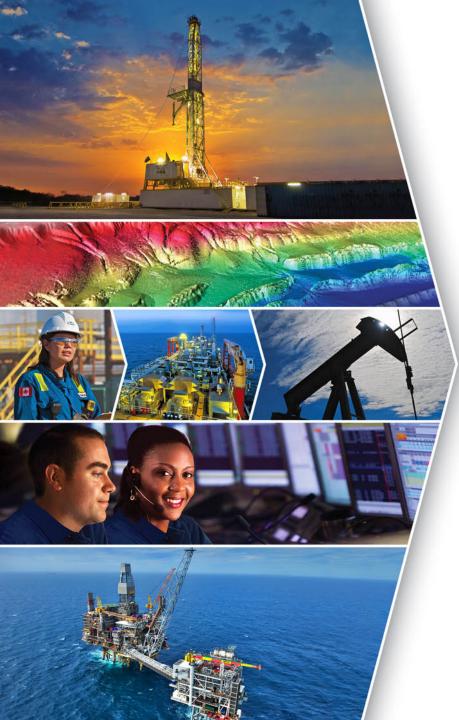


Utilization of a Vapor Recovery Tower For The Reduction of Tank Emissions


Steven J. Wirkowski Facilities Engineer

Agenda

- Need & Concerns
- VRT Functionality
- Process Model
- Benefits of Limiting Tank Flash
- Benefits of Higher MAWP of VRT
- Considerations
- Summary & Conclusions
- Q&A

Need & Concerns

The Issues and Concerns That Exist Today

Need: Atmospheric Tank Design

- General design criteria: API 12F [1]
 - 90-500 BBL tanks design:

Design Vacuum	$1/2 \frac{oz}{in^2}$
Design Pressure	16 $\frac{oz}{in^2}$
Emergency Venting	$24 \frac{oz}{in^2}$

Table 1: API 12F Tank Design Pressures

Relief methods

- Vent Line
 - Creates back pressure
 - Large line size
- Thief/Gauge hatches
 - Sealing concerns: (reseating & wear)
 - Flame propagation

Need: Vapor Recovery Unit

- Operating VRU on tank vent line
 - Small suction pressure range
 - Potential to pull vacuum
 - Oxygen in tanks from tank breathing & gauging
 - Compressing air and gas
 - Oxygen in sales line

(Unimac Gas Compression Solutions)^[2]

ConocoPhillips

Need: Operator Safety

- Tank gauging process
 - Open thief hatch
 - Lower tank gauge tape
 - Standing over/by hatch

