Soil 

cores were collected using a metal tube with a 6.0-cm (2 3/8-inch) diameter by 122-cm  
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Fig. 3.1. Map of a) four soil apparent electrical conductivity zones and b) elevation with 
soil series and sampling points for Field 100. 
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Fig. 3.2. Map of a) four soil apparent electrical conductivity zones and b) elevation with 
soil series and sampling points for Field 200. 
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(48-inch) long plastic sleeve. Each core was obtained to 120 cm depth or the depth that 

the parent material inhibited coring. In Field 200, the parent material was shallow, 

approximately 50 cm deep, for five of the cores. After extraction, the cores and the hole 

from which the core was retracted were measured to assess compaction. The soil cores 

were stored in an ice chest for transport to the lab then in a walk-in cooler at 6.7°C 

(44°F) for one week prior to scanning.  

VisNIR-DRS Scanning and Spectral Processing 

 The soil cores were transferred from the cooler to the lab and allowed to 

equilibrate to room temperature prior to scanning. Soil cores were cut in half, 

lengthwise, using a utility knife to cut the plastic sleeve and a piano wire to cut the soil 

cores. One-half of each core was used for scanning. A wire grid was used to identify two 

columns and multiple rows (each row was 2.5-cm thick) on the intact soil core. A 

schematic of the scanning methodology can be seen in Fig. 3.3. An ASD AgriSpec 

VisNIR spectrometer (Analytical Spectral Devices, Boulder, CO), with a spectral range 

of 350-2500 nm, was used to scan the soil cores, using a contact probe containing a 

halogen white light source within. A white reference Spectralon panel was used prior to 

scanning each core to set reflectance to 100%. Each row within a column was scanned 

twice, with a 90º rotation of the contact probe between scans. The soil cores were then 

wet with distilled water to a uniform wetness and scanned again after equilibrating for 

24 hours. Due to processing error, only 11 cores from Field 100 were scanned at 

uniformly moist conditions. 
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Fig. 3.3. The three pretreatments of the VisNIR-DRS data for creating calibration 
models using a) all the spectral data individually (n=1422), b) average of VisNIR-DRS 
data from side-by-side scans (n=711), and c) average of the VisNIR-DRS data within a 
soil horizon (n=131). 
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Before analysis, the collected raw spectral data were pretreated by splicing, averaging, 

and taking the 1st and 2nd derivatives of the reflectance. The spectral data were spliced to 

produce seamless spectra where the three detectors overlapped across the wavelength 

spectra. Results of the two replicate scans at 0° and 90° were averaged. Cores were 

rescanned where the standard deviation of the two replicate scans was greater than 0.50. 

The mean of the reflectance was calculated at 10-nm intervals (350-2500 nm). A cubic 

smoothing spline implemented in the R “smooth spline” function (R Development Core 

Team, 2004) was then fit to each raw spectral curve following the methods of Brown et 

al. (2006) and Waiser et al. (2007). The 1st derivatives, which were used for model 

predictions, were then calculated from the reflectance data to reduce albedo. 

Sampling for Lab Analysis and Classification 

 After scanning, horizon depths and soil properties of each core were identified 

according to NRCS field description. To accurately classify the soil cores into the series 

each core was first described according to the Soil Taxonomy guide book (USDA, 

1999). Both halves of the soil cores were combined by horizon and each horizon was 

allowed to air dry before analysis. The soil sample was then ground and passed through 

a 2-mm sieve for particle size distribution analysis and fine ground for total and 

inorganic carbon analysis. Particle size distribution was determined in the laboratory 

using the pipette method (Steele and Bradfield, 1934; Kilmer and Alexander, 1949). 

Total carbon was measured using the dry combustion method (Soil Survey Staff, 1996 

and Nelson and Sommers, 1982) and inorganic C was measured using the modified 
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pressure calcimeter method (Sherrod et al., 2002). Organic C was calculated by 

subtracting the inorganic carbon from the total carbon (Soil Survey Staff, 1996).  

 After lab analysis, the measured laboratory data were used to correct the soil 

series classification. Following direction from the NRCS soil scientist, soil cores from 

Field 100 were classified according to the texture of the A horizon and soil cores from 

Field 200 were classified according to the particle class size (Waiser, T. personal 

communication, 2009). In Field 100, soil cores with a texture of fine sandy loam, loam, 

and clay loam for the A horizon were classified as a Davilla, Wilson, and Burleson, 

respectively while in Field 200, soil cores with a particle class size of fine and fine-

loamy were classified as Wilson and Davilla series, respectively. 

PLS Spectral Analysis 

 Partial least square regression models were calibrated and validated using both 

semi-independent and fully-independent techniques. Semi-independent validation was 

performed by randomly selecting 70 % of the soil cores for the calibration model while 

the remaining 30 % were used to validate the model. Complete soil cores were randomly 

selected so that any single core was not split between the calibration and validation 

datasets. Fully-independent validation was performed by creating the calibration models 

using whole-field holdouts. Specifically a whole-field holdout refers to using Field 100, 

Field 200, or a completely independent spectral library for calibration and then 

validating the model with the remaining cores. Models were built using only the 

calibration data set, with the first derivative, 10-nm averaged spectral data. The 
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prediction model was built using 1/25th cross validation PLS regression in Unscrambler 

9.0 (CAMO Tech, Woodbridge, NJ).  

 All calibration models were validated and compared quantitatively using four 

metrics. The coefficient of determination (R2), standard error of prediction (SEP), 

relative percent difference (RPD), and bias were calculated to compare the accuracy of 

the different PLS models. Statistical formulas to calculate SEP, RPD and bias follow 

Gauch et al. (2003), Brown et al (2005), Chang et al. (2002) and Waiser et al. (2007).  

 Because the laboratory measurements of soil properties were performed by 

horizon and the VisNIR-DRS scans were collected every 2.5 cm along the soil core, 

three options were explored for developing calibration models and four methods were 

used for estimating prediction accuracy. All three methods for calibration were based on 

semi-independent validation. Given that horizon-based laboratory measurements of soil 

properties are common practices in soil description and mapping, and a benefit of 

VisNIR-DRS in soils is a fine vertical resolution of soil information, the methodology 

and results for combing data prior to calibrating a model was explored. The first 

calibration model used all the spectral data (1 spectrum is the average of two 90oscans) 

matched individually with lab clay data, (n=1422; Fig. 3.3a). The second calibration 

model used the mean of side-by-side scans matched to the lab clay data (n=711; Fig. 

3.3b).  This second option explores any improvement in accuracy that might be available 

by collecting a second profile scan. The third calibration model averaged (mean) all the 

spectral scans within a soil horizon, using the core descriptions to identify horizon 

boundaries, (n=131; Fig. 3.3c). Note that this third estimation requires prior knowledge 
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of the soil horizons, hence some sort of field description. Finally a fourth estimation of 

prediction accuracy was made by averaging (mean) the clay content predictions of the 

second calibration model by horizon, and then comparing those predictions to actual clay 

content measured by horizon. In essence, the last two options both compare prediction 

accuracy at the same scale (by horizon). However, the third option combines spectral 

data by horizon before calibration and the fourth combines spectral predictions by 

horizon after validation. 

 Prediction accuracy of clay content using the spectral data from variable and 

uniform soil moisture was compared for these four models, thereby creating a total of 

eight models for comparison. The prediction accuracies of all eight models were 

compared to determine the best model to use for classifying soil cores into series. Even 

though moisture measurements were not taken for both fields prior to collecting the soil 

core, Field 100 was much drier than Field 200. In addition to the eight semi-independent 

models, two side-by-side averaged spectra calibration models were created using whole-

field out validation techniques to compare how the variable soil moisture between the 

two fields affects prediction accuracy.  

 Finally, to test the predictability of a previously collected in situ VisNIR-DRS 

library, total clay was predicted using the data set from Waiser et al. (2007). This Central 

Texas data set consists of 70 cores from 6 fields. Summary statistics for Field 100, Field 

200, and the Central Texas data are in Table 3.1. The Central Texas data set was used 

alone, boosted with Field 100, and boosted with Field 200, to create three calibration  
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Table 3.1. Soil property summary statistics for Field 100, Field 200, and the Central 
Texas data set. 
 

†standard deviation 
‡inorganic carbon 
§organic carbon 
 

Soil property Mean SD† Max. Min. Skew Kurtosis 

 --------------------------------g kg-1-------------------------------- 

Field 100 n= 16       

Clay 274.7   59.6  405.7 123.0 -0.87 0.41 

Sand 381.6 114.8 770.1 219.9  1.55 2.53 

Silt 343.7   78.7 454.4   79.9 -2.13 4.83 

 

Field 200 n=16 

Clay 304.4 115.8 470.1   66.5 -0.81 -0.59 

Sand 443.0 147.2 793.8 225.8  0.82 -0.27 

Silt 252.5   64.9 388.7 137.1  0.34 -0.92 

 

     Field 100 and 200 calibration samples, n = 18 

Clay 313.9   98.2 468.3   69.1  -0.70 -0.23 

Sand 398.8 137.3 793.8 229.3 -0.98 -0.15 

Silt 287.3   85.3 454.4   79.9 -0.02 -0.63 

 

  Field 100 and 200  validation samples, n= 9 

Clay 304.5 100.5 470.2   66.5 -0.80 -0.17 

Sand 387.4 147.0 776.3 219.9  1.21  0.75 

Silt 308.7   80.3 399.0 147.4 -0.79 -0.91 

        

Waiser et al. (2007)  n=71 

Clay 259.5 140.8 578.0 120.0   0.10 -0.60 

Sand 481.9 243.5 965.0 500.0   0.30 -0.13 

Silt 258.6 130.0 617.0 220.0  -0.13 -0.97 

IC‡   16.3    21.8 109.4     0.0   1.60  2.40 

OC§   10.6   10.4   55.9     0.0   1.80  3.40 
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models for clay content. Validation data for the three models were Field 100 and 200, 

when they were not used in the calibration. 

