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Introduction

There is a long history of using weather measures as explanatory variables in statistical models.

For example, Fisher (1925) examined the effects of rainfall on wheat yields, and Wright (1928)

used weather as an instrumental variable to identify a demand function for oils. Because

weather is exogenous and random in most economic applications, it acts like a “natural

experiment” and thus in some settings allows researchers to identify statistically the causal

effect of one variable on an economic outcome of interest (Angrist and Krueger 2001). The

relatively recent literature on the economic impacts of climate change has turned the spotlight

onto quantifying the effect of climate on a number of economic outcomes of interest (e.g.,

agricultural yields, mortality rates, electricity and water demand). This literature has often

found a nonlinear relationship between climate and these outcomes, with extremely warm

temperatures being especially important (e.g., Schlenker and Roberts 2009). Climate is a long

average of weather at a given location. To identify the causal effect of climate on these outcomes,

the literature has generally relied on either climate normals (i.e., long averages of observed

weather in a cross-sectional setting) or day-to-day (or year-to-year) fluctuations in

observed weather as explanatory variables across time and space. The econometrician’s

choice of a weather versus a climate measure as an explanatory variable critically affects the

interpretation of the estimated coefficients in the econometric model: that is, whether the

outcome is a true climate response or a short-run weather elasticity.
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Anyone who has ever struggled with station-level weather data is well aware of the fact

that since the beginning of systematic weather monitoring in the 1800s, stations are born and

die, and almost all have a large number of missing observations. Further, there is not ne-

cessarily a weather station in each location of interest to the economist. In order to overcome

these issues, a number of gridded weather data sets have been developed; these provide

complete coverage over land by extrapolating existing weather information from monitors

over a grid. Although many of these data sets are free and easily imported into formats used

by economists, there are five pitfalls that empirical researchers should be aware of before

using any of these data sets in econometric settings. First, while many of the gridded wea-

ther products that are available reproduce very similar average temperatures for the majority

of grid cells, the derived deviations around the mean can be significantly different. Second, if

one is interested in creating a weather series for a geographic region, simply averaging

nonmissing weather station data for stations in the region introduces measurement error,

which has well understood econometric consequences. Third, the correlation between wea-

ther variables (e.g., rainfall and temperature) across space varies significantly in sign and

magnitude. This can lead to the classic problem of indeterminate omitted variables bias in

applications that fail to control for the full suite of weather indicators. Fourth, weather

indicators often display significant spatial correlation due to the underlying data-generating

process as well as the extrapolation methods employed. This may lead to significant multi-

collinearity, which in turn may lead to inflated standard errors on included weather variables.

Finally, because the weather stations used to construct the gridded products come in and out

of existence, there may be artificial variation and breakpoints in the temperature series,

which the econometrician needs to examine, especially when working on a small geographic

region.

The majority of recent economic studies use the statistically estimated causal effect of

weather on the economic outcome of interest to simulate the future impacts of climate

change, based on the output of global climate models (GCMs), on that outcome. GCMs1

are physics-based models that provide long-run predictions of climate. These models are

sometimes also called atmosphere-ocean GCMs (AOGCMs), or simply, and most commonly,

climate models. However, our experience has been that most economists have limited under-

standing of GCMs and often make critical mistakes in using their output. Thus our goal here is

to provide economic researchers considering the use of weather and climate model output with

a guide to what products are available and, most importantly, with a discussion of the most

common mistakes and how to avoid them. We begin in the next section with an introduction to

weather data, including a summary of the types of data sets available. Next we provide a more

detailed discussion of the five common pitfalls mentioned earlier. This is followed by a brief

overview of GCMs—how they work and what output they provide—as well as a number of

suggestions for further reading. Perhaps most importantly, we identify two common and sig-

nificant errors that often occur when GCM output is used to simulate the future impacts of

climate change on an outcome of interest, which are related to GCM model selection and spatial

and temporal aggregation of GCM output. We present a summary and conclusions in the final

section.

1Early on these were known as general circulation models (see e.g., Phillips 1956).
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An Introduction to Weather Data

As noted in the introduction, the difference between weather and climate is basically a matter of

time. Weather is the condition of the atmosphere over a short period of time, whereas climate is

the behavior of the atmosphere over a relatively long period of time. Since roughly 1850,

weather outcomes have been measured and recorded through a global network of weather

stations and, more recently, satellites. Daily weather data at stations throughout the world are

freely available from the US National Oceanic and Atmospheric Administration (NOAA

2011a). Additional raw station data (with varying degrees of spatial and temporal coverage

and temporal resolution) can be found at NOAA (2011b). However, these sources do not

provide a complete record because many countries regard their weather data as proprietary

and often charge high fees for such data (e.g., India), thus effectively limiting their availability.

Moreover, the spatial and temporal coverage of weather stations varies greatly across the globe,

with higher spatial density and longer time series at stations in countries with historically higher

incomes (e.g., the United States and the European Union 15).

Gridded Weather Data Products

Gridded weather data sets use interpolation across space and time to combine available

weather station data into a balanced panel of observations on a fixed spatial scale or grid.

