FEATURES

- □ 8V-36V Power Bus Switching
 - Single-Supply Stand-Alone Operation
 - Dual-Supply ARDUINO Hosted Operation
- 5ms VOUT Linear Power-Up Ramp Rate
- 2.5ms VOUT Linear Power-Down Ramp Rate
 - Feature for Commanded Stop and Overcurrent Limit Fault Trip
- □ 2.5A Overcurrent Fault Limit
 - \circ 162ms Overcurrent Fault Timeout
- 5A Short Circuit Fault Threshold
 - 500ns Short Circuit eFusing Response
- □ Stand-Alone Operation Requires User Jumper Wires to ENABLE Operation and Issue RESET # Command
- □ Full-Feature Operation Achieved with ARDUINO Host
- □ ARDUINO Shield Form Factor
 - o Host Microcontroller Command & Control of SPSC Accomplished through I²C SerCom using PMBus[™] Protocol
 - Software API available for UT32M0R500-EVB
 - (TBD) Software API for ST-NUCLEO L053 EVB
- □ Analog Telemetry Measured by SPSC Available via PMBus[™] Communication Port
 - Telemetry: VIN, VOUT, and LOAD Current
- Dual-Power FET OR'ing Switch Functionality with Reverse Current Fault Protection

Introduction

The Smart Power Switch Controller Evaluation Board SPSC-EVB provides users with a convenient and flexible platform from which to evaluate the manifold features and functions available with the UT36PFD103 SPSC. The SPSC-EVB may be operated in single-supply stand-alone form (i.e. without host microcontroller) and in full-featured operation when installed as an ARDUINO shield onto a compatible host microcontroller evaluation board.

To facilitate rapid evaluation, Cobham provides software API for the UT32M0R500 Arm M0+ evaluation board to service the SPSC host controller along with a run-time executable graphical user's interface (GUI). Refer to the SPSC_SoftwareUsersGuide.pdf for documentation on GUI operation. Additionally, the UT32M0R500 software API is available for download on the Cobham Webpage (<u>https://caes.com/product/ut32m0r500#downloads</u>) along with an application note detailing how to program the UT32M0R500-EVB.

1 Reference Documents

Description	Reference Document
UT36PFD103 SPSC Data Sheet	https://caes.com/sites/default/files/documents/Datasheet-
	<u>UT36PFD103.pdf</u>
SPSC-EVB GUI User's Guide	https://caes.com/sites/default/files/documents/App-Note-SPSC-
	Software-User-Guide.pdf
UT32M0R500-EVB User's Guide	https://caes.com/sites/default/files/documents/App-Note-UT32M0R500-
	EVB-Users-Guide.pdf
UT32M0R500 ARM M0+	https://caes.com/sites/default/files/documents/Functional-Manual-
Functional Manual	<u>UT32M0R500.pdf</u>
UT32M0R500-EVB to SPSC-EVB API	Fill out the Software Download Request here:
& SPSC-EVB-GUI Runtime Executable	https://caes.com/product/ut36pfd103#downloads

2 Evaluation Kit Contents

- SPSC-EVB-R0 UT36PFD103 Evaluation Board (1)
- ARDUINO Male-Male Jumper Wire (3)
- SPSC-EVB-R0-GUI (1 Download from Cobham Website)
- UT32M0R500-SPSC-API (1 –Download from Cobham Website)
- SPSC-EVB-R0 Evaluation Kit User Guide (1)

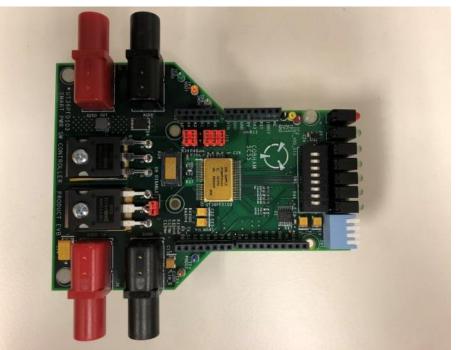


Figure 1a: Stand-Alone SPSC-EVB-R0

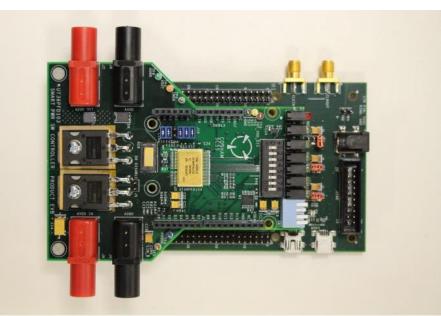


Figure 1b: SPSC-EVB-R0 Installed on UT32M0R500-EVB

Ver 1.0.1

Table of Contents

FEATURES	
Introduction	1
1 Reference Documents	1
2 Evaluation Kit Contents	2
Table of Contents	3
3 Evaluation Board (EVB) Configuration	4
4 Test Equipment List	5
5 Evaluation Setup Diagram	5
6 Configuring the SPSC-EVB-R0 for Hosted Operation	6
7 Configuring the SPSC-EVB-R0 for STAND-ALONE Operation	17
8 EVB Electrical Schematics	20
9 EVB Components Bill of Materials	
10 EVB Layout Information	24
REVISION HISTORY	

3 Evaluation Board (EVB) Configuration

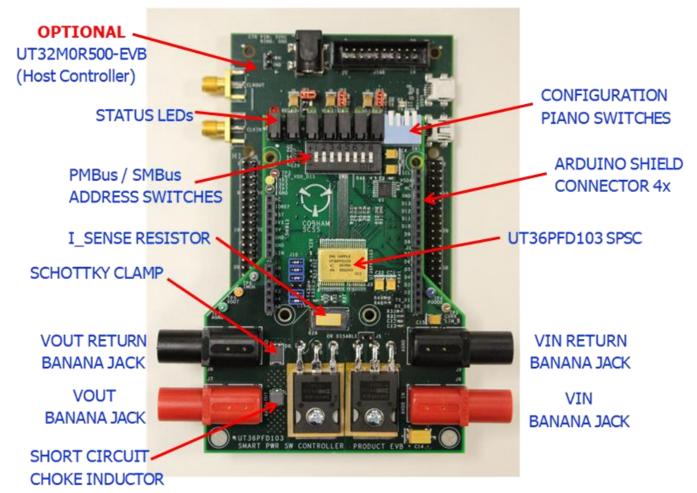


Figure 2: SPSC-EVB-R0 on UT32M0R500-EVB with Labels

Ver 1.0.1

UT36PFD103 Smart Power Switch Controller SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

4 Test Equipment List

Item #	Description	Function/Purpose
1	SPSC-EVB-R0	UT36PFD103 Evaluation Board
2	Differential Output 3.125 Gbps Pattern Generator (PRBS/XAUI/etc.)	Pulse Pattern Generator for Input Stimulus
3	Differential input oscilloscope with input analog bandwidth (BW) ≥8GHz	Oscilloscope for Output Display
4	3 Channel DC Power Supply	DC Power Supply for XPS Evaluation Board (1.2V, 1.5V, 2.5V)
5	MS Windows Laptop Computer + USB Cable	Platform for SW GUI Operation
6	SMP-to-SMA Cable Assemblies	Test Equipment Interface to SMP Connectors on Evaluation Board
7	SMA Cables	High-Speed Signal Connections To/From DUT and Test Equipment
8	DC Banana Plug Power Cables	Evaluation Board DC Power Connections