Classifying Soil Series Using PLS  

 To quantitatively classify soil series using VisNIR-DRS, Fields 100 and 200 

were classified into soil series by using PLS. Soil properties were predicted using the 

uniformly moist side-by-side averaged spectra for PLS model building. Calibration 

models for clay, sand, and silt were developed using both semi- and fully-independent 

data sets. The semi-independent models used 70 % of the soil cores from both field to 

create the calibration model and the remaining 30 % to validate the models. The fully-

independent sets used the Central Texas data set boosted with Field 100 or 200, 

depending on the field being predicted. To base soil series classification on quantitative 

PLS prediction, texture of the surface horizon and the amount of clay in the particle class 

size were calculated using the predicted clay, sand, and silt contents.  

Classifying Soil Series Using LDA  

 To categorically classify soil cores using VisNIR-DRS and to bypass the PLS 

modeling with a more hands off approach, LDA was used to directly classify soil 

horizons and series on the uniformly moist side-by-side averaged spectra. To initially 

evaluate the potential of LDA, principal component plots were created to visually assess 

the spectral distinctness between the horizons and series (Islam et al., 2005). The first 

three principal components of the first derivatives of the spectral data were created for 

total clay, soil horizons (A and B) and the soil series (Wilson, Davilla, and Burleson) 

using the “prcomp” function in R. For LDA analysis the first seven principal 
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components, were selected because they explained 84 % of the spectral variability of 

each series or horizon being classified. Using the “lda” function in R, the soil series was 

classified for each soil core. For LDA training, two sets of training data were used, one 

was the semi-independent calibration and the other was the fully-independent 

calibration. The fully-independent model used either Field 100 or 200, depending on the 

field being predicted. The Central Texas data set was not used for training because the 

soil series in this library do not match those of Field 100 and 200. 

 Once the models were trained, soil series were classified for each side-by-side 

averaged spectrum at every 2.5 cm. The final predicted series for each soil core was 

chosen as the series classified over 50 % of the time. The kappa coefficient of 

agreement, which measures the amount of agreement between the actual and LDA 

predicted classifications, was calculated to compare the accuracy of the different LDA 

models (Brown et al., 2006). A kappa coefficient of one means there is an almost perfect 

agreement.  

Classifying Soil Series Using LDA Plus PLS  

 Because using LDA to classify soil series is unreliable, a more guided approach 

of classifying series was used. Using the “lda” function in R, horizons within each soil 

core were directly classified as A or B horizons. For LDA training, two sets of training 

data were used, one was the semi-independent calibration and the other was the fully-

independent calibration. The fully-independent model used either Field 100 or 200, 

depending on the field being predicted. The texture of the A horizon and the particle size 
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class of the B horizon were then calculated by using the PLS predicted clay, sand, and 

silt contents.  
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CHAPTER IV 

RESULTS 

Soil Series Classification 

 According to the EM38DD and elevation surveys conducted, Field 100 and Field 

200 had ECa values of 43 to 132 and 4 to 199 mS m-1, respectively and elevations of 

111.37 to 116.22 and 91.31 to 98.02 m, respectively (Fig. 3.1 and 3.2). Field 200 had a 

broader range of ECa values across the field, and in the highest ECa zone, all four cores 

were darker and higher in clay content than the other soil cores. Both Field 100 and 200 

had similar changes in elevation across the field. Some short variation in ECa was seen 

across both fields, which could be associated with gilgai.  

 To demonstrate the difficulty in classifying soil cores between Wilson and 

Davilla, the soil cores sampled for this project were classified three times, each resulting 

in different outcomes. The cores were classified first according to soil survey maps, 

second by field descriptions of the actual core, and finally using lab analysis. According 

to the soil survey map and locations where the soil cores were taken, three soil cores 

from Field 100 should have been Burleson and the rest from Field 100 and Field 200 

should have either been Wilson or Davilla (Fig. 3.1 and 3.2). Based solely on field 

descriptions, four cores were classified as Davilla and twelve as Wilson in Field 100 and 

ten as Davilla and six as Wilson in Field 200. However, using the lab particle size 

analysis, the cores were reassigned to a different series—six Davilla, nine Wilson, and 

one Burleson series in Field 100 and six Davilla and ten Wilson in Field 200. Table 4.1  
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Table 4.1. Summary of the NRCS series classification using the lab measured clay 
content by both the texture of the A horizon and the particle control section. Highlighted 
sections indicate how the soil was classified by NRCS soil scientist protocol.  

  

 NRCS Series Classification 

Cores Particle Size 
Class Series 

Particle Size Class 
Clay Percent 

A Horizon 
Texture Series 

A Horizon 
Texture 

101 Davilla 28.3 Davilla Fine sandy loam 
102 Davilla 26.9 Wilson Loam 
103 Davilla 29.3 Davilla Fine sandy loam 
104 Davilla 27.8 Davilla Fine sandy loam 
105 Davilla 29.1 Davilla Fine sandy loam 
106 Davilla 31.4 Davilla Fine sandy loam 
107 Davilla 27.2 Wilson Loam 
108 Davilla 31.3 Wilson Loam 
109 Davilla 31.5 Wilson Loam 
110 Davilla 30.8 Wilson Loam 
111 Davilla 24.8 Wilson Loam 
112 Davilla 25.5 Davilla Fine sandy loam 
113 Davilla 34.1 Burleson Clay loam 
114 Davilla 34.0 Wilson Loam 
115 Davilla 33.2 Wilson Loam 
116 Davilla 31.1 Wilson Loam 
201 Wilson 42.2 Davilla Fine sandy loam 
202 Wilson 46.5 Davilla Fine sandy loam 
203 Davilla 31.6 Davilla Fine sandy loam 
204 Davilla 33.9 Davilla Fine sandy loam 
205 Wilson 42.2 Davilla Fine sandy loam 
206 Davilla 30.8 Davilla Fine sandy loam 
207 Wilson 38.6 Davilla Fine sandy loam 
208 Davilla 21.3 Wilson Loam 
209 Davilla 33.9 Davilla Fine sandy loam 
210 Davilla 29.6 Davilla Fine sandy loam 
211 Wilson 36.1 Davilla Fine sandy loam 
212 Wilson 37.9 Wilson Loam 
213 Wilson 41.3 Wilson Loam 
214 Wilson 39.3 Davilla Fine sandy loam 
215 Wilson 41.9 Wilson Loam 
216 Wilson 37.1 Wilson Loam 
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summarizes the final soil core classifications according to the NRCS soil scientist 

protocol for both Field 100 and 200. 

Effect of Uniform and Variable Soil Moisture 

 To determine if the prediction accuracy of a PLS model for soil clay can be 

improved with scanning soil cores at uniform soil moisture; prediction models were built 

using both variable and uniform moisture content. According to the results of the semi-

independent models, wetting soils to uniform moisture prior to scanning slightly 

improved predictions (Table 4.2). In general by using scans of uniform soil moisture, the 

r2 increased and the RPD improved by 6 to 13 %. For all four models, the bias increased 

with uniformly moist scans. It should be noted that the standard deviations between the 

uniform and variable moistures are different for Field 100 because 5 cores were 

processed before scanning them at uniform moisture.  

 As expected, fully-independent, whole-field, models yielded poorer predictions 

than the semi-independent models; however, these results provide more evidence that 

uniform moisture improves prediction accuracy (Table 4.3). The fully-independent 

predictions of clay improved RPD values by 44 and 64 % in Field 100 and 200, 

respectively. The sand predictions were less conclusive. Soil cores in Field 200 were 

wetter than the soil cores in Field 100 because a light rain occurred one week prior to 

sampling Field 200. The average reflectance of both the uniformly moist and variable 

moist scans of all the soil cores had distinct peaks at 1400, 1900, and 2100 nm (Fig. 4.1). 

Soil cores at field moisture had higher reflectance than the uniformly moist soil cores  
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Table 4.2. Prediction of total clay content using the 1st derivative of VisNIR reflectance 
and the four methods used for estimating prediction accuracy of the PLS semi-
independent calibration models. 

† SEP, RPD, and PCs are standard error of prediction, residual prediction deviation, and 

principal components, respectively. 

  

     

 Individual 
Spectra 

Side-by-side 
averaged 
spectra 

Horizon 
averaged 
spectra 

Horizon 
averaged clay 
predictions 

Variable Moisture    

r2 0.76 0.77 0.86 0.85 
SEP†, g kg-1 49.2 48.9 42.3 40.9 
RPD† 2.00 2.02 2.43 2.52 
Bias, g kg-1 -9.00 -10.9 -18.6 -7.90 
PCs† 6 7 6 7 
     
Uniform Moisture     

r2 0.76 0.80 0.89 0.89 
SEP, g kg-1 48.4 47.0 40.4 36.7 
RPD 1.92 2.14 2.59 2.85 
Bias, g kg-1 -16.92 -13.7 -20.9 -12.8 
PCs 5 5 5 5 
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Table 4.3. Prediction accuracy of clay content using fully-independent, whole-field 
holdouts under variable and uniformly moist soil conditions for the side-by-side 
averaged spectral data.  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  
 
 

 † SEP, RPD, and PCs are standard error of prediction, residual prediction 

 deviation, and principal components, respectively. 