This approach deals with the problem of missing observations at a given station or missing

data because a station does/did not exist at a particular location. One such product, the

parameter-elevation regressions on independent slopes model (PRISM 2009), produces

monthly estimates of weather on a 2.5� 2.5-mile scale for the contiguous United States.

Each “grid” approximates a weather measure for the spatial unit by interpolating the daily

station data while accounting for elevation, wind direction, rain shadows, and many other

factors. This elaborate procedure is possible in the United States because there are

several thousand weather stations that produce daily records for many different weather

indicators.

The Climatic Research Unit at the University of East Anglia produces a global gridded

weather data set (Climatic Research United [CRU] 2013) that provides monthly estimates

on a 0.5� 0.5-degree scale. This scale corresponds roughly to grids that are 35 miles across

at the equator. Willmott, Matsuura, and Legates (2010) provide another gridded data product

(often referred to as the “Delaware,” or “UDEL,” data set because it was produced by the

University of Delaware), which has the same spatial and temporal resolution as the CRU

(version TS2.1) product, but uses a somewhat different data set and extrapolation algorithm.

Most notably, the CRU product provides data on both monthly minimum and maximum

temperatures (i.e., the average of all daily minimums and maximums), while the Delaware data

set provides only the monthly average temperature.2

Many data products include the number of stations and the dates of coverage for each grid.

The most pronounced absence of data is for poor regions whose governments do not prioritize

weather data collection and for regions with few inhabitants, such as deserts or over oceans.

In fact, there are some grids covering land areas that do not have a single weather station.

2The CRU data set (version TS2.1) ended in 2002. The updated data set version TS 3.2 extends coverage through
2011. In early 2013, the Delaware data set coverage ended in 2008, but it is currently being extended.
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Data Assimilation

An alternative approach to the spatial extrapolation algorithms just discussed that climate

scientists have developed for filling in the “holes” for observationally sparse regions is “data

assimilation,” which produces data sets that the climate community generally calls “reana-

lyses.” Data assimilation is the process by which observational data are combined with a

physics-based model (similar to a climate model, which is discussed later). The model increases

the extent of information from locations where observations exist to more data-sparse regions,

thus providing estimates of weather/climate for data-sparse regions that are based on physical

laws described by the model as well as observations elsewhere. These types of data sets have been

used by applied economists studying the developing world (e.g., Guiteras 2010; Hsiang, Meng,

and Cane 2011; Schlenker and Lobell 2010), but they have not been widely adopted.

The process of data assimilation is not unlike an economist’s use of a structural model to

interpolate missing observations. Data assimilation seeks to minimize a loss function subject to

a large set of difference equations, which are derived from fundamental physical principles (e.g.,

the conservation of energy). More recently, such reanalysis efforts have tried to estimate the

state of the global environment over a long sequence of periods by optimally fitting a single

dynamic model to all those periods simultaneously. This process is difficult and costly, and thus

only a few research centers offer regularly updated data sets. The National Center for

Environmental Prediction (NCEP) in the United States (Kistler et al. 2001) and the

European Center for Medium-Range Weather Forecasting (ECMWF 2010) produce the two

most commonly used reanalysis products.

It is important to note that reanalysis output cannot be forced to perfectly match observa-

tional data. This is because reanalysis output has both limited resolution and is influenced by

the GCM even when observations are present. Moreover, reanalysis is conducted with models

that, like economic models, are imperfect and contain systematic biases. Constraining these

models with the data that are “fed” into them does not always correct satisfactorily for the

model’s built-in biased behavior. Although reanalysis provides estimates that may be better

than what would otherwise be available for regions where observations are sparse or of poor

quality, the reanalysis output for such regions is still basically a model prediction, which is likely

to be less accurate than for more observation-rich regions.

Five Potential Pitfalls

We turn next to a discussion of the five main pitfalls of using these weather data products in

econometric settings and how to avoid them. In order to examine these issues it is important to

understand that studies on the economic impacts of climate change on economic sectors (e.g.,

agriculture) have used two distinct approaches to estimate response functions. First, early

studies relied on cross-sectional variation in weather or climate in different locations to explain

variation in the outcome variable of interest (e.g., Kelly, Kolstad, and Mitchell 2005;

Mendelsohn, Nordhaus, and Shaw 1994). However, one limitation of the cross-sectional ap-

proach is that there may be unobservable variables that vary across these spatial units, which are

likely correlated with the climate/weather indicator used. Therefore, recent studies have

adopted a second approach that focuses on a panel data analysis, which controls for space

and time-fixed effects (e.g., Auffhammer, Ramanathan, and Vincent 2006; Deschenes and
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Greenstone 2007; Schlenker and Roberts 2009). Fixed-effects estimators rely on variation across

time within a spatial unit (e.g., a county) as the source of identifying variation rather than

variation across these spatial units. This means that the underlying identification relates time

series deviations from the location-specific mean in the climate indicators to deviations in the

outcome variable of interest.