5 Evaluation Setup Diagram

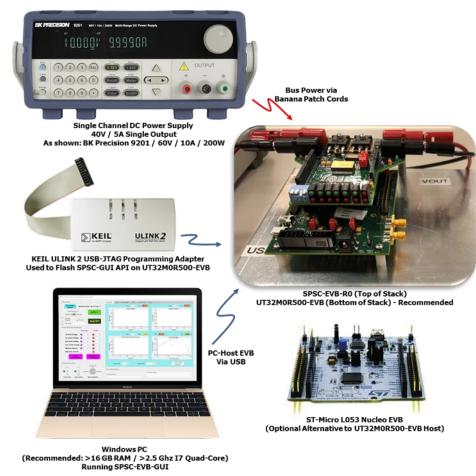


Figure 3: Evaluation Equipment Recommendations

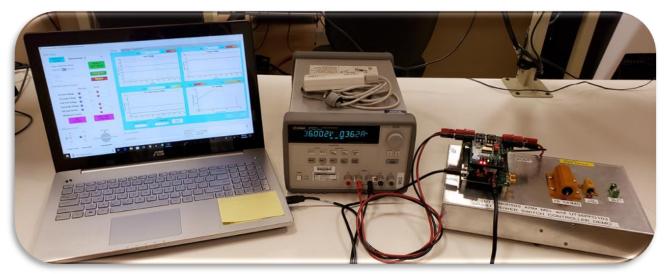
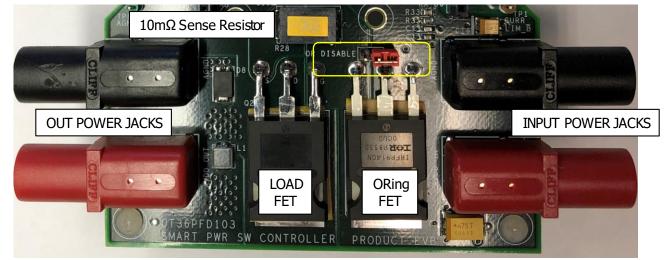



Figure 4: Example Evaluation Platform Setup with Loads

When operating the SPSC-EVB with hosted ARDUINO[™] microcontroller base, the full-featured evaluation simply requires a PC with 16GB RAM and 2.5GHz Quad-core processor (recommended) to operate the GUI, a USB Type-A to Mini-B cable, single channel power supply (36V and 2.5A-5A capable output), banana patch cords and output load. As seen in Figure 4, Cobham implemented a simple load box to mount the UT32M0R500-EVB and SPSC-EVB-R0 and switch resistive loads of 10-ohms, 100-ohms, and a fast-blow fused short to ground.

6 Configuring the SPSC-EVB-R0 for Hosted Operation

Figure 5: ORing Bypass Option

Step 1) Determine if you will bypass the ORing FET. As shown in Figure 5, the red shunt is NOT connecting across the OR DISABLE header. This configuration allows the SPSC to control the ORing FET. When shunting across this header, the ORing FET source-drain terminals are shorted effectively bypassing the SPSC control of the PowerFET.

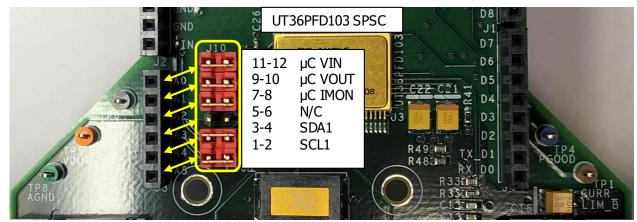


Figure 6: J10 Shunt Configuration

Step 2) Confirm the appropriate jumper shunts are in place on header J10, as shown in Figure 6. The μC VIN, μC VOUT, and μC IMON are analog representations of the corresponding telemetry points on the SPSC-EVB. The SDA1 and SCL1 signals connect the μC multi-function analog/GPIO pins to the SPSC's redundant SMBus Data and Clock IO.

Table 1. Allalog Telemetry Scaling for people Abc								
Signal	Arduino Pin	Scaled Factor						
μC VIN	A0	(VIN) 26.1 : 1 (µC VIN)						
µC VOUT	A1	(VOUT) 26.1 : 1 (µC VOUT)						
μC IMON	A2	(IMON) 2 : 1 (µC IMON)						

Table 1: Analog Telemetry Scaling for µController ADC

Note the SPSC has an internal 10-bit ADC which also measures these telemetry points and provides the digitized value on a 2V scale to the host microcontroller via PMBus[™] commands. These redundant analog telemetry points are provided to allow the user to perform the analog telemetry digitization with the microcontroller if desired. The scale factors provided by the SPSC-EVB-R0 are intended to keep the maximum analog values to remain <1.6V full-scale.

7/21/2021

Ver 1.0.1

APPLICATION NOTE

UT36PFD103 Smart Power Switch Controller SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

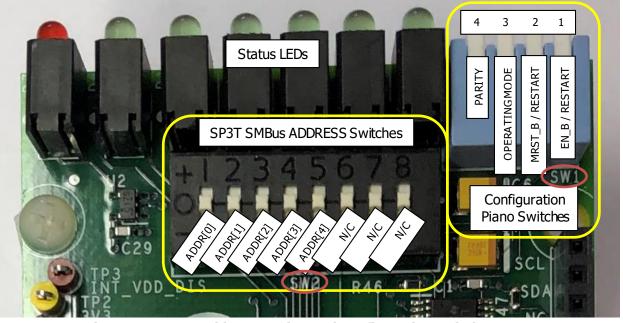


Figure 7: SMBus Address, Parity, and Configuration Switches

Step 3) There are two switch banks on the SPSC-EVB-R0 to configure SMBus addressing, selecting HOSTED or STAND-ALONE operation and facilitating certain operational modes when using the evaluation board in stand-alone mode. When using the SPSC-EVB-R0 in an ARDUINO hosted configuration, the OPERATING MODE piano switch (SW1.3) must be DOWN. The PARITY piano switch (SW1.4) should be set to create ODD parity for the ternary SMBus address set by the SP3T switches on SW2 (Table 2). Leaving PARITY switch UP places the SPSC PARITY input to logic LOW, while depressing SW1.4 in the DOWN position sets PARITY to logic HIGH. Table 4 provides a cross reference of ternary address decoding with appropriate parity setting.

As mentioned, the SMBus address inputs on the SPSC are ternary logic. This means each pin supports three states: LOW, MID, HIGH. The choice of ternary IO was used to provide full 7-bit SMBus addressing with fewer pins. The SPSC supports PMBus™ plug & play through its implementation of the SMBus Address Resolution Protocol (ARP). If the SMBus address and parity are invalid or duplicate, the SPSC-EVB-GUI will issue an enumeration sequence that informs the host microcontroller to invoke the ARP and determine which valid terminals are connected to the bus and assign new addresses to terminals that have an invalid or duplicate address set by the switch bank. The SMBus address switches are read by the SPSC while in reset, only.

The remaining two piano switches on SW1 (Table 3) are intended for STAND-ALONE operation. EN_B / RESTART (SW1.1) is provided to implement a commanded output pulsing function, while MRST_B / RESTART facilitates autonomous retriggering operation when current limit faults are detected. To use the SPSC-EVB-R0 in STAND-ALONE operation, SW1.3 must be UP. When operating the SPSC-EVB-R0 in STAND-ALONE mode, it also runs with a single power supply, drawing its power from the VIN supply and self-regulating the 3V3 supply.