 
 
 

Soil property r2 SEP†, g kg-1 RPD† Bias, g kg-1 PCs† 

Variable Moisture 

Field 100 validation, n=16 

Clay 0.54 59.3 1.07 40.6 5 

Sand 0.19 108.0 1.00 -42.9 8 

Silt 0.04 78.8 0.86 -6.7 9 

Field 200  validation, n=16 

Clay 0.53 137.3 0.85 -111.1 4 

Sand 0.64 123.3 1.20 28.9 10 

Silt 0.56 107.4 0.61 52.4 10 

Uniform Moisture 

Field 100  validation, n=11 

Clay 0.60 38.7 1.54 4.5 5 

Sand 0.65 94.01 1.23 59.3 11 

Silt 0.18 94.5 0.83 -61.4 8 

Field 200  validation, n=16 

Clay 0.53 83.4 1.39 -24.7 11 

Sand 0.49 132.8 1.12 14.60 7 

Silt 0.01 261.18 0.25 195.5 11 
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Fig. 4.1. Average of the reflectance of the spectral scans at field moisture (red) and 
uniform moisture (blue) for the cores in Field 100 and 200. 
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(Fig. 4.1). Because uniform moisture showed an increase in predictability, the rest of the 

analyses were performed on the uniformly moist spectral data. 

Prediction Accuracy from Averaging Multiple Scans  

 Overall, the estimated prediction accuracy of the three PLS clay prediction 

models built using the individual spectra data, the side-by-side averaged spectra, and the 

horizon averaged spectra all showed improvement with averaging (Table 4.2). Using 

individual spectra without averaging to predict clay yielded poorest prediction accuracy 

(Fig. 4.2a). To simulate techniques available used with a VisNIR-DRS mounted 

penetrometer, where horizon depths are unknown but the penetrometer collects two sets 

of scans for a soil profile, the side-by-side averaged spectra improved clay prediction by 

1.5 g kg-1and the RPD to 2.14 (Fig. 4.2b). Averaging the spectral data of each soil 

horizon before predicting clay content improved the prediction accuracy by 7.4 g kg-1and 

the RPD to 2.59 (Fig. 4.2c). Lastly using the side-by-side averaged spectra prediction 

model (Fig. 4.2b) and averaging the predicted clay content of each horizon provides a 

more representative presentation of how well the VisNIR-DRS is predicting clay with a 

bias, SEP, and RPD of -12.8, 36.7 g kg-1, and 2.85 respectively (Fig. 4.2d). Overall, not 

averaging the spectra by soil horizon before putting the data into a PLS calibration is the 

practical option because horizon depths will likely not be known when using VisNIR-

DRS attached to a penetrometer in the field. However if time allows, the added data 

from side-by-side scans is useful. The rest of the analyses were performed using the 

uniformly moist side-by-side averaged spectra.  
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Fig. 4.2. Uniformly moist predicted vs. measured clay content of the validation data for 
(a) individual spectra, (b) side-by-side averaged spectra, (c) spectra averaged by horizon, 
and (d) predictions averaged by horizon. 
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Performance of the Central Texas Spectral Library 

 Because two small fields mapped as similar soil series provide little variability 

and a conceptual VisNIR-DRS soil mapping expedition would use a VisNIR-DRS 

library, 70 cores from the Central Texas data set were used with Field 100 and 200 cores 

to create three PLS calibration models for clay, sand, and silt. The calibration models 

were created using the Central Texas data alone, the Central Texas data boosted with 

Field 100, and the Central Texas data boosted with Field 200. Boosting the Central 

Texas data set with Field 100 and 200, improved predictions of clay, sand, and silt 

(Table 4.4). Boosting with Field 100 improved the RPD of clay predictions by 34% and 

boosting with Field 200 improved the RPD by 80 %. The RPD of sand predictions was 

improved by 55 and 36 % for Field 100 and 200, respectively. These results indicate that 

using an in situ library of soil core scans boosted with local samples, which have similar 

properties as the validation, is a preferable method for characterizing properties of soil 

cores. 

PLS Classification of Soil Series 

 The soil cores were classified to soil series using PLS-based predictions of sand, 

silt, and clay and then assigned a series according to both the texture of the A horizon 

and the particle size class. For comparison purposes, two PLS models were built with the 

semi-independent data and the fully-independent Central Texas data boosted by the field 

not being classified. Clay content, predicted using PLS, of one core from each of the 

three soil series is plotted with depth (Fig. 4.3). By graphing the predicted clay content 

by depth for each soil core, the Alfisols (Wilson and Davilla) were easy to distinguish  
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Table 4.4. Prediction accuracy of clay content using fully-independent, whole-field 
holdout for the uniformly moist side-by-side averaged spectra. Models were created with 
the Central Texas data alone and boosted with Field 100 or 200 scans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      † SEP, RPD, and PCs are standard error of prediction, residual prediction 
     deviation, and principal components, respectively. 
 

Soil property r2 SEP†, g kg-1 RPD† Bias, g kg-1 PCs† 

Central Texas calibration unboosted 

Field 100 validation 

Clay 0.57 121.2 0.49 114.3 9 

Sand 0.48 119.6 0.96 -86.6 8 

Silt 0.43 70.0 1.12 -32.6 7 

Field 200 validation 

Clay 0.55 103.2 1.12 65.9 9 

Sand 0.47 137.9 1.06 -14.4 8 

Silt 0.53 64.8 1.00 -24.7 7 

Central Texas calibration boosted with Field 200 

Clay 0.57 67.7 0.88 53.9 5 

Sand 0.56 77.0 1.49 -1.8 8 

Silt 0.27 82.6 0.95 -46.6 9 

Central Texas calibration boosted with Field 100 

Clay 0.55 78.42 1.50 3.06 9 

Sand 0.65 103.9 1.44 -29.9 8 

Silt 0.52 68.5 1.63 -4.3 8 
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Fig. 4.3. Predicted clay plotted with depth for Wilson series (blue), Davilla series (red) 
and Burleson series (black) cores. 
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because of the sharp increase in clay content (Fig. 4.3). The Burleson series (plotted in 

black, Fig. 4.3) was consistent in clay content throughout.  

 The A horizon was distinguished from the B horizon by looking for increases in 

clay. The first 20 spectra (2.5 cm each) starting at the top of the B horizon were used to 

calculate the particle size class. Using the semi-independent model to predict both the 

texture of the A horizon and the particle size class, all cores from Field 100 and 200 

were correctly classified to soil series (Table 4.5). Using fully-independent Central 

Texas boosted model, 19 of the 27 soil cores from Field 100 and 200 were correctly 

classified to soil series with a kappa coefficient of 0.50 (Table 4.6). Eighty-one percent 

of Field 200 cores and 55 % of Field 100 cores were classified correctly.  

Principal Components Analysis 

 Principal components plots based on clay content show that Field 100 and the 

Central Texas data soils are spectrally similar, while Field 200 soils have similar and 

dissimilar spectral features (Fig. 4.4). The first three principal components with respect 

to soil horizons A and B show some differentiation by horizon, particularly in the first 

two principal components (Fig. 4.5). Overall, the three soil series appear to overlap each 

other and do not clearly differentiate in the principal component plot (Fig. 4.6). The 

Davilla series spreads across the plot and between the other two series. The spectral 

properties of Burleson and Wilson aggregate together and are hard to differentiate. 

LDA Classification of Soil Series 

 Linear Discriminant Analysis was performed to bypass the step of developing 

PLS models to predict texture. The first seven principal components explained 94 % of  
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Table 4.5. NRCS soil series and the semi-independent PLS based series classification. 
Series were classified by both the texture of the A horizon and the particle control 
section. Highlighted sections indicate how the soil was classified by NRCS soil scientist 
protocol. 

 
 
  

 NRCS Series Classification  Predicted Series Classification 

Cores Particle Size Class A Horizon 
Texture 

 Particle Size Class A Horizon 
Texture 

107 Davilla Wilson  Davilla Wilson 
111 Davilla Wilson  Davilla Wilson 
113 Davilla Burleson  Davilla Burleson 
114 Davilla Wilson  Davilla Wilson 
204 Davilla Davilla  Davilla Davilla 
206 Davilla Davilla  Davilla Davilla 
207 Wilson Davilla  Wilson Davilla 
211 Wilson Davilla  Wilson Davilla 
212 Wilson Wilson  Wilson Wilson 
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Table 4.6. NRCS series and the PLS bases series classification using the fully-
independent Central Texas data boosted with Field 100 and 200. Series were classified 
by both the texture of the A horizon and the particle control section. Highlighted sections 
indicate how the soil was classified by NRCS Soil Scientist protocol. Series labeled in 
bold were misclassified. 