Pitfall 1: The Choice of Weather Data Set

Although the economic implications of either approach (i.e., long-run versus short-run

adaptation in panel versus cross-sectional studies) have been discussed elsewhere (e.g., Lobell

and Burke 2010), the practical issue of which weather data set to use has received no attention

in the literature. As we will show here, most gridded weather data sets agree on the average

value of weather variables across space (i.e., places that are on average hot or cold), but they

are not in full agreement about the timing or magnitude of deviations from this mean, which

is the source of identifying variation in panel data studies. This is a more serious problem

for areas with a small number of weather stations because the data must be interpolated

from stations that are further removed and hence might experience idiosyncratic shocks.

We show this lack of correlation in the deviations using the three global gridded weather

data sets discussed earlier:

(1) The CRU data set (version TS2.1), which uses a statistical interpolation procedure

without reanalysis and gives monthly minimum and maximum temperature as well

as precipitation on a 0.5� 0.5-degree grid (Mitchell and Jones, 2005).

(2) The Willmott et al. (2010) UDEL data set, which uses a statistical interpolation proced-

ure without reanalysis and gives monthly average temperature as well as precipitation

on a 0.5� 0.5-degree grid.

(3) The reanalysis data from NCEP/National Center for Atmospheric Research (NCAR)

(Kistler et al. 2001), which gives daily minimum and maximum temperature and total

precipitation on a nonuniform grid (1.875 degrees longitude and roughly 1.90 degrees

latitude, although the latter is not evenly spaced).3

CRU and UDEL are statistically interpolated, whereas NCEP uses data assimilation with a

physical model as discussed earlier. We focus here on two variables that are available in all

three data sets: average temperature and total precipitation. We calculate country averages by

taking a weighted average across grid cells that overlap a country’s boundary for the months

of the primary maize growing season (Sacks et al. 2010). We define the growing season as

extending from the first of the month in which it begins to the end of the month when it ends

because two of the three weather data sets provide only monthly values. In this way we are able

to average observations over the same time period for all three data sets. Next, we calculate the

weight given to each grid in a county as the share of the country’s land area that the grid covers.

This allows us to derive the average temperature (the average between the minimum and

maximum temperatures for those data sets that report the minimum and maximum) as well

as total precipitation by country over the period 1960–1999. Several recent studies have used

3This data set is sometimes called the NCEP/NCAR/DOE (i.e., US Department of Energy) reanalysis.
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similar country-level aggregates and averages (Dell, Jones, and Olken 2012; Hsiang 2010;

Schlenker and Lobell 2010).

Correlations of country-level climate normals across data products

First, we compare average outcomes across locations by deriving average temperature and

precipitation over 1960–1999 to get one observation per country. We find that the correlation

between the data based on the statistical interpolation procedures (CRU and UDEL) for average

temperatures is 0.998, while it is 0.990 between NCEP and either CRU or UDEL. For total

precipitation, the correlation between CRU and UDEL for average season-total precipitation is

0.985 and 0.882 between NCEP and CRU (and 0.883 between NCEP and UDEL). This indicates

that the three data sources provide similar estimates concerning which areas of the world

are hot and which are cold on average. This is a reassuring finding for studies that rely

on cross-sectional variation across countries. For both average temperature and average

precipitation, the correlation is slightly lower between the reanalysis data (NCEP) and the

two statistical interpolation techniques (CRU and UDEL).4

Correlations of country-level annual fluctuations across data products

It is difficult to predict how weather variables change year to year when weather is not

observed in a specific location or time period. To illustrate this point, we construct annual

deviations from the country-specific mean in each data set over the 1960–1999 period. This

provides us with a 40-year panel rather than a single cross section of normals. We find that

for average temperature, the correlation coefficients between models are significantly lower

compared to those discussed earlier. The pairwise correlation coefficients are CRU and

UDEL: 0.917; NCEP and CRU 0.742; NCEP and UDEL: 0.724. For precipitation, the

correlation coefficients across data sets are even lower. This is likely due to the fact that

precipitation is less smooth than temperature in space and time, which makes the extrapo-

lation algorithm employed more important.5 The pairwise correlation coefficients are

CRU and UDEL: 0.698; NCEP and CRU: 0.299; and NCEP and UDEL: 0.269. While

the correlations are especially low when we compare deviations in the reanalysis data

(NCEP) to the statistical interpolation methods (CRU and UDEL), the drop to a correl-

ation coefficient below 0.7 for CRU-UDEL is significant as well because both methods

are statistical interpolation routines using raw station data. So whether an outcome is

above or below normal—and by how much—depends crucially on which weather data

set is being used.