SPSC-EVB-R0 Evaluation Board for UT36PFD103 **Smart Power Switch Controller**

Table 2: SP3T Switch SW2 Settings								
Signal	Switch	Description	States					
ADDR0	SW2.1	SMBus Address 0						
ADDR1	SW2.2	SMBus Address 1						
ADDR2	SW2.3	SMBus Address 2						
ADDR3	SW2.4	SMBus Address 3	= LOW \odot = MID					
ADDR4	SW2.5	SMBus Address 4	+ = HIGH					
N/C	SW2.6	No Connect						
N/C	SW2.7	No Connect						
N/C	SW2.8	No Connect						

Table 3: Piano Switch SW1 Settings

Signal	Switch	Description	States
		Restart Operation	UP = No Delay on EN_B \uparrow
EN_B / RESTART	SW1.1	via EN_B Input	DOWN = RC Delay Added to EN_B ↑
		_ '	Expected use in Stand-Alone Mode
MRST_B/RESTART	SW1.2	Restart from Current Fault via MRST_B Input	UP = Output Latched OFF on Current Fault DOWN = Output Retriggers on Current Fault <i>Expected use in Stand-Alone Mode</i>
OPERATING MODE	SW1.3	SPSC-EVB Mode of Operation	UP = Stand-Alone Mode of Operation DOWN = Hosted Mode of Operation
PARITY	SW1.4	SMBus Address ODD Parity	UP = Drives Parity input logic LOW DOWN = Drive Parity input logic HIGH <i>Expected use in Hosted Mode</i>

SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

Value 16 17 18 19 20 21 22	(LSB->MSB) LLMHM LLMHH LLHLL	Switch UP (Logic 0) DOWN	Value 70	(LSB->MSB)	Switch
18 19 20 21 22		DOWN		LHMHM	UP
19 20 21 22		(Logic 1)	71	LHMHH	DOWN
19 20 21 22		DOWN	76	LHHMM	UP
20 21 22		UP	77		DOWN
21 22		DOWN	78	LHHHL	DOWN
22		UP	79		UP
	LLHMM	UP	80	LHHHH	DOWN
23	LLHMH	DOWN	81	HLLLL	UP
24	LLHHL	DOWN	82	HLLLM	UP
25	LLHHM	UP	83	HLLLH	DOWN
26	LLHHH	UP	84	HLLML	UP
27	LMLLL	DOWN	85	HLLMM	DOWN
28	LMLLM	UP	86	HLLMH	DOWN
29	LMLLH	DOWN	87	HLLHL	UP
30	LMLML	DOWN	88	HLLHM	UP
31	LMLMM	UP	89	HLLHH	DOWN
32	LMLMH	UP	90	HLMLL	DOWN
33	LMLHL	DOWN	91	HLMLM	UP
34	LMLHM	DOWN	92	HLMLH	DOWN
35	LMLHH	UP	93	HLMML	UP
36	LMMLL	DOWN	94	HLMMM	UP
37	LMMLM	UP	95	HLMMH	DOWN
38	LMMLH	UP	96	HLMHL	DOWN
39	LMMML	DOWN	98	HLMHH	UP
41	LMMMH	UP	99	HLHLL	DOWN
42	LMMHL	UP	100	HLHLM	UP
43	LMMHM	DOWN	101	HLHLH	DOWN
46	LMHLM	DOWN	102	HLHML	DOWN
47	LMHLH	UP	103	HLHMM	UP
48	LMHML	DOWN	104	HLHMH	UP
49	LMHMM	UP	105	HLHHL	DOWN
50	LMHMH	UP	106	HLHHM	DOWN
51	LMHHL	DOWN	107	HLHHH	UP
52	LMHHM	UP	108	HMLLL	DOWN
53	LMHHH	DOWN	109	HMLLM	UP
54	LHLLL	DOWN	110	HMLLH	UP
56	LHLLH	UP	111	HMLML	DOWN
57	LHLML	DOWN	112	HMLMM	UP
58	LHLMM	DOWN	113	HMLMH	DOWN
59	LHLMH	UP	114	HMLHL	DOWN
60	LHLHL	DOWN	115	HMLHM	UP
61	LHLHM	UP	116	HMLHH	DOWN
62	LHLHH	UP	117	HMMLL	UP
<u>63</u> 69	LHMLL	DOWN UP	118 119	HMMLM HMMLH	UP DOWN

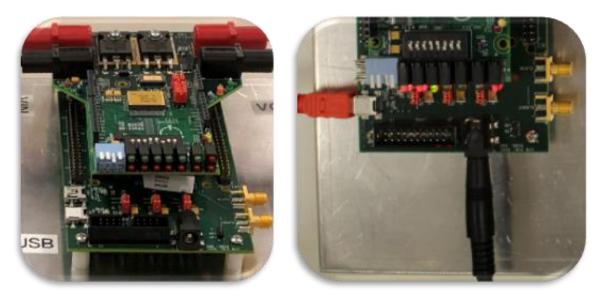
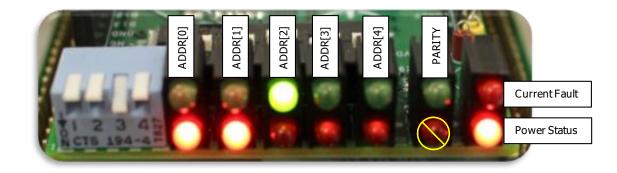



Figure 8: Installing SPSC-EVB-R0 onto UT32M0R500-EVB Host

Step 4) Install the SPSC-EVB-R0 onto the ARDUINO shield connectors located on the target host controller board. Recommended host controller board is Cobham's UT32M0R500-EVB (or STM L053 Nucleo - Cobham API support pending). After installing the SPSC-EVB-R0 onto the host controller board, you are ready to apply power to the host controller and connect its USB Mini-B port to the PC USB Type-A COM port as shown in Figure 8. Once power is applied to the host controller board through its AC/DC power adapter, you should see LED's illuminate to reflect the present configuration and status of the SPSC-EVB-R0.

Figure 9: SPSC-EVB-R0 Status and Configuration LEDs

Once the SPSC-EVB-R0 is installed on the ARDUINO host and power is applied to the host, the status and configuration LEDs will illuminate according to SPSC-EVB-R0 settings, as shown in Figure 9, above.

	Table 5: SPSC-EVB-R0 LED Legend							
ADDR[4:0]	Parity		Parity		Current Fault		Power Status	
LOW		NOT USED		CURRENT FAULT		VOUT POWER NOT GOOD		
len HIGH		HIGH						
MID		LOW		No FAULT		VOUT POWER GOOD		

The PGOOD LED illuminates when the output voltage (VOUT) is less than 25V indicating output voltage is NOT good. This is an arbitrary threshold that was designed in the SPSC-EVB-R0. PGOOD is derived from a 15.3 : 1 voltage divider on VOUT to the SPSC FEEDBACK input who's HIGH/LOW threshold is 1.6V with hysteresis. The state of PGOOD does not have any effect on SPSC operation; it is simply a discrete telemetry output signal on the SPSC-EVB-R0.

The CURR_LIM_B output from the SPSC asserts LOW when a >2.5A load current is present for ~160ms or when the 500ns short circuit detector is tripped by a load current >5A. Figure 10 depicts a typical over current fault condition time-out, while Figure 11 shows an example short circuit detection response.