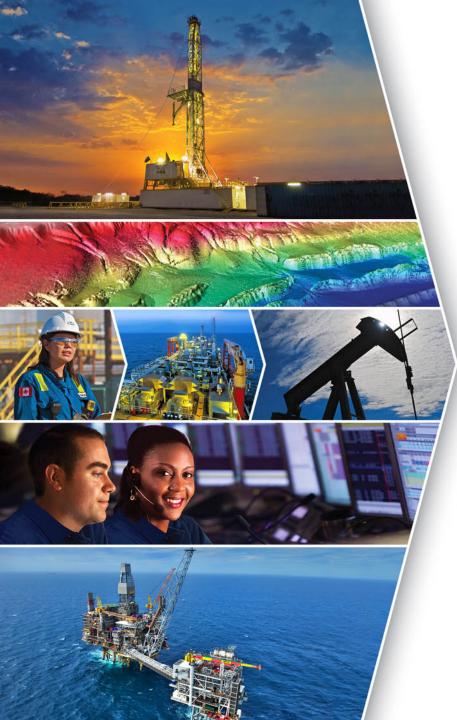
Operator exposed to flashed gas

Explosive, irritant, & asphyxiant

5

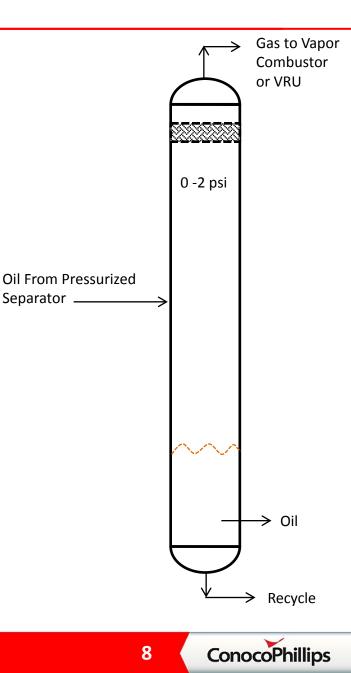
ConocoPhillips

Possibility of H₂S



Need: New Regulations

- 40 CFR 60, Subpart OOOO
 - Tanks with more than 6 tons/year VOC
- Colorado:
 - CDPHE: Regulation 7
 - COGCC: Series 800



Vapor Recovery Tower

VRT: Functionality & Computer Models

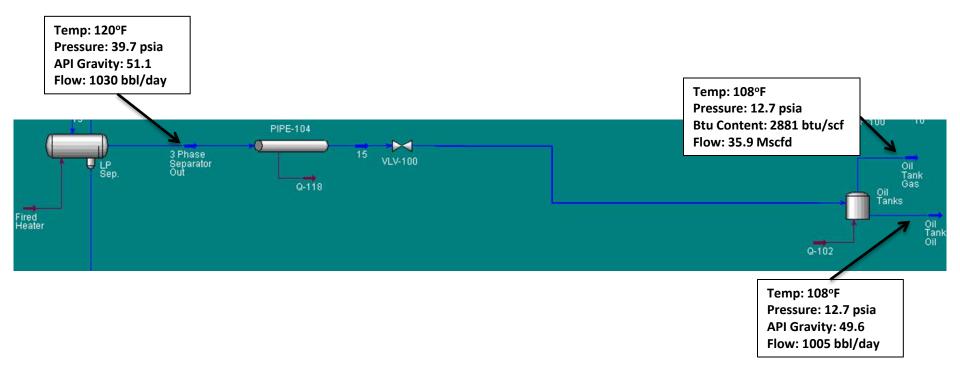
VRT: Functionality

- Separation mechanisms:
 - Low pressure: Flashing of light ends
 - Greater diameter than inlet: lower velocity lessens gas entrainment
 - Vessel height: gravitational separation
 - Mist pad: Liquid impingement
- Stream destinations
 - Gas: Combustion device/VRU
 - Oil: Oil tanks
 - Recycle: Separator inlet

VRT: Functionality

Vessel construction

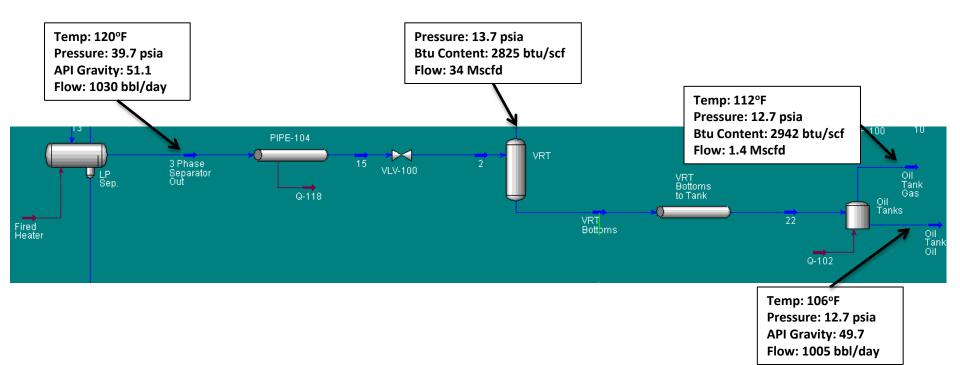
- Larger pressure operating range
 - Pressure vessel: makes higher operating pressure possible
 - Fluid driven by hydraulic head: Makes low-pressure operation possible