 
 

 
  

 NRCS Series Classification Predicted Series Classification 

Cores Particle Size 
Class 

A Horizon 
Texture 

Particle Size 
Class 

A Horizon 
Texture 

106 Davilla Davilla Wilson Davilla 
107 Davilla Wilson Wilson Davilla 

108 Davilla Wilson Wilson Davilla 

109 Davilla Wilson Wilson Burleson 

110 Davilla Wilson Wilson Burleson 

111 Davilla Wilson Davilla Wilson 
112 Davilla Davilla Davilla Davilla 
113 Davilla Burleson Wilson Burleson 
114 Davilla Wilson Wilson Davilla 

115 Davilla Wilson Davilla Wilson 
116 Davilla Wilson Wilson Wilson 
201 Wilson Davilla Davilla Davilla 
202 Wilson Davilla Wilson Davilla 
203 Davilla Davilla Davilla Davilla 
204 Davilla Davilla Davilla Davilla 
205 Wilson Davilla Davilla Davilla 
206 Davilla Davilla Davilla Davilla 
207 Wilson Davilla Davilla Davilla 
208 Davilla Wilson Davilla Wilson 
209 Davilla Davilla Davilla Davilla 
210 Davilla Davilla Davilla Davilla 
211 Wilson Davilla Wilson Davilla 
212 Wilson Wilson Wilson Burleson 

213 Wilson Wilson Wilson Burleson 

214 Wilson Davilla Wilson Burleson 

215 Wilson Wilson Wilson Burleson 

216 Wilson Wilson Wilson Burleson 
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Fig. 4.4. Cluster plot of the first three principal components based on clay for Field 100 
(black), Field 200 (red), and the Central Texas data (green) using the first derivatives of 
the reflectance for uniform moisture. The first three principal components account for 
84% of the variability. 
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Fig. 4.5. Cluster plot of the first three principal components of the soil series Wilson 
(red), Davilla (red), and Burleson (green) using the first derivatives of the reflectance for 
uniform moisture. The first three principal components account for 84% of the 
variability. 
 
 
 
 
 



45 
 

 
Fig. 4.6. Cluster plot of the first three principal components of the soil horizons A 
(black) and B (red) using the first derivatives of the reflectance for uniform moisture. 
The first three principal components account for 84% of the variability. 
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the spectral variability and were used in LDA to directly classify soil cores into series 

and to directly classify soil horizons. Using the semi-independent calibration, soil series 

were classified correctly 78 % of the time; the kappa coefficient was 0.54 (Table 4.7). 

As expected, LDA performed poorer with fully-independent training, soil series were 

classified correctly 73 % of the time in Field 100 and 69 % of the time in Field 200; the 

kappa coefficients were 0.41 and 0.39, respectively (Table 4.7).  

LDA Plus PLS Classification of Soil Series 

 Because direct LDA classification of soil series was so unreliable, a more guided 

approach that included directly classifying soil horizons first was used. Texture and 

particle size class were obtained on the LDA-classified horizons to determine soil series. 

Using the semi-independent training, 70 % of the soil horizons were classified correctly; 

the kappa coefficient was 0.35. By using both the texture of the A horizon and the 

particle class size for the LDA horizons, all of the soil cores were correctly classified to 

soil series (Table 4.7). 

 The guided LDA approach performed poorer with fully-independent training. 

Soil horizons of Field 100 and 200 were classified correctly with exact matches of 60 

and 81 %, respectively. Field 100 predictions were barely better than a guess hence the 

kappa coefficient was 0.04. Field 200 performed better with a kappa coefficient of 0.47. 

By using both the texture of the A horizon and the particle class size for the LDA 

horizons, 14 of the 27 soil cores were correctly classified to soil series (Table 4.7). 
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Table 4.7. Summary of the PLS, LDA, and LDA plus PLS series classification. Series 
labeled in bold were misclassified. Highlighted sections indicate soil cores that were 
misclassified using all three methods. 

Cores NRCS Series PLS Series LDA Series LDA plus PLS Series 

Semi-independent Calibration 
107 Wilson Wilson Wilson Wilson 
111 Wilson Wilson Wilson Wilson 
113 Burleson Burleson Wilson Burleson 
114 Wilson Wilson Wilson Wilson 
204 Davilla Davilla Davilla Davilla 
206 Davilla Davilla Davilla Davilla 
207 Wilson Wilson Davilla Wilson 
211 Wilson Wilson Wilson Wilson 
212 Wilson Wilson Wilson Wilson 

Fully-independent Calibration 
106 Davilla Davilla Wilson Wilson 

107 Wilson Davilla Wilson Wilson 
108 Wilson Davilla Wilson Davilla 

109 Wilson Burleson Davilla Davilla 

110 Wilson Burleson Wilson Burleson 

111 Wilson Wilson Wilson Wilson 
112 Davilla Davilla Davilla Davilla 
113 Burleson Burleson Wilson Burleson 
114 Wilson Davilla Wilson Wilson 
115 Wilson Wilson Wilson Burleson 

116 Wilson Wilson Wilson Burleson 

201 Wilson Davilla Davilla Davilla 

202 Wilson Wilson Davilla Davilla 

203 Davilla Davilla Davilla Davilla 
204 Davilla Davilla Davilla Davilla 
205 Wilson Davilla Davilla Davilla 

206 Davilla Davilla Davilla Davilla 
207 Wilson Davilla Davilla Davilla 

208 Davilla Davilla Wilson Davilla 
209 Davilla Davilla Davilla Davilla 
210 Davilla Davilla Davilla Davilla 
211 Wilson Wilson Wilson Wilson 
212 Wilson Wilson Wilson Davilla 

213 Wilson Wilson Wilson Davilla 

214 Wilson Wilson Wilson Wilson 
215 Wilson Wilson Wilson Wilson 
216 Wilson Wilson Wilson Davilla 
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CHAPTER V 

DISCUSSION 

1) When scanning intact soil scores, can VisNIR-DRS prediction accuracy be improved 

by scanning cores that are uniformly moist (i.e. at field capacity) rather than at non-

uniform moistures (i.e. during wetting or drying phases)? 

 Previous studies have shown that soil moisture can negatively affect prediction 

accuracy when using VisNIR-DRS (Wasier et al., 2007; Minasny et al., 2009; 

Bricklemeyer et al., 2010). Although the absorption peaks appear to be the same with 

varying moisture, the shape and height of the peak can be different with varying soil 

moisture (Minasny 2009). Also, because the distinct absorption peaks for clay minerals 

are at 1400, 1900, and 2200 nm (Shepherd and Walsh, 2002), and the O-H bonds for 

water are at 1400 and 1900, soil moisture may obscure spectral information 

(Bricklemeyer et al., 2009). Plots of the average reflectance for uniform and varying soil 

moisture of the two fields in this study are consistent with previous studies because the 

average reflectance of the uniformly moist and variable moist scans both had distinct 

peaks at 1400, 1900, and 2100 nm (Fig. 4.1). Both moistures had similar spectral shapes; 

however, the soil cores at field moisture had higher reflectance than the uniformly moist 

soil cores (Fig. 4.1).  

 Processing soils (e.g. homogenizing) in the field prior to scanning has been 

suggested to increase the uniformity of the soil spectra, and thereby improve 

predictability (Bricklemeyer et al., 2010). Wetting cores to uniform moisture content as 

an approach to create a more uniform data set, seems more practical than drying cores, 
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because wetting can be done quickly in the field prior to scanning a soil core sample 

(Minasny et al., 2009). Waiser et al., (2007) compared the prediction accuracies for clay 

content of field moist cores with variable water contents to that of air-dried cores. The 

prediction accuracies of the PLS models of clay content using scans of air-dried cores 

improved by 20 g kg-1 over the PLS models using scans of soil cores with variable water 

contents (Waiser et al., 2007).  

 In this study, prediction accuracy of the fully-independent models yielded poorer 

predictions than the semi-independent models; however more importantly, scans of 

uniformly moist soils improved the prediction accuracy quite significantly (Table 4.2 

and 4.3). This improvement in the fully-independent models is evidence that uniform 

moisture is very important for creating robust in situ spectral libraries. The semi-

independent model did not show improvement in prediction accuracy with different 

moisture contents. This lack of improvement shows how important it is to have fully-

independent validations especially when working with PLS. In the semi-independent 

model, PLS was compensating for the variable moistures within the field. These results 

comparing the fully- and semi-independent validation provide further evidence that 

caution is needed in spectroscopy investigations that use PLS.  

 The data set used to test the effect of soil moisture is relatively small, 32 cores 

from 2 fields; consequently, this test has less power than any similar test using more soil 

cores and fields. Until additional results from other studies are reported, it is suggested 

instead of wetting soils prior to scanning, soil cores or VisNIR-DRS pentrometer surveys 
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could be collected when the soil is near field capacity to ensure the soil is near uniform 

moisture. 

 

2) How does the estimation of prediction accuracy change when spectra from multiple 

scans are averaged? 

 Estimates of prediction accuracy are affected depending on how spectral data are 

combined for both calibration and prediction. Scans are made continuously along a soil 

profile, and even if several scans are made along one horizon, laboratory analysis was 

made on the whole horizon. This mismatch in fine-scale (2.5 cm) scanning and coarse-

scale (whole horizon) lab analysis creates variability in estimates of prediction accuracy. 

Scatter in the validation data is present in each horizon; however, it is difficult to tell 

what the error is and what the true variation in clay content with depth is. The 

spectrometer is predicting a change in the clay percent with depth, which can be seen as 

a vertically straight line on the graph because one value on the x-axis (measured clay) is 

the same for several values on the y-axis (VisNIR-DRS clay) (Fig. 4.2.). Although 

gradual changes in clay content within an argillic horizon is realistic, it is unclear how to 

interpret the validation results. 