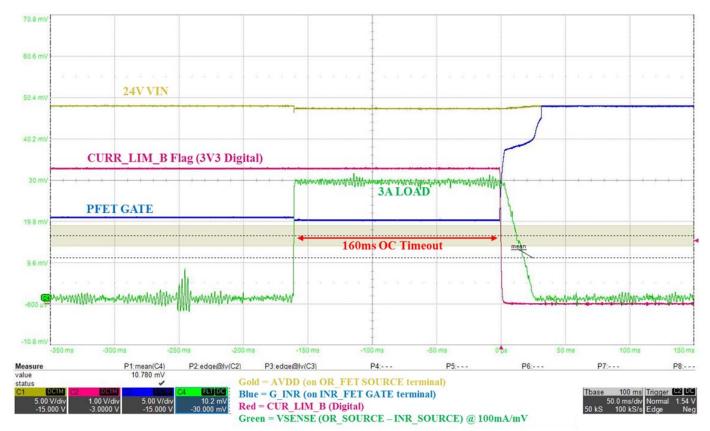


Figure 10: SPSC-EVB-R0 Overcurrent Fault Response

SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

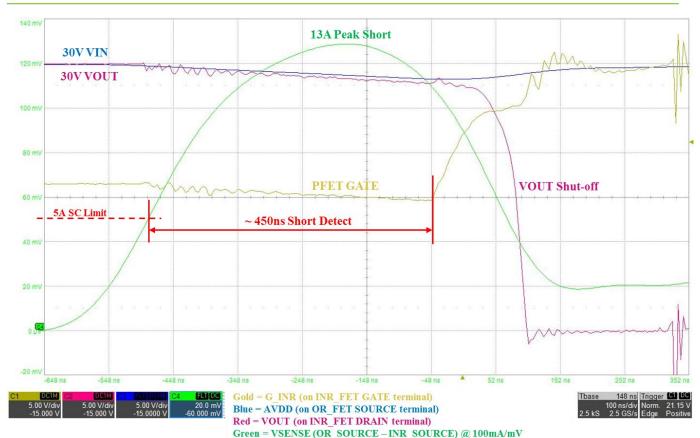


Figure 11: SPSC-EVB-R0 Short Circuit Detection Response



Figure 12: Connect Power Supply to VIN Banana Jacks on SPSC-EVB-R0

Step 5) Using common banana patch cords, connect your power supply positive (RED) and return (BLACK) terminals to the VIN positive (RED) and return (BLACK) banana jacks on the SPSC-EVB-R0.

UT36PFD103 Smart Power Switch Controller

SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

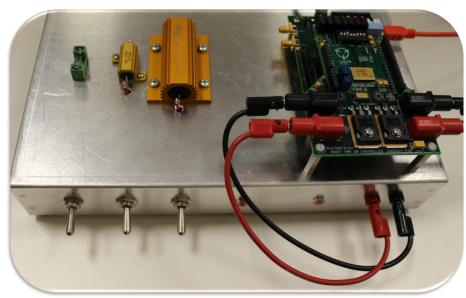


Figure 13: Connecting Target Load to the SPSC-EVB-R0 VOUT Port

Step 6) Connect the SPSC-EVB-R0 VOUT port to your desired load. Figure 13 depicts Cobham's demonstration platform (not included in SPSC-EVB-R0 evaluation kit) with VOUT (RED) and return (BLACK) patched from the SPSC-EVB-R0 VOUT port into the load fixture where it is then switched into 1-to-3 loads via toggle switches.

Figure 14: Turn on Power Supply and Set to Desired Voltage Step 7) As long as the ARDUINO Host is already powered-up, you can apply power to the VIN port that was connected

in Step 5, above. Powering the SPSC-EVB-R0 solely through the VIN port results in the SPSC self-regulating the 3V3 domain shared by the SPSC-EVB-R0 and ARDUINO host EVB which may have adverse effects on the UT36PFD103 SPSC since its 3V3 regulator was not designed with intent to be a full system power regulator and it is undetermined how reverse powering the ARDUINO host EVB will behave.

If the ARDUINO host is already powered prior to applying VIN, the power supply should report 1-2mA of supply current up through 40V. Do NOT increase VIN above 44V. As shown in Figure 14, above, the power supply current is 362mA because the GUI had enabled the output load switch with the 100-ohm load connected.

To proceed further, the SPSC-EVB-R0-GUI must be installed on the PC and the host controller board must be programmed with the UT32M0R500-EVB to SPSC-EVB API, both of which can be downloaded from Cobham's website (<u>https://caes.com/product/ut32m0r500#downloads</u>) An application note is also available on the website to walkthrough the programming process.

Figure 15: SPSC-EVB-R0-GUI Startup Screen

Step 8) Once software is installed on the host PC and the ARDUINO host PCB is programmed with the evaluation API, you are ready to operate the SPSC-EVB-R0-GUI and begin evaluating the hardware. Refer to the SPSC-EVB GUI User's Guide for an explanation of the various operational features supported and how to connect the GUI to the target hardware.

With the GUI connected and in control of the hardware, you will be able to switch the power supply to the target load and evaluate voltage, current, fault detection, isolation and recovery capability of the SPSC. The SPSC provides $\Delta V/\Delta t$ control during the VOUT charging phase to prevent inrush current. The $\Delta V/\Delta t$ limit on the SPSC-EVB-R0 is ~6V/ms. If your evaluation load includes a sufficiently large capacitance (~833µF) you will trip the short circuit fault protection. Figure 16 depicts an example VOUT power up to 30V of a 7.5 Ω resistive load.

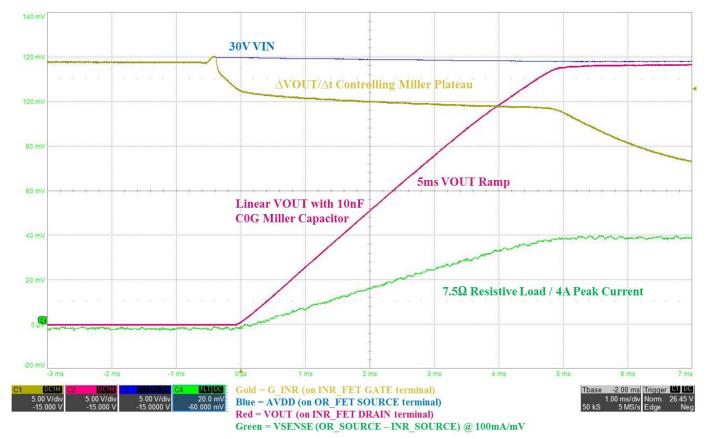


Figure 16: Example VOUT Power-Up with $\Delta V / \Delta t$ Control

7 Configuring the SPSC-EVB-R0 for STAND-ALONE Operation

The SPSC-EVB-R0 may be used without an ARDUINO host, which is termed STAND-ALONE operation. The following steps walkthrough setting up and operating the evaluation board in STAND-ALONE mode.

Step 1) Enable/Disable the OR'ing functionality; identical to step 1 for the ARDUINO hosted configuration.

Step 2) J10 shunt settings discussed in step 2 of the ARDUINO hosted configuration is not applicable.

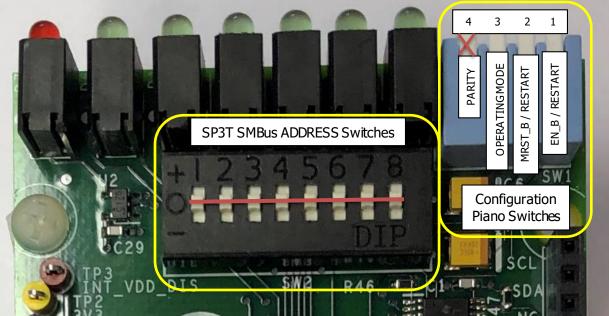


Figure 17: SMBus Address Switches and Configuration Piano Switches

Step 3) In STAND-ALONE mode, the SMBus Address switches are unused. To avoid unnecessary DC power consumptions from the SPSC's regulated 3V3 supply, it is recommended to set these switches to the center (open) position. The PARITY piano switch (SW1.4) is a don't care, but is best left in the "UP" position.

The OPERATING MODE piano switch (SW1.3) MUST be in the "UP" position to enable the STAND-ALONE operating mode.