Across-country heterogeneity in correlations of annual fluctuations

The average correlations for both cross-section and panel data mask considerable heterogeneity

by country. To illustrate this point, we construct weather shocks by weighting each grid cell

4We also examined a fourth data set, NCC (Ngo-Duc, Polcher, and Laval 2005), which is a hybrid of NCEP and
CRU. That is, it scales the NCEP reanalysis output using a constant monthly factor so that the 1948–2000
average equals the CRU average. Not surprisingly, for our 1960–99 sample, the correlation between NCC and
CRU for average season-total precipitation exceeds 0.99.
5For some reanalysis products, precipitation is generated by the model even if precipitation observations exist.
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by the amount of maize that is grown within it (Monfreda, Ramankutty, and Foley 2005),

a common approach for examining the agricultural impacts of climate change. We find that

the pairwise correlation coefficients among weather deviations for season-total precipitation

in the United States are CRU and UDEL: 0.963; NCEP and CRU: 0.758; and NCEP and

UDEL: 0.714. The deviations are much more highly correlated than when all countries

are included, presumably because of the good observational network in the United States.

In contrast, precipitation shocks constructed over the maize-growing area in Mexico have

pairwise correlation coefficients of CRU and UDEL: 0.726; NCEP and CRU: 0.069; and

NCEP and UDEL: 0.307. This illustrates that in regions with limited monitoring networks,

which is generally the case in the developing world, the weather shock used to identify

response coefficients in econometric estimation varies significantly depending on which data

source is used.

In summary, when economists are conducting panel studies that rely on deviations from

averages, they should be careful about which data source they use because measurement

errors—and related statistical concerns such as attenuation bias—are amplified by demeaning

explicitly or via fixed effects (Fisher et al. 2012). Conducting sensitivity checks by using more

than one data source can be helpful in determining whether the results are robust.

Pitfall 2: Averaging Daily Station-Level Data across Space

Another pitfall of using weather data products in econometric estimation concerns averaging

station-level data across space. Several economic studies that link economic outcomes to wea-

ther (or control for weather) use inverse distance-weighted averages for the closest available

weather stations (see, e.g., Deschenes and Greenstone 2007; Mendelsohn et al. 1994). As with

the panel versus cross-section data issue, such an approach works well for a cross-sectional

analysis but becomes problematic when fixed effects are included in a panel data setting,

especially when both location and time-fixed effects are included. This is because weather

station data are sometimes missing (i.e., not only do weather stations come in and out of

existence, they are also often turned off or values are simply not recorded). A time series of

inverse distance-weighted averages of weather station data is likely to include variation from the

birth and death of stations and observations that are missing for a given period. When location

fixed effects remove average weather outcomes at the interpolated location, and temporal fixed

effects are included, the remaining weather variation is greatly diminished and the variation

that is due to stations coming in and out of the sample can potentially account for a significant

share of the overall variance. For example, Fisher et al. (2012) provide an example where the

noise-to-signal ratio after removing location and temporal fixed effects is 7:1; that is, the

measurement error greatly exceeds the variation used in the identification, which is likely to

result in significant attenuation bias in estimation.

A possible alternative to averaging weather station data that report weather indicators on a

given day is to first fill in missing weather station data by regressing it on the closest surrounding

stations and then to predict missing observations at a station (Auffhammer and Kellogg 2011;

Schlenker and Roberts 2009). Then the full weather record is derived by interpolating a

balanced panel of “patched” weather station data. This approach keeps the set of stations

that are used in the interpolation constant and ensures that the resulting variation is not

caused by variation in station coverage.
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Pitfall 3: Correlation of Weather Variables

The third pitfall relates to the classic omitted variables problem. Many economic studies,

including (but not limited to) those estimating climate change impacts, have focused on the

impact of one weather variable in isolation, for example, regressing income only on precipita-

tion shocks (Miguel, Satyanath, and Sergenti 2004). While precipitation shocks are exogenous

and hence a plausible instrument for income, it is important to note that to the extent that

precipitation and temperature are correlated, the coefficient on precipitation will measure the

combined effect of the two variables. This is particularly important in the climate change

context if the estimated coefficient is used to estimate climate change impacts under a climate

influenced by human activity. In order to obtain unbiased estimates of the effects of changes in

precipitation and temperatures, which are historically correlated, both variables must be

included in the regression equation, especially if the correlation is predicted to change in the

future.

To underline the importance of this observed correlation between different climate indica-

tors, figure 1 shows the correlation coefficients between annual average temperature and

total precipitation for each of the CRU (version TS2.1) time series (TS) grid cells for the

years 1960–1999. The map indicates clearly that the correlations vary greatly and that there

are regions with both significant positive and significant negative correlation between precipi-

tation and temperature. This implies that if one controls for only one of the two weather

variables in a regression, the sign of the omitted variable bias will depend on the location

under study. Hot areas generally show negative correlation (as high as �0.7) because more

precipitation and the associated evaporation results in cooling and lower average temperatures.

In contrast, a positive correlation is generally observed in cooler areas because increased pre-

cipitation is associated with the import of warm and humid tropical air, and cloud cover keeps

the underlying surface warmer. It is noteworthy that some large and not-so-large countries have

areas of both negative and positive correlation (e.g., United States, Russia, France, and Spain).