 Results of this study show that the extra effort and time required to scan another 

column along a soil profile, may not be worth the small improvement in prediction 

accuracy for clay content (11 % improvement in RPD). Previous work on intact cores 

(Morgan et al., 2009) averaged side-by-side scans and increased RPD prediction 

accuracy by about 22 and 8 % for inorganic carbon and organic carbon, respectively. 
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Depending on the scope and time frame of the project, an extra column of scans along a 

soil profile may be beneficial especially where concentrations (e.g. inorganic carbon or 

organic carbon) may occur (Morgan et al., 2009). Averaging the scans will increase the 

quality of the scans when it is not possible to rescan soil samples (e.g. in situ scans).  

 Averaging all VisNIR spectra by horizon improved the RPD by 17 and 25 % for 

the horizon averaged spectra and the horizon averaged clay predictions, respectively 

(Table 4.2). However averaging by horizon is impractical because horizon depths may 

not be known when using VisNIR-DRS attached to a penetrometer in the field. Because 

lab measurements were taken by horizon and used in the calibration models, averaging 

the spectra and the predicted clay content by horizon provides an idea of how well 

VisNIR-DRS is performing statistically. Even though traditional soil characterization 

provides soil information by horizon, proximal soil sensors will be able to provide 

continuous information about soil properties with depth. Overall, not averaging the 

spectra by soil horizon before putting the data into a PLS calibration is more practical 

and preferred as not averaging provides a greater resolution of soil characteristics with 

depth. 

 

3) What is the gain in prediction accuracy by boosting an in situ spectral library with 

local samples of the same soil series? 

Construction of large regional and/or global libraries to increase VisNIR-DRS 

predictability has been promoted (Brown et al., 2005; Shepherd et al., 2002) and now 

VisNIR-DRS is one of the cornerstone methods used in the GlobalSoilMap.net project 
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(Sanchez et al., 2009). Studies have addressed creating a global spectral library robust 

enough to predict soil properties from a wide range of soils (Shepherd et al., 2002; 

Brown et al., 2005; Brown et al., 2007; Sankey et al., 2008; Minasny et al., 2009). One 

study created a small intact, whole-profile spectral library (Waiser et al., 2007; Morgan 

et al., 2009).  

Results of this study indicate that using an in situ spectral library boosted with 

local samples is a preferable method for characterizing properties of soil cores. The 

Central Texas library boosted with Field 100 had the best predictions. However, Field 

200 alone predicted clay content better than the Central Texas data boosted with Field 

200. The principal component plots show that Field 100 and the Central Texas data soils 

are spectrally similar, while Field 200 soils have similar and dissimilar spectral features. 

Field 200 predicted clay content of Field 100 best because it overlaps more spectral 

points of Field 100 (Fig. 4.4). Prediction accuracy was improved when the Central Texas 

data were boosted with Field 100, but did not improve when boosted with Field 200. 

When creating calibration libraries, it is useful to look at the spectral similarities (e.g. 

principal components) of the calibration and validation data. Global libraries do not 

work alone because soils are from different parent materials and because of the various 

lab techniques performed to calibrate the models; therefore, boosting a global library 

with a few local samples provides more efficient and costly predictions than collecting 

many local samples for calibration (Sankey et al., 2008). 
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4) How do quantitative predictions of soil properties and categorical classification of 

VisNIR-DRS data compare when classifying soil to series? 

 Wilson and Davilla are very similar soil series that are hard even for the NRCS 

personnel to distinguish, because mapping soil series is subjective and protocol can be 

different depending on the site. Soil scientists rely on previous knowledge of landscape 

and soil positions to help map soil series. The soil cores used in this study were 

classified three different times, first, by the soil survey map, then in the field by a NRCS 

soil scientist, and finally adjusted according to the laboratory characterization 

information. It is difficult for someone without expertise to distinguish between the 

Wilson and Davilla series, even using PLS. Using LDA to predict the soil series 

provides a direct method that would eliminate guided classification.  

 In general, all the semi-independently calibrated models (PLS, LDA, and PLS 

plus LDA) performed better than the full-independently calibrated models. Using the 

semi-independent PLS-only and LDA plus PLS models, all soil cores were correctly 

classified into their NRCS soil series. Performing semi-independent LDA with the same 

spectral data as the semi-independent PLS models did not work as well at predicting soil 

series. Semi-independent models will always perform better, but it is important to 

include fully-independent models to more correctly assess the performance of VisNIR-

DRS. 

 As expected, using the fully-independent PLS-only model instead of the semi-

independent models decreased the classification accuracy by 55 and 81 % for Fields 100 

and 200, respectively, with a kappa coefficient of 0.50. Even though both fields had the 
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same soil series, prediction accuracy of fully-independent models can be affected 

because of different ranges of soil properties, depth to parent material, location, and 

moisture content. Even though PLS had classification accuracy comparable to unguided 

LDA, knowledge of pedology and how soil series are classified is needed when using 

PLS models to predict soil series. 

 Using LDA to directly classify soil series requires less expertise because the 

method bypasses the step of creating calibration models and the pedology knowledge is 

not needed to calculate texture and particle size class. Classifying series with LDA is 

very rapid and simple and requires no previous lab analysis (Pavon et al., 2003). Series 

may not be accurately predicted with LDA if the series are not well separated and 

overlap in the spectral data (Pontes et al., 2009). As seen in the principal components 

plots, Wilson, Davilla, and Burleson did not have distinct separation. Better predictions 

may also be made if outliers are removed after examining the principal components plots 

(Christy et al., 2008). Though the unguided LDA approach performed comparably to 

PLS, as with any hands-off approach, caution is advised.   

 Predicting soil series with the fully-independent LDA plus PLS produced poorer 

prediction accuracy than the fully-independent LDA models, with 52 % of the soil cores 

correctly classified. The first three principal components with respect to soil horizons A 

and B show some differentiation by horizons, particularly in the first two principal 

components (Fig. 4.6). Even though the horizons were spectrally different, LDA was not 

able to directly predict the horizons any better than series. Using LDA plus PLS is not 

practical because it requires as much guidance as PLS, without better results. Even 



55 
 

though PLS and LDA are using the same spectral data, overall PLS performed better for 

predicting soil series. This could be because too many variables may be causing the 

LDA models to overfit (Jain and Chandrasekaran, 1982). By selecting specific spectral 

bands for the model, classification may be improved. 
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CHAPTER VI 

CONCLUSIONS 

 To achieve the ultimate goal of developing a multi-sensor platform for mapping 

soils, VisNIR-DRS methodologies for mapping soil profiles in the field need to be better 

defined. The goal of this research was to determine how VisNIR-DRS scans of soil cores 

can be used to identify soil properties, horizons, and classification at the soil series level, 

while using soil ECa to help define the VisNIR-DRS soil sampling strategy. More 

specifically, this research addressed the following questions: 1) When scanning intact 

soil cores, is prediction accuracy of soil properties affected by whether the soil profiles 

are uniformly moist (field capacity) or variable (during natural wetting or drying 

phases); 2) How is prediction accuracy of soil properties affected by combining the same 

lab-measured clay content based on horizons with individual, 2.5-cm thick soil scans; 3) 

What is the gain in prediction accuracy by boosting an in situ spectral library with local 

samples of the same soil series; and 4) How do quantitative predictions of soil properties 

and categorical classification of VisNIR-DRS data compare when classifying soil 

profiles at the soil series level?  

 Overall VisNIR-DRS continues to demonstrate effectiveness for characterizing 

soil properties and classifying soil series on intact soil profiles. Study results indicate 

that wetting soils to uniform moisture prior to scanning improves prediction accuracy of 

total clay and sand contents. Estimates of prediction accuracy are affected depending on 

how spectral data are combined for both calibration and prediction. Even though 

improvements in prediction accuracy are minimal, it may be beneficial to collect two 
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sets of scans of an individual profile for averaging. The best prediction accuracy is seen 

when predicted clay content is averaged by horizon, however averaging the spectra or 

predicted clay contents by horizon is not practical because horizon depths may not be 

known and depth specific information is lost. When creating calibration models, 

boosting a library with local samples can improve prediction accuracy, and principal 

components plots provide insight on spectral similarities among data sets. Overall using 

fully-independent PLS alone performed the same as fully-independent LDA at 

predicting soil series. Most importantly, results of this project reiterate the importance of 

fully-independent calibration and validation for assessing the true potential of VisNIR-

DRS. 

 To enhance future research using VisNIR-DRS for characterizing soils in the 

field, larger regional and global libraries need to be constructed. These libraries need to 

include spectral scans of intact soils and whole profiles because field mapping need 

calibration models based on intact cores. Methodologies for calculating the minimum 

number of local samples required for boosting the prediction accuracy of a spectral 

library need to be developed. To increase prediction accuracy using spectral libraries, 

selection techniques using principal components analysis, Mahalanobis distance, and 

other multivariate tools need to be investigated. Overall VisNIR-DRS is an effective way 

for characterizing properties and classifying soil series as part of a multi-sensor platform.  
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APPENDIX A 

WILSON SERIES 

The Wilson series consists of very deep, moderately well drained, very slowly 

permeable soils that formed in alkaline clayey sediments. These soils are on nearly level 

to gently sloping stream terraces or terrace remnants on uplands. Slopes are mainly less 

than 1 percent but range from 0 to 5 percent. 

TAXONOMIC CLASS: Fine, smectitic, thermic Oxyaquic Vertic Haplustalfs 

TYPICAL PEDON: Wilson silt loam--cropland. (Colors are for moist soil unless 

otherwise stated.) 