Placing the MRST_B/RESTART (SW1.2) in the DOWN position enables autonomous retrigger to current faults by connecting the UT36PFD103's open-drain CURR_LIM_B output to its MRST_B input. In the event of a current limit fault, the CURR_LIM_B is driven low, which in turn drives the MRST_B pin low thereby clearing the fault latch and allowing the SPSC to re-engage the output load switch after an RC time delay of ~45ms. It is recommended the user take caution using autonomous retriggering with very low impedance loads (e.g. short circuits) while test equipment like ammeters are in line with the power supply because the repetitive reassertion of the power supply to the load at 45ms intervals can blow the current protection fuse (typ. 3A) in common DMMs.

Using the MRST_B/RESTART (SW1.2) as a tactile switch (i.e. partially depressing the switch) is a convenient way to manually restart the SPSC following a latched current fault while avoiding the autonomous retriggering option.

Figure 18: Jumper Wires Required to Invoke Certain Operating Conditions on SPSC-EVB-RO

Step 4) In order to operate the SPSC-EVB-R0, the EN_B input must be LOW. This is most easily accomplished by running a jumper wire from J4.D6 to a nearby GND point. As shown in Figure 18, an orange jumper wire is run from J4.D6 (EN_B) to J1.GND.

Additional features that can be invoked with jumper wires to GND are MRST_B (J4.D5) and SLEEP_B (J4.D4). All 3 of these signals have local pull-ups on the SPSC-EVB-R0 to place them into their inactive states. Therefore all that is required to activate them is to run a jumper to ground as described above.

- Step 5) Similar to step 5 in the hosted configuration setup, connect your power supply to the VIN banana jacks on the SPSC-EVB-R0 using banana patch cords.
- Step 6) As in step 6 in the hosted configuration, connect the SPSC-EVB-R0 VOUT port to your desired load.
- Step 7) In stand-alone mode, the SPSC-EVB will power up in single-supply configuration by regulating the 3V3 domain on the evaluation board through the UT36PFD103 self-regulation. Full regulation will not occur until VIN is ~7V. Typical currents on the VIN power supply will range from 3mA to 20mA during the VIN power-up. Assuming only the PGOOD LED is illuminated in stand-alone mode with VIN >7V the EVB will normally draw ~5mA of current from the VIN supply.

As-long-as EN_B (J4.D6) is grounded on the SPSC-EVB-R0, the UT36PFD103 will automatically switch VIN to VOUT when the power supply crosses the Undervoltage Lockout (UVLO) threshold which is ~7.5V on the positive going threshold. The UVLO input on the SPSC is set by a 4.4 : 1 voltage divider targeting a 1.6V (comparator reference) + 100mV (hysteresis) threshold.

With EN_B tied LOW and no current fault, VIN will be switched to VOUT for all VIN levels above UVLO (\sim 7.5V) through the Overvoltage Lockout (OVLO) threshold of \sim 42.5V. The OVLO input on the SPSC is set by a 25:1 voltage divider targeting a 1.6V (comparator reference) + 100mV (hysteresis) threshold.

**NOTE the SPSC-EVB-R0 has a side effect of the UVLO voltage divider driving the input voltage above 3V3+V_ESD when VIN is >17V. As VIN increases, current flows into the UVLO pin through its ESD protection diode and back out through the OVLO pin creating an effective reduction in the OVLO trip threshold. The result is that OVLO trips around 39.5V on VIN. This situation will be addressed in the SPSC-EVB-R1.

Ver 1.0.1

8 EVB Electrical Schematics

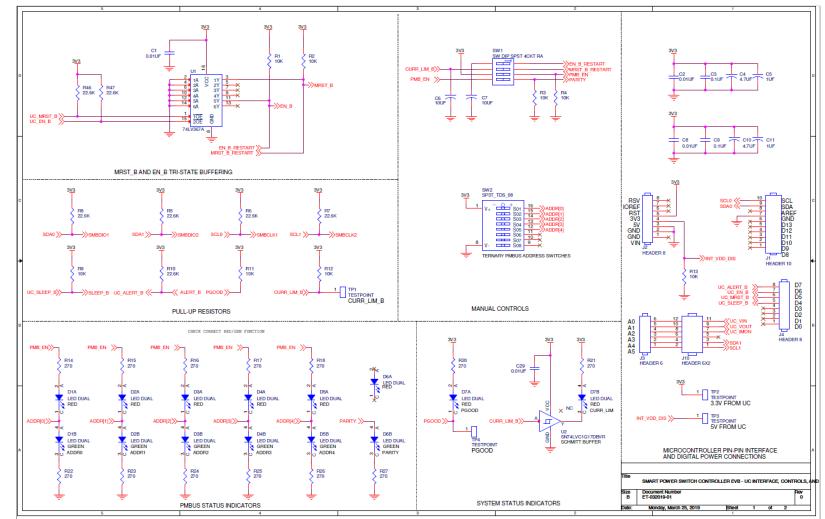
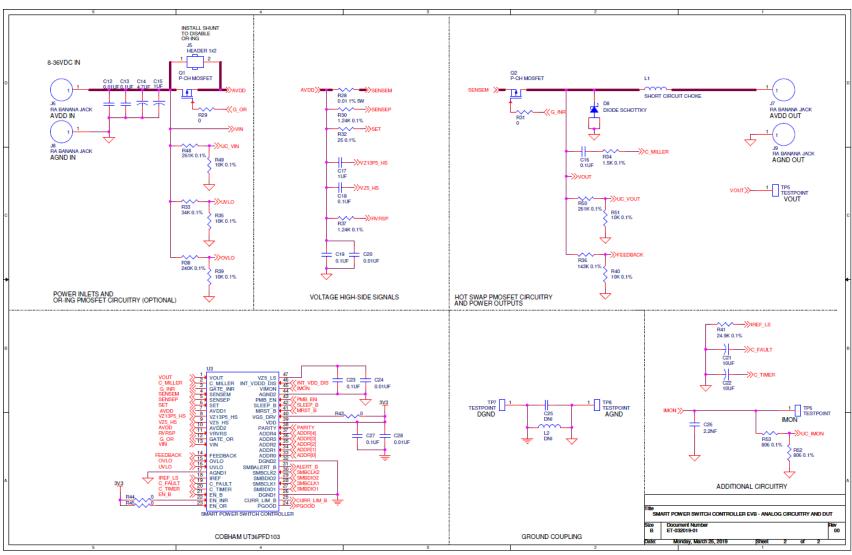