Figure 1 Correlation between annual average temperature and total precipitation in each grid cell (CRU

TS 2.1 Data 1960–1999)

Source: Authors’ calculations.
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It is also important to note that climatic variables other than temperature and precipita-

tion (e.g., relative humidity, solar radiation, wind speed and direction) may bias empirical

estimates through the classic omitted variables problem. The existence of these other variables

and their correlation with temperature or precipitation may be location specific. For example,

in a panel regression with country and year fixed-effects and country-specific trends, Hsiang

(2010) finds that exposure to hurricane winds in Caribbean Basin countries is correlated

over time with a country’s local surface temperature, with each 1 degree Celsius increase in a

country’s summer surface temperature being correlated with a 2.6 (± 1.2) meter per second

increase in area-averaged wind exposure in that country. This increase in wind exposure is

substantial, since it raises expected hurricane damages by 20 percent (Hsiang and Narita 2012),

suggesting potentially biased estimates of temperature impacts if wind exposure is excluded

from the analysis.

In summary, if temperature, precipitation, and other atmospheric variables are correlated,

a study that seeks to extrapolate (based on an estimated response function) potential climate

impacts must include all of these variables in order to obtain an unbiased estimate of the effect

of each variable.

Pitfall 4: Spatial Correlation

Climate variables are inherently correlated across space and time. While variation in weather

is often considered random across time, variation across space displays significantly less “ran-

domness,” especially at smaller spatial scales. This means that some of the weather or climate

variables that we use in econometric estimation are highly spatially correlated and that estimates

of standard errors will be biased unless steps are taken to correct for spatial correlation.

To provide a sense of the degree of spatial correlation in these data sets, figure 2 shows

the average correlation of annual mean temperature at each CRU (version TS 2.1) grid cell

Figure 2 Correlation of average annual temperature at CRU grid with surrounding eight grid cells (CRU

TS 2.1 Data 1960–1999)

Note: We have chosen a highly nonlinear scale (correlation to the power of 100) because all correlations are

extremely close to 1.

Source: Authors’ calculations.
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with the eight surrounding grid cells for the 1960–1999 period. As discussed earlier, errors

might propagate from one grid cell to the next for both interpolated station data and data

assimilation methods. If the model correctly accounts for all weather variables, the spatial

dependence of the regressors will not be a problem. Most economic studies to date control

only for temperature and precipitation. However, other weather variables such as wind direc-

tion, humidity, and vapor pressure might also have an impact, and these omitted variables

are presumably spatially correlated as well. If they have a causal effect on the outcome of

interest, as for example, the effect of vapor pressure deficit (which is closely related to relative

humidity) on crop yields (Roberts, Schlenker, and Eyer 2013), then they become part of the

error term, which will then also be spatially correlated. Thus it is imperative to take this spatial

correlation into account in econometric estimation.6

There are three main approaches to account for spatial correlation:

(1) Use a spatial weighting matrix. This is most efficient when the weighting matrix is

known, but it will result in biased estimates if the weighting matrix is misspecified;

(2) Use the nonparametric approach provided by Conley (1999), which does not require

one to specify a weighting matrix; or

(3) Use a grouped bootstrap where years are resampled and replaced. This approach

requires that year-to-year fluctuations be random, but errors within a year can be

correlated.7

Finally, it is important to note that many of the gridded weather data sets we have discussed

simply interpolate station data. In data-sparse regions, several grids might be linked to the

same set of weather stations. This will lead to highly multicollinear weather variables that do

not allow for proper identification (especially in a panel setting where grid averages are

removed) because the remaining variation is simply due to the fact that slightly different

weights have been used for different weather stations.

In summary, one has to adjust for spatial correlation to obtain unbiased standard errors and

valid confidence bands.

Pitfall 5: Endogenous Weather Coverage

The final pitfall concerns why weather stations are observed in some areas and time periods and

not in others. One strand of the economics literature examines how the relationship between

weather variables and economic variables of interest might change due to large policy changes,

such as a country becoming independent, or an extreme exogenous shock, such as a natural

disaster (Kahn 2005). The most obvious method for accounting for such changes is the

now standard difference-in-difference analysis. One concern with this approach is that if the

degree of measurement error varies between the pre- and postintervention (or event) date,

the treatment effect estimate will very likely be biased because of classic attenuation bias con-

cerns. However, if weather variables are measured consistently, the difference-in-difference

6This will generally result in significantly larger standard errors. For example, Schlenker and Roberts (2009) find
that accounting for spatial correlation increases standard errors by a factor of 6.
7However, in many areas of the world, the independence of year-to-year variation is questionable because of
planetary-scale climate oscillations, such as the El Niño-Southern Oscillation, which may be autoregressive
(Hsiang et al. 2011).
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regression design will be free of this bias. Thus it is important that weather station coverage

not change with the policy change (or exogenous shock) because it could introduce measure-

ment error and result in a downward bias in the estimated coefficients in the postintervention

period.8

To examine this issue in more detail, we downloaded daily data from the Global

Summary of the Day database maintained by NOAA’s National Climatic Data Center

(NOAA 2011a), counted the number of days a weather station within a country had

nonmissing observations, and summed it across all stations. This provides the total count

of daily station-level observations in a country. While most countries show an upward trend

in this measure over time, the results for some transition countries are striking. For ex-

ample, Romania had an upward trend until it peaked at 67,727 station-days in 1988.