9

ConocoPhillips

- No low-pressure/vacuum vents
 - No process gas to environment
 - No oxygen can enter

Process Model^[3]: Without VRT


Sales Gas Properties

Temp: 70°F Pressure: 39.7 psia Btu Content: 1397 btu/scf Flow: 704 Mscfd

Oil&Gas ENVIRONMENTAL CONFERENCE *<u>Note</u>: Atmospheric pressure is based off of Denver, CO [12.2psia]

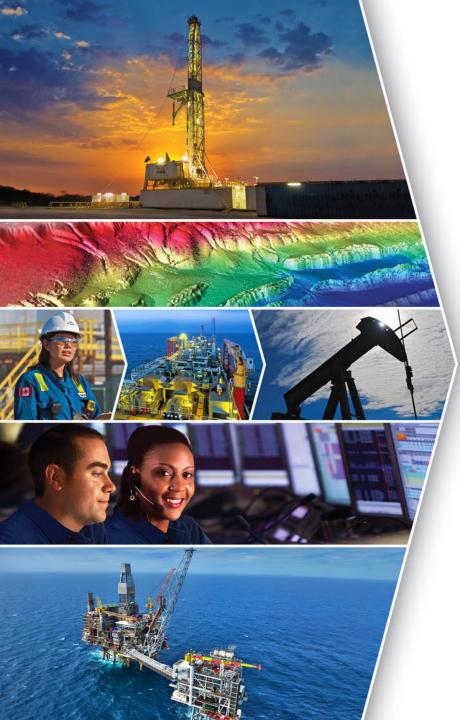
Process Model^[3]: With VRT

Sales Gas Properties

Temp: 70°F Pressure: 39.7 psia Btu Content: 1397 btu/scf Flow: 704 Mscfd

*Note: Atmospheric pressure is based off of Denver, CO [12.2psia]

Table 2: Tank Flash Gas Comparison


	With VRT	Without VRT
Initial Production Rate	1.4 (Mscfd)	35.9 (Mscfd)
Yr. 1 Average Rate	0.7 (Mscfd)	17.95 (Mscfd)
Yr. 1 Total Volume	255.5 (Mscf)	6,552 (Mscf)
Yr. 1 Total VOC	4.5 tons	115 tons

Assumptions:

- 1. 35 lb/Mscf VOC emissions factor
- 2. Decline rate based of unconventional decline curve and equates to the average first years production being 50% of initial production
- 3. Based on 1000 bbl/day initial production

Vapor Recovery Tower: Installation Consideration

VRT: Benefits and Considerations

VRT: Benefits of Installation

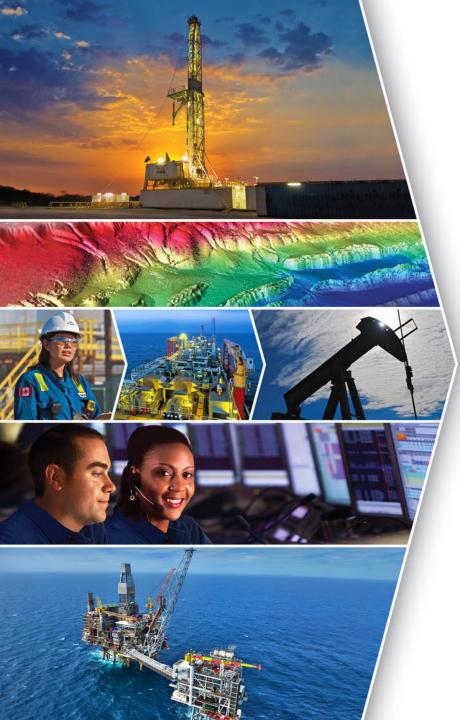
- Limits volumetric gas flow through tanks
 - Less back pressure on tanks
 - Keep thief hatches from opening
 - Lower uncontrolled emissions
 - Increase process/operating safety (ignition potential)
 - Manual tank gauging
 - Limits emissions while hatch is open
 - Reduces operators risk
 - Explosion/fire
 - Operator exposure/H₂S hazard
 - May allow vent line size reduction
 - Lower material cost
 - Lower labor cost
 - Lower construction time
 - Quad O