Figure 19: SPSC-EVB-R0 Schematic 1/2

Ver 1.0.1

9 EVB Components Bill of Materials

Title:	UT36PFD1	.03 SPSC Pr	roduct EVB BOM						
Rev.	0								
ET#	032019-01								
Date:	20190325								
Author:	Karlson								
Item	Quantity	Reference	e Part	Description	PCB Footprint	Vendor	Vendor part number	Manufacturer	Part Number
1		C1,C2,C8,		CAP CER 10000PF 50V C0G/NP0 0603	SMT0603		490-9666-1-ND	Murata	GRM1885C1H103JA01D
2		C3,C9,C13		CAP CER 0.1UF 50V X7R 0603	SMT0603		311-1779-1-ND	Yageo	CC0603JRX7R9BB104
3		C4,C10		CAP TANT 4.7UF 10% 35V 1411	B CASE		478-3106-1-ND	AVX	TPSB475K035R0700
4		C5,C11,C1		CAP TANT 1UF 10% 50V 1411	B CASE		399-9720-1-ND	Kemet	CL21B105KBFNFNE
5	-	C6,C7,C21		CAP TANT 101 10% 50V 1411 CAP TANT 10UF 10% 16V 1411	B CASE		478-5230-1-ND	AVX	TPSB106K016R0500
e		C14	4.7UF	CAP TANT 1001 10% 10V 1411 CAP TANT 4.7UF 10% 50V 2917	D CASE		478-1738-1-ND	AVX	TAJD475K050RNJ
7		C14 C17	1UF	CAP CER 1UF 50V X7R 0805	SMT0805	0 1	1276-2928-1-ND	Samsung	CL21B105KBFNFNE
2		C17 C25	DNI	CAP CER 10F 50V X/R 0803	SMT0603		311-1779-1-ND	Yageo	CC0603JRX7R9BB104
g		C25	2.2NF	CAP CER 2200PF 50V X7R 0605	SMT0402		311-1678-1-ND	Yageo	CC0402JRX7R9BB104
10			LED DUAL						5530121F
					LED_DUAL_RA		350-1822-ND	Dialight	
11		D7 D8	LED DUAL DIODE SCHOTTKY	LED 2HI 3MM RED PC MNT	LED_DUAL_RA POWERDI5	0 /	350-1821-ND	Dialight	5530111F PDS1040L-13
				DIODE SCHOTTKY 40V 10A POWERDIS			PDS1040LDICT-ND	Diodes Inc	
13		J1	HEADER 10	CONN RCPT 10POS 0.1 GOLD PCB	10x1_HEADER		SAM15004-ND	Samtec	SSQ-110-04-G-S
14		J2,J4	HEADER 8	CONN RCPT 8POS 0.1 GOLD PCB	8x1_HEADER		SSQ-108-04-G-S-ND	Samtec	SSQ-108-04-G-S
15		J3	HEADER 6	CONN RCPT 6POS 0.1 GOLD PCB	6x1_HEADER		SSQ-106-04-G-S-ND	Samtec	SSQ-106-04-G-S
16		J5	HEADER 1x2	CONN HEADER VERT 2POS 2.54MM	2x1_HEADER		S1011EC-02-ND	Sullins	PRPC002SAAN-RC
17		J6,J7	RA BANANA JACK	BANANA JACK RA RED	CLIFF_FCR7350_RA_BANANA_JACK	Newark		Cliff	FCR7350R
18		18,19	RA BANANA JACK	BANANA JACK RA BLACK	CLIFF_FCR7350_RA_BANANA_JACK	Newark		Cliff	FCR7350B
19		J10	HEADER 6X2	CONN HEADER VERT 12POS 2.54MM	hdr_2x6_100mil		S2011EC-06-ND	Sullins	PRPC006DAAN-RC
20		L1	SHORT CIRCUIT CHOKE	FIXED IND 470NH 8A 14 MOHM SMD	SRP4020			Bourns	SRP4020TA-R47M
21		L2	DNI	FERRITE BEAD 220 OHM 0603 1LN	SMT0603	0 1	490-5221-2-ND	Murata	BLM18PG221SN1D
22		Q1,Q2	P-CH MOSFET	MOSFET P-CH 100V 23A TO-247AC	UTO-247AC	0 1	IRFP9140NPBF-ND	Infineon	IRFP9140NPBF
23	8 8	R1,R2,R3,	F 10K	RES SMD 10K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P10KDBCT-ND	Vishay	ERA-3AEB103V
24	1 7	R5,R6,R7,	F 22.6K	RES SMD 22.6K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P22.6KDBCT-ND	Panasonic	ERA-3AEB2262V
25	5 13	R14,R15,R	270	RES SMD 270 0.1% 1/10W 0603 CRGCQ	SMT0603	Digi-Key	YAG1606CT-ND	Yageo	RT0603BRD07270RL
26	5 1	R28	0.01 1% 5W	RES 0.01 OHM 1% 5W 4527	SMT4527_WSR	Digi-Key	WSRC01CT-ND	Vishay	WSR5R0100FEA
27	7 5	R29,R31,R	8 0	RES SMD 0 OHM JUMPER 1/4W 0603	SMT0603	Digi-Key	541-0.0SBCT-ND	Vishay	CRCW06030000Z0EAHP
28	3 2	R30,R37	1.24K 0.1%	RES SMD 1.24KOHM 0.1% 1/16W 0402	SMT0402	Digi-Key	P1.24KDCCT-ND	Panasonic	ERA-2AEB1241X
29) 1	R32	25 0.1%	RES 25 OHM 0.1% 1/20W 0402	SMT0402	Digi-Key	764-1328-1-ND	Vishay	FC0402E25R0BTT0
30) 1	R33	34K 0.1%	RES 34K OHM 0.1% 1/10W 0603	SMT0603	Digi-Kev	P34KDBCT-ND	Panasonic	ERA-3AEB3402V

Figure 21: SPSC-EVB-R0 BOM 1/2

Title:	UT36PFD	103 SPSC Pr	roduct EVB BOM						
Rev.	C)							
T#	032019-02	1							
Date:	20190325	5							
Author:	Karlson								
tem	Quantity	Reference	Part	Description	PCB Footprint	Vendor	Vendor part number	Manufacturer	Part Number
31	. 1	R34	1.5K 0.1%	RES SMD 1.5K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P1.5KDBCT-ND	Panasonic	ERA-3AEB152V
32	. 5	R35,R39,R	10K 0.1%	RES SMD 10K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P10KDBCT-ND	Vishay	ERA-3AEB103V
33	1	R36	143K 0.1%	RES SMD 143K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P143KDBCT-ND	Panasonic	ERA-3AEB1433V
34	1	R38	240K 0.1%	RES SMD 240K OHM 0.1% 1/10W 0603	SMT0603	Digi-Key	P240KDBCT-ND	Panasonic	ERA-3AEB244V
35	i 1	R41	24.9K 0.1%	RES SMD 24.9KOHM 0.1% 1/10W 0603	SMT0603		P24.9KDBCT-ND	Panasonic	ERA-3AEB2492V
36		R48,R50	261K 0.1%	RES SMD 261KOHM 0.1% 1/10W 0603	SMT0603		P261KDBCT-ND	Panasonic	ERA-3AEB2613V
37		,	806 0.1%	RES SMD 806 OHM 0.1% 1/10W 0603	SMT0603		P806DBCT-ND	Panasonic	ERA-3AEB8060V
38		SW1	SW DIP SPST 4CKT RA	SWITCH PIANO DIP SPST 50MA 24V	DIP8 SW SPST RA	0 /	CT1944MST-ND	CTS	194-4MST
39		SW2	SP3T_TDS_08	Switch, 8 Position, SP3T, 10 PIN DIP	16dip-10pins-100mil		EG4555-ND	E-Switch	SP3T-TDS-08
40) 1	TP1	TESTPOINT	PC TESTPOINT MINIATURE BROWN	TP 40D		36-5115-ND	Keystone	5115
41		TP2	TESTPOINT	PC TESTPOINT MINIATURE YELLOW	TP 40D		36-5004-ND	Keystone	5004
42		TP3	TESTPOINT	PC TESTPOINT MINIATURE RED	TP_40D		36-5000-ND	Keystone	5000
43		TP4	TESTPOINT	PC TEST POINT MINIATURE BLUE	TP 40D		36-5117-ND	Keystone	5117
44		TP5	TESTPOINT	PC TEST POINT MINIATURE ORANGE	TP 40D		36-5003-ND	Keystone	5003
45		TP6	TESTPOINT	PC TEST POINT MINIATURE GRAY	TP_40D		36-5118-ND	Keystone	5118
46	5 1	TP7	TESTPOINT	PC TEST POINT MINIATURE BLACK	TP 40D		36-5001-ND	Keystone	5001
47		TP8	TESTPOINT	PC TEST POINT MINIATURE GREEN	TP 40D		36-5116-ND	Keystone	5116
48		. U1	74LV367A	IC BUF NON-INVERT 5.5V 16TSSOP	tssop16 o65mm 5mm 4o4mm		296-12350-1-ND	Texas Instruments	
49		. U2	SN74LVC1G17DBVR	IC BUF NON-INVERT 5.5V SOT23-5	SOT23-5		296-11933-1-ND	Texas Instruments	
50		. U3	SMART POWER SWITCH CONTROLLER		47CFP 0635mm 10075mm 16010mm	Cobham		Cobham	UT36PFD103
50		. 05				coonam	2003	coonan	0130110103
	2	•	SCREW M3x12 PHILLIPS	MACH SCREW PAN HEAD PHILLIPS M3		Digi-Key	H744-ND	B&F Fastener	MPMS 003 0012 PH
	2		FLATWASHER M3	WASHER FLAT M3 STEEL			H767-ND	B&F Fastener	MFWZ 003
	2		LOCKWASHER M3	WASHER SPLIT LOCK M3 STEEL			H772-ND	B&F Fastener	MLWZ 003
	2		HEX NUT M3	HEX NUT 0.217" M3			H762-ND	B&F Fastener	MHNZ 003
	2					SIBLINCY			
	3	1	STANDOFF 4-40 3/4"	HEX STANDOFF #4-40 NYLON 3/4"		Digi-Kev	36-1902D-ND	Keystone	1902D
	3		SCREW 4-40 3/8"	MACHINE SCREW PAN PHILLIPS 4-40		0 /	H781-ND	B&F Fastener	PMS 440 0038 PH
		,		NEARING SCREW FAILT HILLIFS 4-40		DIBLINCY		Barrastener	1113 THE UCCO FT
51	. 2	NA	TIM pad	THERM PAD 24.13MMX19.05MM ORANG	GE	Digi-Kev	345-1545-ND	Wakefield-Vette	CD-02-05-247
52		NA	SHUNTS	SHUNT 2 POS RED 1=STRIP OF 20			3M11975-ND	3M	929951-00
53		NA	ESD BAG	BAG 8X8" ZIP STATIC SHIELD 1=1EA			SCP357-ND	SCS	30088
54		NA	ESD BOX	SHIPPR CIR BD 10-1/2X8-1/2X2-1/2			37060-ND	Desco	37060
5						8			
CO	1	R33	340K 0.1%	RES SMD 340K OHM 0.1% 1/16W 0603		Digikev	A124740CT-ND	TE	RN73C1J340KBTD
CO		R35?	100K 0.1%	RES SMD 100K OHMS 0.1% 1/10W 0603		0 /	P100KDBCT-ND	Panasonic	ERA-3AEB104V