Following the fall of the Iron Curtain in 1989, the number decreased rapidly until it

stabilized around 11,000 station-days in 2003–2007, decreasing coverage by a factor of 6.

This suggests that the results from a difference-in-difference analysis of how, for example,

farmers responded to weather shocks before and after the fall of the Iron Curtain would

have to be interpreted with caution.

In summary, when using any of the gridded data products available, it is crucial to determine

whether the underlying station data have changed over time (i.e., before and after a major

shock or event).

Climate Models and Their Output

If the econometrician has successfully estimated the causal “dose–response” relationship

between socioeconomic outcomes and historical weather or climate data, often the logical

next step is to use that estimated relationship to predict future impacts due to anthropogenic

climate change. This step requires making forecasts of future climate under the assumption

of heightened atmospheric concentrations of greenhouse gases, which is usually accomplished

by employing output from a spatially explicit physics-based model of the global climate, which,

as discussed in the introduction, is known as a GCM. This section provides an overview

of GCMs and discusses some of the major potential pitfalls of using these models in the

simulation of future economic impacts of climate change.

Components and Properties of GCMs

Although GCMs have several components that are parameterized using statistical proced-

ures, the core of every GCM is a set of deterministic mathematical equations that describe

the laws of motion for a fluid. These laws were derived in fluid mechanics laboratories over

centuries, and GCMs use numerical approximations of these laws. To solve these equations,

GCMs approximate the atmosphere and ocean, which are continuous fluids, with some

form of numerical discretization. The simplest way to visualize this procedure (although it is

less sophisticated than what is typically used in current practice) is a three-dimensional grid

8This issue is closely related to the discussion about spatial correlation that is due to different interpolation
methods over a sparse data matrix.
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of “boxes,” each of which possesses several state variables, for example temperature or air

pressure, which vary across space from one box to the next and evolve over time but are

uniform within each box.9 Given a three-dimensional structure of these state-variables at

time t, a GCM solves for the variables’ structure at time t + 1 using the model’s numerical

representation of fluid-mechanical laws. Following an initialization that specifies the struc-

ture of these variables in the very first time period, GCMs iteratively repeat this calculation

for time-steps of about thirty minutes, gradually constructing a projection for the future

state of the world.10

GCMs typically take forecasts of human activity as exogenous. To make climate projections

across different GCMs comparable, modelers simulate future climate outcomes under a set of

standardized “scenarios” that exogenously prescribe a time series of future greenhouse gas

emissions, aerosols, and other short-lived pollutants based on demographic, economic, and

regulatory assumptions.11

When the emissions scenario is held fixed, GCMs differ primarily in their numerical

representations of the climate’s state and its various processes. Having discretized the

atmosphere and ocean with grid cells (the previously mentioned “boxes”) of various reso-

lutions,12 GCMs selectively represent processes that occur on spatial scales smaller than

these grid cells—known as “sub-grid scales”—using “parameterizations,” which are formu-

lations that are not based as directly on the known laws of physics as are the resolved fluid

dynamics, but incorporate a greater degree of empiricism or theoretical construction. For

example, chemical reactions, vegetation responses, cloud formation, and rainfall are all sub-

grid scale processes whose numerical representations may vary across GCMs (Sect. 8.2 in

IPCC 2007). Unlike the core fluid-mechanical equations that have a standard representation

in a discretized global model, there is no standard representation of these sub-grid scale

processes, and thus the improvement of their representation in GCMs continues to be an

active area of research. There have been various community efforts to try to accelerate

advances in this area by comparing the performance of models, most notably the Coupled

Model Intercomparison Project, or CMIP (see Meehl et al. 2007), and conducting studies

that attempt to score the forecast ability, known as “skill,” of different models along various

dimensions (see Reichler and Kim 2008, and Sect. 8.3 and 8.4 of IPCC 2007). Different

models have different “skill,” and thus we advise economics researchers who are studying

specific regions or processes and are interested in selecting a GCM projection to first consult

the appropriate literature as well as specialists in the field.13

9The Intergovernmental Panel on Climate Change (IPCC 2011a) provides a brief description and graphic to
illustrate this structure.
10For introductory materials on the structure of these models, see Tebaldi and Knutti (2010) and Section 8.1.3 of
IPCC (2007). For more advanced descriptions, consult Warner (2011) or IPCC (2007). Donner, Schubert, and
Somerville (2011), and Weart (2008, 2011) provide detailed histories of GCM development.
11These assumptions and their resulting scenarios were established in the IPCC’s Special Report on Emissions
Scenarios (SRES) (IPCC 2000) and are summarized in IPCC (2011b).
12See the supplemental tables to Reichler and Kim (2008) or IPCC Scientific Basis Table 8.1 (http://www.ipcc.ch/
publications_and_data/ar4/wg1/en/ch8s8-2.html) for a concise summary of these climate model properties.
13For researchers seeking intuition for the numerical setup of GCMs, they can download a one-dimensional
climate model tutorial built by the Goddard Institute of Space Studies for teaching purposes (http://icp.giss.nasa.
gov/education/geebitt/). More ambitious researchers can download and run a full open source GCM, the
Community Earth System Model, produced by the National Center for Atmospheric Research (http://www.
cesm.ucar.edu/models/cesm1.0/).
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Differences in Model Predictions