VRT: Benefits of Installation

- Allows for higher working pressure of gas
 - Easier measurement if desired
 - Flow meter can be allowed to create lbs. of back pressure
 - Measurements can be more accurate
 - Higher pressure to combustor
 - Move more gas volume
 - Higher burner tip velocity
 - Better fuel air mixing
 - Better combustion of heavier components
 - Protection for tank overpressure
 - Oil dump valve sticking open
 - High oil dump rate
 - Higher VRU suction pressure
 - May simplify controls
 - Protect from pulling vacuum on tanks

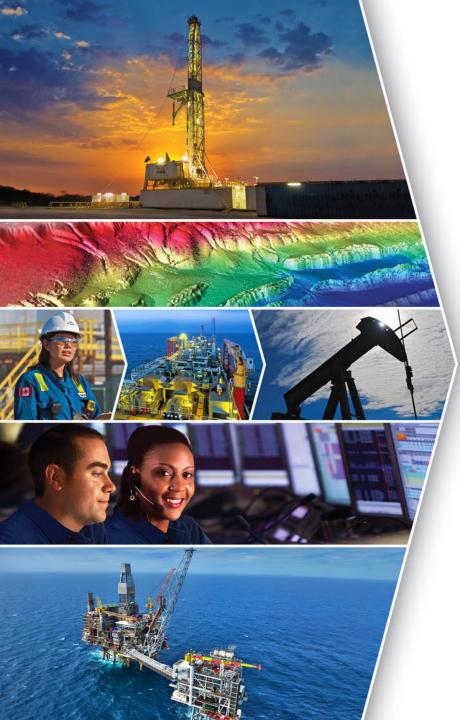
VRT: Added Benefits

- Additional point for separation
 - Water off the bottom of the tower
 - Mist pad to coalesce entrained liquid in gas
- Liquids surge vessel
 - More continuous flow to tanks
 - Help eliminate liquid slugging in tanks
 - Lessen pressure spikes due to filling tank



VRT: Special Considerations

- Stake holder view/height restriction
- Additional capital cost
- Lightning strike concerns
- Process considerations


Summary & Conclusion

Summary/Conclusions

- Installation of a VRT can be used as an engineering solution to reduce VOC emissions
- Installation of a VRT can help to improve operator/process safety
- Installation of a VRT gives you additional overpressure/vacuum protection for atmospheric tanks
- Installation of a VRT would lessen the likelihood of gauge hatches unseating and thus lower the chance of infractions
- Cost, stakeholder perspective, lightning risk, and process conditions must be examined when considering VRT installation

Questions & Answers

Special Thanks:

- Steve G. Bradford, Engineering Manager
- Milind J. Bhatte, Manager of L48 Environmental & Sustainable Development
- Ken T. Powers, Superintendent of Niobrara Operations
- Terry L. Parker, Facilities Engineer
- Seth Lovelady, Facilities Engineer
- Maria A. Torres, Environmental & Regulatory Supervisor
- Beth Aldrich, Environmental Coordinator

Citations:

- 1. Specification for Shop Welded Tanks for Storage of Production Liquids. 12th ed. Washington, DC: API Services, 2008. Print. API Specification 12F.
- 2. Unimac Gas Compression Solutions. Unimac, 2013. Web. 17 Sept. 2013. http://www.unimaclp.com/.
- 3. Aspen HYSYS. Vers. V7.3. N.p.: Aspen Technology, Inc, n.d. Computer software.

Biography

- Bachelor of Science in Mechanical Engineering
 - Texas A&M: graduated magna cum laude
- Research Positions
 - High temperature metallic/ceramic compounds: 2yr
 - Down-hole shaped charge design: 1yr
- Oilfield Positions
 - Downstream refining
 - Projects engineer: 2010
 - Maintenance engineer:2011
 - Exploration & production
 - Facilities engineer: 2012-present