Ap--0 to 5 inches; very dark gray (10YR 3/1) silt loam, gray (10YR 5/1) dry; weak fine 

granular structure; massive when dry; very hard, firm, sticky and plastic; common fine 

roots; moderately acid; abrupt wavy boundary. (3 to 10 inches thick) 

Bt--5 to 20 inches; very dark gray (10YR 3/1) silty clay, gray (10YR 5/1) dry; moderate 

medium angular blocky structure; extremely hard, very firm, very sticky and very 

plastic; few fine roots; few fine pores; thin continuous clay films 1/2 unit of value darker 

than interior of peds; vertical cracks 1/2 inch wide are filled with material from the Ap 

horizon; slightly acid; gradual wavy boundary. (10 to 20 inches thick) 

Btssg1--20 to 32 inches; grayish brown (2.5Y 5/2) silty clay, light brownish gray (2.5Y 

6/2) dry; moderate medium angular blocky structure; extremely hard, very firm, very 
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sticky and very plastic; few fine roots; few fine pores; few slickensides; few medium 

pressure faces; thin continuous clay films on surface of peds; vertical cracks 1/4 inch 

wide partly filled with material from above; few fine crystals of gypsum; few fine 

calcium carbonate concretions; slightly alkaline; diffuse wavy boundary. 

Btssg2--32 to 65 inches; grayish brown (2.5Y 5/2) silty clay, light brownish gray (2.5Y 

6/2) dry; weak coarse angular blocky structure; extremely hard, very firm, very sticky 

and very plastic; few fine roots; few fine pores; few slickensides; patchy clay films on 

surface of peds; common fine crystals of gypsum; few fine masses of calcium carbonate; 

slightly alkaline; gradual smooth boundary. (combined Btss subhorizons are 25 to 60 

inches thick) 

BCkss--65 to 80 inches; olive gray (5Y 5/2) silty clay, light gray (5Y 7/2) dry; weak 

coarse angular blocky structure; extremely hard, very firm, very sticky and very plastic; 

few fine roots; few fine pores; few slickensides; 

few coarse masses of calcium carbonate; few small fragments of clay; very slightly 

effervescent; moderately alkaline. 

TYPE LOCATION: Kaufman County, Texas; 4 miles southeast of the intersection of 

Texas Highway 34 and U. S. Highway 175 in Kaufman, 0.15 mile northeast and 0.2 mile 

southeast of intersection of county road and U. S. Highway 175, 150 feet southwest in 

field. 
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RANGE IN CHARACTERISTICS: Solum thickness ranges from 60 to more than 80 

inches. The weighted average clay content of the upper 20 inches of the argillic horizon 

ranges from 35 to 50 percent. When dry, cracks at least 1/4 inch wide extend from the 

top of the argillic horizon through a thickness of 12 inches or more within the upper 50 

inches of the soil. Slickensides and/or wedged-shaped aggregates and pressure faces 

range from few to common and begin at a depth of 14 to 26 inches. Linear extensibility 

is greater than 2.5 inches (6 cm) within 40 inches (100 cm) of the soil surface. COLE 

ranges from 0.07 to 0.10 in the upper 50 inches of the argillic horizon. The surface layer 

is variable in thickness with a series of micro crests and troughs in the Bt horizon that 

range from 4 to about 20 feet apart. Redoximorphic features are contemporary in the 

upper Bt1 horizon and are mainly relic in the lower part of the Bt horizon. The soil does 

not have aquic soil conditions in the upper 20 inches in most years. 

The A horizon is less than 10 inches thick in more than 50 percent of the pedon, but it is 

as much as 15 inches thick in some subsoil troughs. It has hue of 10YR or 2.5Y, value of 

3 to 5, and chroma of 1 or 2. Texture is loam, silt loam, silty clay loam, clay loam or 

their gravelly counterparts. Siliceous pebbles and small cobbles range from 0 to 35 

percent. It is massive and hard or very hard when dry but is soft or friable with structure 

when moist. Some pedons have a thin E horizon in subsoil troughs. Reaction ranges 

from moderately acid to neutral. 

The Bt horizon has hue of 10YR or 2.5Y, value of 2 to 4, and chroma of 1 or less. 

Texture is clay loam, silty clay loam, silty clay, or clay. Some pedons have iron 
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concentrations in shades of brown or yellow that range from few to common. Siliceous 

pebbles range from 0 to about 15 percent by 

volume. Reaction ranges from slightly acid to slightly alkaline. 

The Btss horizon has hue of 10YR to 5Y, value of 3 to 7, and chroma of 2 or less. Iron 

concentrations in shades of yellow, brown or olive range from none to common. Texture 

is commonly silty clay or clay and less commonly silty clay loam or clay loam. Reaction 

ranges from moderately acid to slightly alkaline and is typically noncalcareous. 

The BCk or BC horizon has colors in shades of gray or brown. Redoximorphic features 

of these colors and in other shades of yellow, red or olive range from few to many. 

Texture is clay loam, silty clay loam, silty clay, or clay. Some pedons have fragments or 

thin strata of shale or marl. These materials make up less than 35 percent of the matrix. 

Reaction ranges from neutral to moderately alkaline. Concretions and masses of calcium 

carbonate range from none to common. 

The C horizon, where encountered, is shale or marl or stratified layers of shale, marl and 

clay. 

COMPETING SERIES: There are no competing series. Similar soils are 

the Dacosta, Herty, Lufkin, Mabank, and Steedham series. Dacosta soils have a mollic 

epipedon and are members of the hyperthermic family. Herty, Lufkin and Mabank soils 

have an abrupt texture change between the A and Bt horizon. In addition, Herty soils are 
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in the udic moisture regime. Steedham soils have sola from 20 to 40 inches thick, and 

are well drained. 

GEOGRAPHIC SETTING: Wilson soils are on nearly level to gently sloping terraces or 

remnants of terraces. Slope gradients are 0 to 5 percent but dominantly less than 1 

percent. The soil formed in alkaline clayey alluvium. Mean annual temperature ranges 

from 64 to 70 degrees F., and mean 

annual precipitation ranges from 32 to 45 inches. Frost free days range from 220 to 270 

days and elevation ranges from 250 to 700 feet. Thornthwaite P-E indices from 50 to 70. 

GEOGRAPHICALLY ASSOCIATED SOILS: These are 

the Bonham, Burleson, Crockett, Houston Black, Lufkin, Mabank, 

and Normangee series. Bonham soils have mollic epipedons. Burleson soils are on 

similar positions. Burleson and 

Houston Black soils are clayey to the surface and have slickensides (Vertisols). Crockett 

and Normangee soils have Bt horizons with chroma of more than 2. Bonham, Houston 

Black, Crockett and Normangee soils are on slightly higher positions above Wilson. 

Lufkin soils are on similar or 

slightly lower concave positions. Mabank soils are on similar positions. 

DRAINAGE AND PERMEABILITY: Moderately well drained. Permeability is very 

slow. Runoff is low on 0 to 1 percent slopes, medium on 1 to 3 percent slopes, and high 

on 3 to 5 percent slopes. Very slow internal drainage. The soil is seasonally wet and is 
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saturated in the surface layer and upper part of the Bt horizon during the winter and 

spring seasons for periods of 10 to 30 days. 

USE AND VEGETATION: Wilson soils are cropped to cotton, sorghums, small grain, 

and corn. Many areas are now idle or are used for unimproved pasture. Original 

vegetation was tall prairie grasses, mainly andropogon species, and widely spaced motts 

of elm and oak trees. Most areas that are not cropped have few to many mesquite trees. 

DISTRIBUTION AND EXTENT: Mainly in the Blackland Prairies of Texas, with small 

areas in Oklahoma. The soil is extensive, probably exceeding 1,000,000 acres. 

MLRA OFFICE RESPONSIBLE: Temple, Texas 

SERIES ESTABLISHED: Wilson County, Texas; 1907. 

REMARKS: Classification change from Udertic Haplustalfs to Oxyaquic Vertic 

Haplustalfs based on knowledge that these soils are saturated for 2 to 4 weeks in most 

years. This period of time is within the definition of saturation for one month or more if 

rules of rounding are applied, i.e., 2 to 6 weeks saturation is considered inclusive. 

Diagnostic horizons and features recognized in this pedon are: 

Ochric epipedon - 0 to 5 inches. (A horizon; very hard and massive when dry). 

Argillic horizon - 5 to 65 inches. (Bt horizons) 
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Vertic feature - Cracks in the upper part of the argillic horizon (5 to 32 inches), few 

slickensides between 20 and 77 inches, and linear extensibility greater than 6.0 cm. 

ADDITIONAL DATA: Type location pedon NSSL S62TX-(129)257-2 Kaufman 

County, Texas. Texas Ag. Exp. Station Lab. S63TX-145-1; S82TX-289-32 
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DAVILLA SERIES 

The Davilla series consists of very deep, moderately well drained, very slowly 

permeable soils on Pleistocene Age terraces. These nearly level soils formed in loamy 

and clayey sediments. Slopes range from 0 to 2 percent. 

TAXONOMIC CLASS: Fine-loamy, siliceous, superactive, thermic Udic Haplustalfs 

TYPICAL PEDON: Davilla loam--in an area of Wilson-Davilla complex on a 0.5 

percent convex slope in a idle cropland field. (Colors are for dry soil unless otherwise 

stated.) 