There are over twenty well-known climate models, all with readily available output.14 This

section discusses how the choice of GCM affects estimates of climate impacts. In their survey of

economic assessments of climate change impacts, Burke et al. (2011) found that 50 percent of

the studies used the model developed by the Hadley Centre to calculate economic climate

change impacts across a variety of sectors, of which 17 percent used only the Hadley model.

Among health impact studies, 38 percent relied on the Hadley model alone. However, there

is no evidence that the Hadley model or, in fact, any other model should be the preferred

climate model to use. This is supported by the fact that for some climate indicators, such

as precipitation, the predictions for certain regions vary dramatically across models. In the

extreme, some models predict wetter summers for West Africa and others predict drier

summers—all using the same SRES scenarios.

One way to address the challenge of having to choose one GCM is to use model or ensemble

averages (e.g., Tebaldi and Knutti 2007). This decreases the reliance on a single model.

However, we believe it is important to either report the impacts for a number of climate

models separately or to average them and indicate the variability in impacts across models.

This is not difficult to do, and, given the low costs of data storage on personal computers and

the access to free bandwidth for most academics, there is no reason not to. Alternatively,

if predicted changes within a study area vary more across than within climate models, then

presenting a set of uniform scenarios might be informative and also highlight the sensitivity

of the results.

We next turn to a set of issues that arise when one tries to match the time and spatial scale

of the GCM to that of the econometric model for simulation purposes.

Aggregation Bias

As described earlier, GCMs effectively divide the earth’s surface into a discrete grid, where

there is variation in climate across discrete grid cells, but climate statistics are homogenous

within each cell. For example, if one uses a climate model that provides output on a monthly

basis, it is assumed that temperatures within the month and among all locations within the

grid cell are constant.15 Such temporal and spatial aggregation might be inappropriate and

produce biased impact estimates. While many models are being run at a resolution that is

higher than 2� 2 degree (for the next IPCC [AR5] report), most of the economic impact

studies in the existing literature use model output at a 2� 2-degree or coarser resolution. While

a 2� 2-degree cell may be “small” from the perspective of the global climate, it is not small

from the perspective of human systems. For example, a 2� 2-degree grid spacing at the equator

is equivalent to a grid width of 222 kilometers (138 miles). It is not hard to imagine that a stretch

of this length will have vastly varying climates (e.g., driving east from San Diego’s coastal

14Climate projections from GCMs running IPCC’s Special Report on Emissions Scenarios are available free of
charge, and model output can be downloaded from the IPCC’s data distribution website (http://www.ipcc-data.
org/) or the CMIP data distribution website (https://esg.llnl.gov:8443/index.jsp). For summaries of climate
projections from GCMs running SRES scenarios, see IPCC (2007), chapter 10, for global summaries and
chapter 11 for regional summaries. The IPCC also provides an interactive data visualization application
online (http://www.ipcc-data.org/ddc_visualisation.html).
15Some models have within-grid deterministic variation, but this is a relatively recent effort.
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climate to El Centro’s dry and hot desert climate). This aggregation issue becomes especially

problematic if the underlying topography is mountainous or located near the ocean.

Quantifying aggregation bias

To examine the severity of this aggregation bias, we compare average temperatures predicted

by the Hadley III GCM to a fine-scaled (2.5� 2.5-mile grid) weather data set (PRISM 2009)

for the 48 contiguous United States (see figure 3). Figure 3 shows quite clearly that this bias is

most significant in mountainous areas, which are also usually less populated areas. At the

extremes, we see that the bias can reach +25�C at some mountaintops. This is not surprising

because surface temperatures tend to fall about 7�C per 1,000 m in elevation, which means

that mountains are much colder than areas at lower elevations in the same grid cell. The

aggregation bias exists not only for remote mountainous regions but also for heavily populated

areas, which are often located near oceans. In fact, figure 3 indicates that the entire Western

Seaboard has biases, and that those biases are significantly greater than any predicted warming.

The average absolute difference in temperature across the entire United States is 3.0�C and

the root mean squared error is 4.0�C, which are both substantially larger than the average

predicted changes by the end of the century under the SRES forced climate change scenarios.

This means that if one simply interprets GCM output at a grid cell as an unbiased forecast of

climate at any location in that grid cell, the bias may be a much larger driver of projected

impacts than actual warming.