Figure 22: SPSC-EVB-R0 BOM 2/2

Ver 1.0.1

10 EVB Layout Information

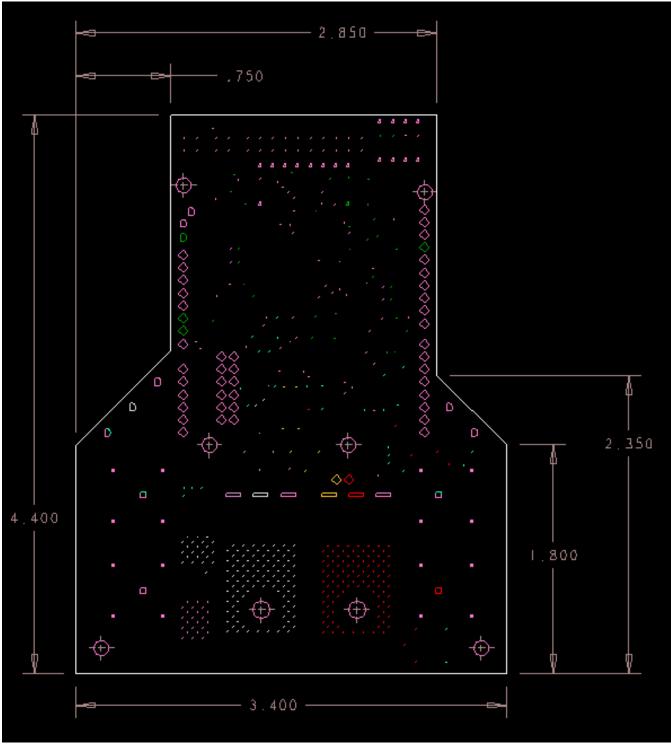


Figure 23: SPSC-EVB-R0 FAB Drawing

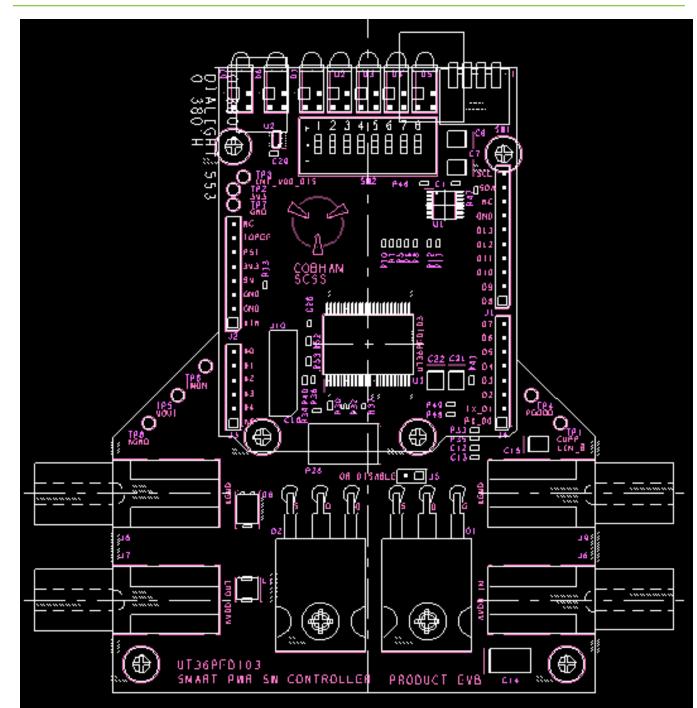


Figure 24: SPSC-EVB-R0 Assembly Top View

UT36PFD103 Smart Power Switch Controller

SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

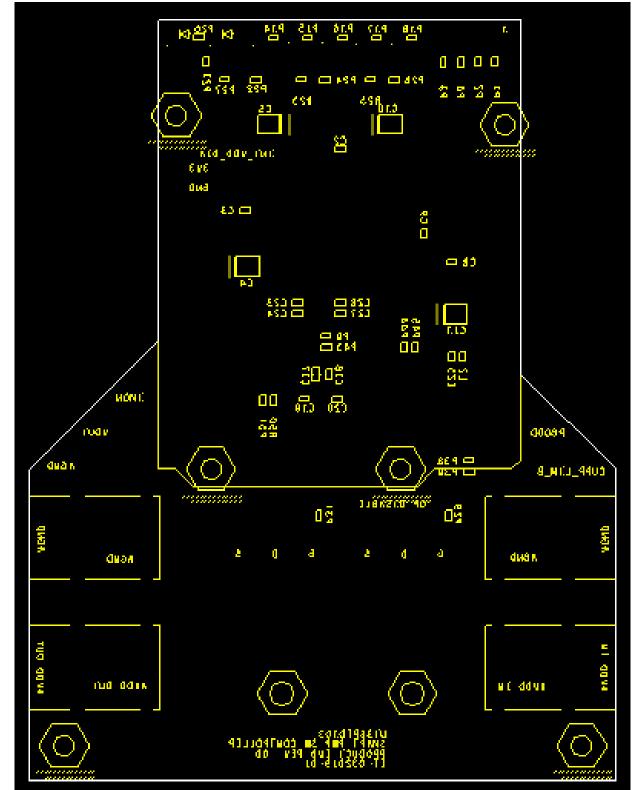


Figure 25: SPSC-EVB-R0 Assembly Bottom View

Ver 1.0.1

Ver 1.0.1

UT36PFD103 Smart Power Switch Controller SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