Ap--O to 10 inches; dark brown (7.5YR 4/3) loam, dark brown (7.5YR 3/4) moist; weak 

fine granular structure when moist, massive when dry; very hard, friable; few fine roots; 

few wormcasts; few siliceous pebbles up to 1 cm in diameter; slightly acid; clear wavy 

boundary. (6 to 18 inches thick) 

Bt1--10 to 24 inches; brown (10YR 5/3) clay loam, dark brown (1OYR 4/3) moist; weak 

fine and medium angular blocky structure; very hard, firm; few fine roots; few fine 

pores; few wormcasts; few fine distinct light gray (10YR 7/1) and brownish yellow 

(10YR 6/6) redoximorphic features with sharp boundaries; few thin clay films on 

surfaces of peds; few fine iron-manganese concretions; few siliceous pebbles up to 5 mm 

in diameter; neutral; gradual wavy boundary. 

Bt2--24 to 34 inches; brown (1OYR 5/3) clay loam, dark brown (1OYR 4/3) moist; 

weak medium angular blocky structure; very hard, firm; few fine roots; few fine pores; 
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common fine distinct light gray (10YR 7/1) and few fine prominent reddish yellow (5YR 

6/6) redoximorphic features with sharp boundaries; few thin clay films on surfaces of 

peds; few fine iron-manganese concretions; few siliceous pebbles up to 5 mm in 

diameter; neutral; gradual wavy boundary. (combined Bt subhorizons are 18 to 70 inches 

thick) 

Btg1--34 to 44 inches; light brownish gray (1OYR 6/2) clay loam, grayish brown 

(1OYR 5/2) moist; weak medium angular blocky structure; very hard, firm; few fine 

roots; few fine pores; common fine prominent reddish yellow (7.5YR 6/8) redox 

concentrations with sharp boundaries; few fine streaks and masses of light gray (10YR 

7/1) albic material; few thin clay films on surfaces of peds; few fine iron-manganese 

concretions; few siliceous pebbles up to 5 mm in diameter; slightly alkaline; gradual 

wavy boundary. 

Btg2--44 to 50 inches; light gray (1OYR 6/1) clay loam, gray (10YR 5/1) moist; weak 

medium angular blocky structure; extremely hard, very firm; common fine distinct 

brownish yellow (10YR 6/6) redox concentrations with sharp boundaries; few fine iron 

manganese concretions; few thin clay films; few siliceous pebbles up to 5 mm in 

diameter; slightly alkaline; gradual wavy boundary. 

Btg3--50 to 60 inches; light gray (10YR 6/1) clay loam, gray (1OYR 5/1) moist; weak 

medium angular blocky structure; extremely hard, very firm; few fine distinct brownish 

yellow (10YR 6/6) redox concentrations with sharp boundaries; few patchy clay films; 
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few fine iron-manganese concretions; few fine concretions of calcium carbonate; few 

siliceous pebbles up to 5 mm in diameter; slightly alkaline; gradual wavy boundary. 

Btg4--60 to 80 inches; light gray (1OYR 7/1) clay loam; light gray (10YR 6/1) moist; 

weak medium angular blocky structure; extremely hard, very firm; few fine faint 

brownish yellow (10YR 6/8) redox concentrations with clear boundaries; few fine iron-

manganese concretions; few fine concretions of calcium carbonate; few patchy clay 

films; few siliceous pebbles up to 5 mm in diameter; slightly alkaline. (combined Btg 

subhorizons are 0 to 46 inches thick) 

TYPE LOCATION: Milam County, Texas; from junction of Farm Road 487 and Farm 

Road 437 in Davilla approximately 3.6 miles southeast on Farm Road 487, 

approximately 50 feet north into brushy rangeland north of road. 

RANGE IN CHARACTERISTICS: Solum thickness is more than 80 inches. The 

weighted average clay content of the control section ranges from 27 to 35 percent. 

Redoximorphic features, which are masses, are considered to be mainly relic features. 

During wet years these soils may be saturated long enough to develop aquic soil 

conditions in some subhorizons. However, in most years they do not have aquic soil 

conditions. A few siliceous pebbles and/or rounded ironstone pebbles are on the surface 

and in some subhorizons of most pedons. 
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The A horizon ranges from 6 to 18 inches thick. It has hue of 7.5YR or 1OYR, value of 

4 to 6, and chroma of 2 to 4. Texture is very fine sandy loam or loam. Reaction is 

slightly acid or neutral. 

The Bt horizon has hue of 7.5YR, 1OYR or 2.5Y, value of 4 to 7, and chroma of 2 to 6. 

Redoximorphic features in shades of red, gray, brown, or yellow range from few to 

common. Texture is sandy clay loam or clay loam. Reaction ranges from slightly acid to 

slightly alkaline. 

The Btg or lower Bt horizon has matrix colors in shades of gray, brown, yellow, or olive. 

Redoximorphic features in shades of red, gray, yellow, or brown range from few to 

many. Texture is sandy clay loam, clay loam, or clay. Concretions and soft masses of 

calcium carbonate range from none to few. Reaction ranges from slightly acid to 

moderately alkaline. Most pedons are underlain with beds of sand and/or gravel below a 

depth of 10 feet. 

COMPETING SERIES: These are the Gholson, Lavender, May, and Personville series 

in the same family and the similar Bremond, Chazos, Gredge, Minerva, 

and Rader series. Gholson and Minerva soils have and argillic horizon with hue redder 

than 7.5YR. Lavender and Personville soils have a lithic contact of limestone within 60 

inches of the surface. May soils have a mollic colored epipedon. Bremond, Chazos, and 

Gredge soils have a fine particle-size control section. 
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GEOGRAPHIC SETTING: Davilla soils are on nearly level terraces of Pleistocene age. 

These soils formed mainly in loamy sediments. The surface is typically mounded. The 

mounds are oval and range from 20 to about 80 feet in diameter. They are about 6 to 18 

inches above the associated intermound areas except where cultivation has smoothed and 

leveled the surface. Davilla soils are on the mounds. They are typically mapped in a 

complex with another soil. Slope gradients range from 0 to 2 percent. The climate is 

subhumid with an average precipitation of 32 to 40 inches. The mean average 

temperature is 66 to 69 degrees F. Frost free days range from 250 to 275. The elevation 

ranges from 300 to 500 feet above sea level. Thornthwaite P-E indices range from 54 to 

64. 

GEOGRAPHICALLY ASSOCIATED SOILS: These include 

the Benchley, Chazos, Crockett, Edge, Gause, Gredge, Luling, and Wilson soils. The 

Benchley, Crockett, Edge, and Luling soils have a solum that is underlain by geologic 

materials within a depth of 60 inches and they have fine textured control sections. They 

are slightly higher in the landscape and are on nearby uplands. The Chazos, Gause, 

Gredge, and Wilson soils are on similar terrace positions. These soils have fine textured 

control sections. In addition Chazos and Gause soils have a loamy fine sand epipedon. 

Gredge soils have an argillic horizon with reddish matrix colors. Wilson soils have a 

very dark gray upper argillic horizon and are mapped in complex with Divalla. They are 

commonly in the slightly lower intermound position. 
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DRAINAGE AND PERMEABILITY: Moderately well drained and the permeability is 

very slow. Runoff is medium. 

USE AND VEGETATION: These soils are used mainly for improved pasture with 

coastal bermudagrass and bahiagrass being the dominant grasses grown. Some areas are 

cropped to small grains, corn, or grain sorghum. Some areas are in rangeland. Native 

vegetation consists of medium and tall grasses with scattered elm, hackberry, mesquite 

and post oak trees. 

DISTRIBUTION AND EXTENT: Mainly in central Texas. In MLRA 86A, 86B and 

87A. The series is of moderate extent. 

MLRA OFFICE RESPONSIBLE: Temple, Texas 

SERIES ESTABLISHED: Milam County, Texas; 1988. 

REMARKS: Classification changed (2/94) from Aquic subgroup to Udic subgroup 

based on changes in aquic soil definitions and moisture data from similar soils. These 

soils were previously included with the Crockett series. 

The diagnostic horizons and features recognized in this pedon are: 

Ochric epipedon - from 0 to 10 inches (Ap horizon). The soil is massive and very hard 

when dry. 

Argillic horizon - from a depth of 10 to 80 inches (Bt and and Btg horizons). 
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ADDITIONAL DATA: Data from 4 pedons shows the weighted average clay content of 

the control section ranges from 28 to 34 percent. However, the field texture method 

suggests a fine family. 
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BURLESON SERIES 

The Burleson series consists of very deep, moderately well drained, very slowly 

permeable soils that formed in alkaline clayey sediments. These soils are on nearly level 

to gently sloping Pleistocene terraces. Slopes range from 0 to 5 percent. 

TAXONOMIC CLASS: Fine, smectitic, thermic Udic Haplusterts 

TYPICAL PEDON: Burleson clay--native pasture; in a pit midway between center of 

microdepression and microknoll. (Colors are for moist soil unless otherwise stated). 