Moreover, while the severity of the aggregation bias varies by location, it also varies by

the climate indicator one is using. For example, if we use the annual mean temperature

rather than the average daily maximum July temperature, the absolute error reduces to

Figure 3 Aggregation bias: Hadley grid averages versus PRISM grid averages in each PRISM grid

(1961–1999)

Notes: The figure plots the difference in the average daily maximum temperature in the month of July in the

years 1960–1999 between the GCM (Hadley III), which has the coarser resolution, and the fine-scale

weather grid (PRISM 2009). A positive number indicates that the GCM grid average exceeds the PRISM

average, which is based on interpolated station data.

Source: Authors’ calculations.

194 M. Auffhammer et al.

 at U
niversity of C

alifornia B
erkeley on July 16, 2013

http://reep.oxfordjournals.org/
D

ow
nloaded from

 

http://reep.oxfordjournals.org/


1.8�C and the root mean squared error to 2.4�C. Thus the magnitude of the bias varies by

location and indicator used.

This bias is especially relevant for studies of the economic impacts of climate change. These

studies generally parameterize a response function between, for example, electricity demand

and temperature, using observations from a weather station–based data set and observed

electricity demand. In order to calculate the counterfactual electricity demand under a scenario

with climate change, one must have a baseline climate and a counterfactual climate. However, if

one uses an average of observed gridded weather products as the baseline climate and predic-

tions of climate from a GCM as the counterfactual climate at a future date, the resulting

estimated impacts will be due to both the simulated warming and the bias displayed in

figure 3. If the response function is nonlinear in weather/climate, as has been shown to be

the case in agriculture (e.g., Schlenker and Roberts 2009) and electricity demand (e.g.,

Auffhammer and Aroonruengsawat 2011, 2012), then this bias may be amplified or offset

depending on the nature of the nonlinearity. However, in either case, the resulting impact

estimates will be biased. We next turn to a simple approach, which overcomes this issue.

Correcting aggregation bias

The literature has suggested several ways to correct such biases. In addition to using climate

models with finer resolutions, the most commonly used approach is based on regression

methods, whereby the researcher establishes a correlation between the historical grid

values from the GCM and local station-based data and then uses this fitted regression relation-

ship with future values of GCM output to arrive at “downscaled” GCM predictions.16 Fowler,

Blenkinsop, and Tebaldi (2007) provide a review of the main approaches used in practice and

compare their performance at selected locations. They note that there is a large literature

examining the performance of different downscaling approaches for different regions and

climate variables. They conclude that there is no single best approach for all variables (e.g.,

maximum temperature, rainfall, wind speed) and locations. Moreover, they find that down-

scaled versions of all GCMs at a desired temporal resolution covering all regions of interest are

simply not available. If one is interested in daily values, which are important for many economic

applications, including agriculture and electricity demand, then a downscaled version of a

climate model delivering daily output is needed. Such data sets are available for some regions,

such as California (Cayan 2009), or at coarser time resolution nationally (e.g., Maurer et al.

2007) and globally (e.g., Maurer 2009).

In the absence of an appropriate downscaled data set for the region and time resolution

of interest, the most common practice is to derive predicted changes for each (coarse) GCM grid

and then add these to an average of the historic baseline data used in the parameterization of

the response function, thereby preserving within-GCM grid variation. This approach subtracts

out the location-specific bias only if this bias is stationary in time. However, this approach shifts

the historic time-series at a location by the predicted change, leaving its variance unchanged.

If researchers are concerned about predicted changes in the mean and the variance, then the

fine-scaled historic deviations from location-specific averages can be rescaled by the ratio of the

predicted variance at the GCM grid in the future relative to the baseline. It should be noted,

16Innovations on this basic approach have involved nonlinear estimation, neural networks, and Bayesian
methods.
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however, that there is much less consensus among models concerning the predicted changes in

the variance than in the mean.

In summary, it is crucial that economists not simply use GCM output as a direct forecast of

future climate when estimating impacts relative to a weather station–based baseline climate.

One simple solution is to simply add the predicted change in weather to the baseline climate

when calculating impacts.

Conclusions

This article has reviewed the most common gridded weather products and outlined five

pitfalls when using them as regressors in econometric models. More specifically, we have

emphasized that weather anomalies (deviations from normal) vary greatly between data

sources and are highly correlated between weather measures and across space. Researchers

need to address these issues when constructing and using weather shocks. We have also

discussed the basic features of GCMs and examined issues related to spatial scale when

using these models in the estimation of the economic impacts of climate change.

In closing, we want to emphasize that when using gridded data sets of historical or future

climate, it is important to recognize that both types of data sets are very different from observed

weather. Moreover, although historical gridded data products are very convenient because they

often provide highly disaggregated weather for large geographic regions over long time periods,

this increased coverage comes at a cost. That is, the birth and death of weather stations, the

frequent occurrence of missing values, and the spatial correlation introduced by extrapolation

algorithms all create potential biases in the estimated coefficients and standard errors if one uses

these weather products as independent variables in econometric analyses. In addition, when

using GCM output as a counterfactual of future climate, the choice of model has significant

implications for the sign and magnitude of the estimated impacts. This means it is important to

account for the location-specific biases of each model in order to avoid causing further biases in

estimates of the economic impacts of climate change.
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