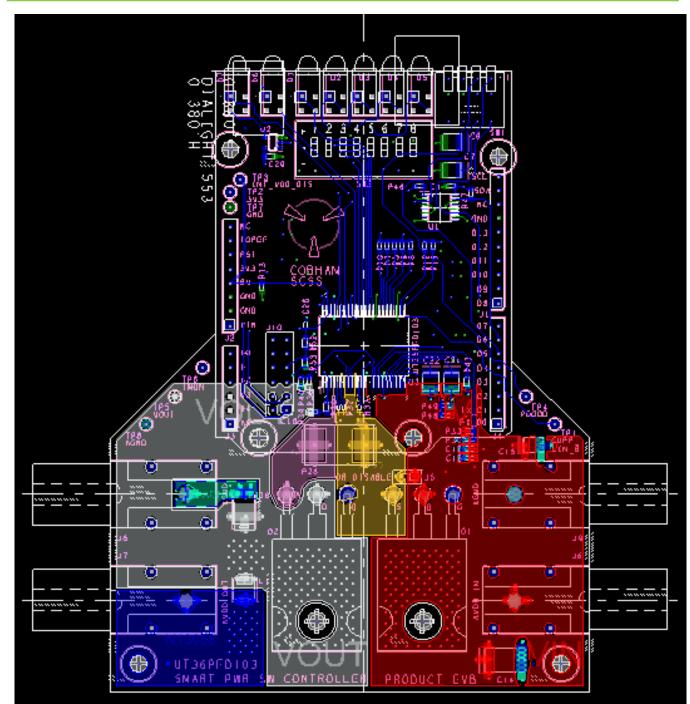


Figure 26: SPSC-EVB-R0 Layer 1 (Top) Etch

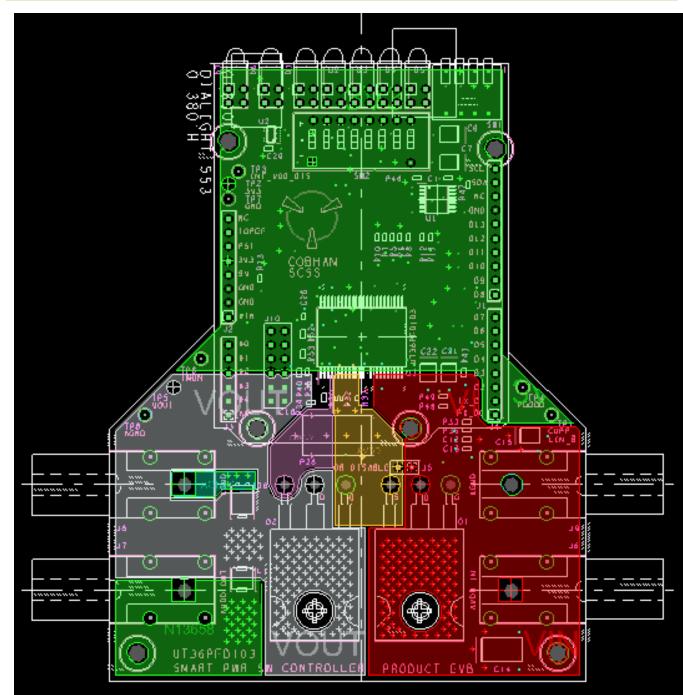


Figure 27: SPSC-EVB-R0 Layer 2 Etch

Ver 1.0.1

7/21/2021

UT36PFD103 Smart Power Switch Controller SPSC-EVB-R0 Evaluation Board for UT36PFD103

Smart Power Switch Controller

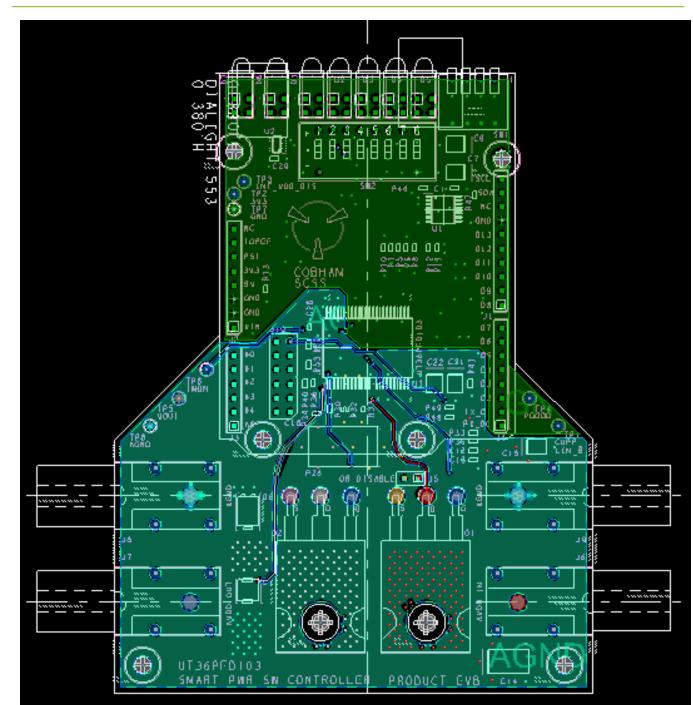


Figure 28: SPSC-EVB-R0 Layer 3 Etch

Ver 1.0.1

UT36PFD103 Smart Power Switch Controller SPSC-EVB-R0 Evaluation Board for UT36PFD103 Smart Power Switch Controller

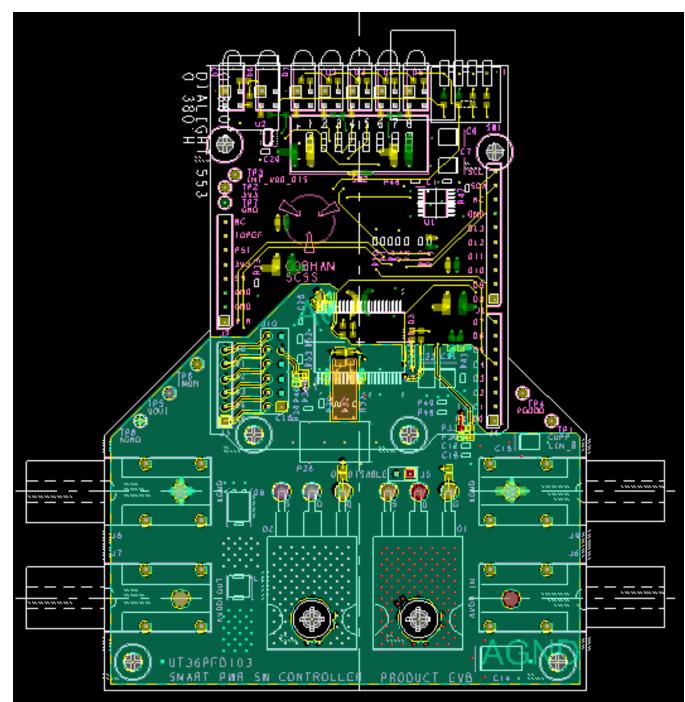


Figure 29: SPSC-EVB-R0 Layer 4 (Bottom) Etch

REVISION HISTORY

Date	Revision	Author	Change Description
August 2019	0	TLM	DRAFT INITIAL VERSION
December 2019	1		Added links to reference documents. Clarified some figure annotations and made editorial corrections.
7/21/2021	1.0.1	OW	Updated Template; Updated website links

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