A1--0 to 6 inches; black (10YR 2/1) clay, very dark gray (10YR 3/1) dry; moderate 

medium subangular blocky structure parting to moderate very fine angular blocky; very 

hard, very firm, very sticky and very plastic; many fine roots; cracks from 1/2 to 1 1/2 

inches wide extend through the horizon; few snail shell fragments; few fine siliceous 

pebbles; slightly alkaline; gradual smooth boundary. (4 to 12 inches thick) 

A2--6 to 12 inches; black (10YR 2/1) clay, very dark gray (10YR 3/1) dry; moderate 

medium angular blocky structure parting to moderate very fine angular blocky; very 

hard, very firm, very sticky and very plastic; many fine roots; cracks from 1/2 to 1 1/2 

inches wide extend through the horizon; common distinct pressure faces; few fine 

siliceous pebbles; slightly alkaline. (0 to 12 inches thick) 

Bss1--12 to 24 inches; very dark gray (10YR 3/1) clay; moderate medium and coarse 

angular blocky structure; few wedge-shaped peds: very hard, very firm, very sticky and 

very plastic; few fine roots; many large grooved slickensides tilted from horizontal 30 to 
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60 degrees; few fine siliceous pebbles; few fine iron-manganese concretions and masses; 

moderately alkaline; gradual wavy boundary. (8 to 30 inches thick) 

Bss2--24 to 39 inches; very dark gray (10YR 3/1) clay; moderate medium and coarse 

angular blocky structure; common wedge-shaped peds: very hard, very firm, very sticky 

and very plastic; few fine roots; cracks from 1/2 to 1 inch wide extend through the 

horizon; many large grooved slickensides tilted from horizontal 30 to 60 degrees; few 

fine iron-manganese concretions and masses; few fine concretions and masses of 

calcium carbonate; few fine siliceous pebbles; very slightly effervescent; moderately 

alkaline; gradual wavy boundary. (8 to 30 inches thick) 

Bss3--39 to 51 inches; dark gray (10YR 4/1) clay; few fine and medium streaks and 

spots of pink (5YR 7/4); moderate medium and coarse angular blocky structure; many 

wedge-shaped peds; very hard, very firm, very sticky and very plastic; few fine roots; 

many large grooved slickensides tilted from horizontal 30 to 60 degrees; few fine iron-

manganese concretions and masses; few fine concretions of calcium carbonate; few fine 

siliceous pebbles; slightly effervescent; moderately alkaline; clear irregular boundary. (0 

to 20 inches thick) 

Bss4--51 to 76 inches; dark gray (10YR 4/1) clay; common reddish brown (5YR 4/3) 

streaks and spots of; moderate medium and coarse angular blocky structure; common 

wedge- shaped peds; very hard, very firm, very sticky and very plastic; few fine roots; 

many large grooved slickensides tilted from horizontal 30 to 60 degrees; few very dark 
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gray crack fillings; few iron-manganese concretions; few concretions and masses of 

calcium carbonate; slightly effervescent; moderately alkaline. (0 to 36 inches thick) 

2BCkss--76 to 80 inches; yellowish red (5YR 4/6) silty clay; few streaks of light gray 

(10YR 6/1); moderate coarse angular blocky structure; common wedge shaped peds; 

very hard, very firm, very sticky and very plastic; few fine roots; many large grooved 

slickensides tilted from horizontal 30 to 60 degrees; few dark gray crack fillings; 

common concretions and masses of calcium carbonate; strongly effervescent; 

moderately alkaline. 

TYPE LOCATION: Burleson County, Texas; from intersection of Farm Road 2155 and 

Farm Road 60 in northwest edge of Snook, Texas; 0.7 mile southwest on Farm Road 60; 

220 feet south in native pasture. (Latitude: 30 degrees, 29 minutes, 18 seconds north; 

Longitude: 96 degrees, 28 minutes, 50 seconds west) 

RANGE IN CHARACTERISTICS: The solum is 60 to more than 80 inches thick. The 

control section has 40 to 60 percent clay and more than 28 percent silt. Iron-manganese 

concretions and masses range from none to few throughout. This is a cyclic soil and 

undisturbed areas have gilgai microrelief with microknolls 6 to about 12 inches higher 

than microdepressions. Distance between the center of the microknoll and the center of 

the microdepression is about 5 to 15 feet. The microknoll makes up about 20 percent, the 

intermediate, or area between the knoll and depression, about 50 percent, and the micro 

depression about 30 percent. When dry, cracks 1 to 3 inches wide extend from the 
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surface to a depth of 40 inches or more. The cracks remain open for 90 to 150 

cumulative days during most years. Slickensides begin at a depth of 8 to 24 inches. 

The A horizon has hue of 10YR, value of 2 or 3, and chroma of 1 or less. Texture is 

clay, silty clay, or gravelly clay. Some pedons have loamy Ap horizons containing more 

than 35 percent clay. Gravelly layers are less than 20 inches thick and contain 15 to 35 

percent siliceous pebbles. Reaction ranges from moderately acid to slightly alkaline. 

However, on microknolls some pedons are moderately alkaline. 

The upper Bss horizons have hue of 10YR, value of 2 to 4 and chroma of 1 or less. 

Texture is silty clay or clay. Redoximorphic features range from none to few in shades 

of brown or gray. Siliceous pebbles range from none to few. Hard pitted concretions of 

calcium carbonate range from none to few. Reaction ranges from moderately acid to 

moderately alkaline and typically is noneffervescent. 

The lower Bss or Bkss horizons have hue of 10YR to 5Y, value of 4 to 6, and chroma of 

1 or 2. Matrix chroma of 2 are below a depth of 40 inches, if encountered. 

Redoximorphic features in shades of yellow, brown, or gray range from none to 

common. Streaks or spots in shades of pink or red range from none to common. Texture 

is silty clay or clay. Siliceous pebbles range from none to about 5 percent. Reaction is 

slightly alkaline or moderately alkaline. It ranges from noneffervescent to strongly 

effervescent. Concretions and masses of calcium carbonate range from none to common. 
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The 2BCkss horizon, or 2CBkss horizon where present, has colors in shades of red, 

yellow, pink, or brown. Texture is clay loam, silty clay loam, or silty clay. Siliceous 

pebbles range from none to about 5 percent. Concretions and masses of calcium 

carbonate range from few to many. The reaction is moderately alkaline and 

effervescence ranges from slight to violent. The 2C horizon is not present in all pedons. 

It is mainly in soils on the Brazos River terrace. Burleson soils on other terrace systems 

commonly have colors in shades of gray or brown. Texture is typically clay. Some 

pedons have sandy or loamy textures with or without strata of gravel below a depth of 80 

inches and most pedons have these materials below a depth of 12 feet. 

COMPETING SERIES: These include 

the Bleiblerville, Branyon, Clarita, Dimebox, Ellis, Fairlie, Heiden, Houston 

Black, Leson, Luling, Ovan, Sanger, Slidell, Tamford, and Watonga series. Bleiblerville, 

Heiden, Houston Black, and Sanger soils are calcareous throughout, and have more 

amplitude of waviness. Branyon and Slidell soils are calcareous at depths of less than 12 

inches in over half the pedon. Clarita soils have subsoils in hue of 7.5YR or redder. Ellis 

soils have sola less than 60 inches. Fairlie soils have a paralithic contact with chalk at a 

depth of 40 to 60 inches. Dimebox soils contain ironstone fragments in the surface layer, 

have more amplitude of waviness, and are on uplands. Leson soils have more amplitude 

of waviness and typically have chroma of 2 or more within 40 inches of the surface. 

Luling soils have chroma of 2 throughout and are on uplands. Ovan soils have chroma of 

2 throughout and are on flood plains. Tamford soils have red or reddish brown C 
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horizons and have mean annual temperature less than 65 degrees F. Watonga soils have 

sola less than 60 inches thick and are on flood plains. 

GEOGRAPHIC SETTING: Burleson soils are on stream terraces and Pleistocene Age 

terraces. These are associated mainly with upland soils. Slope gradients are mainly less 

than 2 percent, but range to 5 percent. The soil formed in alkaline, clayey, alluvial 

sediments. Mean annual precipitation ranges from 32 to 40 inches, and mean annual 

temperature ranges from about 65 to 70 degrees F. Frost free days range from 220 to 

270, and elevation ranges from 300 to 800 feet. Thornthwaite annual P-E indices range 

from 48 to 68. 

GEOGRAPHICALLY ASSOCIATED SOILS: These are the 

competing Heiden, Houston Black and Leson series and the Kaufman, Ships, 

and Wilson series. Kaufman and Ships soils have very-fine control sections, and Ships 

soils have hue redder than 10YR. Heiden, Houston Black, and Leson soils are on slightly 

higher uplands. Kaufman and Ships soils are on slightly lower flood plains. Wilson soils 

have argillic horizons, and are on similar positions. 

DRAINAGE AND PERMEABILITY: Moderately well drained. Very slow 

permeability. Runoff is low on 0 to 1 percent slopes, medium on 1 to 3 percent slopes, 

and high on 3 to 5 percent slopes. Water enters the soil rapidly when it is dry and 

cracked, and very slowly when it is moist. 
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USE AND VEGETATION: Cultivated crops are mainly cotton, sorghum, corn and small 

grains. Areas in native rangeland produce little bluestem, big bluestem, Indiangrass, 

eastern gamma, and switchgrass in excellent condition. Pasture grasses include improved 

bermudagrass, common bermudagrass, and kleingrass. 

DISTRIBUTION AND EXTENT: The Blackland Prairies of Texas (MLRA 86A and 

86B). The series is extensive. 

MLRA OFFICE RESPONSIBLE: Temple, Texas 

SERIES ESTABLISHED: Brazos County, Texas; 1951. 

REMARKS: Diagnostic horizons and features recognized in this pedon are: 

Mollic epipedon - 0 to 39 inches (A1, A2, Bss1, Bss2). 

Vertisol features: Deep wide cracks that are open 90 to 150 cumulative days. 

Large slickensides below the A horizon and throughout the soil. 

ADDITIONAL DATA: National Soil Survey Laboratory: S62TX-43-3(LSL17746- 

17752), S62TX-43-4(LSL17753-17759), S77TX-051-5(78P0039-78P0047), and 

S77TX-051-6(78P0048-78P0056). 
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