
UVM Layering for Protocol Modeling Using 
State Pattern

1

Tony George – Samsung Semiconductor, Inc.
Girish Gupta – Samsung Semiconductor India R&D, Bangalore

Shim Hojun - Samsung Semiconductor Co., Ltd.
Byung C. Yoo - Samsung Semiconductor Co., Ltd.



Layered Protocol and verification 
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• Layering protocol are similar to Open System 
Interconnect (OSI) models

• Each layer has its own set of functionality and 
features which needs to be verified

• Control of the functional flow at each layer and 
error injection is also part of verification 



Expectations from Verification IP 
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 Variety of Stimulus
 Desired Error Injection
 Dynamic Modifiable 

functionality  

Controllability

 Horizontal and vertical reuse
Minimum Code and avoid 

redundancy 

Reusability  

 Scalable to accommodate new 
features or new protocol layers

Scalability 

 Data and Control flow tracking
 Easy debugging

observability



Existing Approach – Layered Sequencer
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What is state pattern ?
• The state pattern is a behavioral software design pattern that allows an 

object to alter its behavior when its internal state changes.
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Proposed Approach using State Pattern
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State Pattern : State Behavior modification 
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n_m state  



State Pattern : New State insertion 
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Code Snippet : Abstract Class
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// Abstract class for scrambler state 
class scrambler_state extends uvm_object; 
`uvm_object_utils(scrambler_state) 
uvm_component handle; 

virtual task do_action (state_manager i_state_manager); 
//override this task 

endtask

virtual function string get_full_name(); 
return handle.get_full_name(); 

endfunction

endclass

Task to perform 
the state 

functionality 

Function to get 
the full name of 

state, to be 
used for state 

overriding 



Code Snippet : State Controller 
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// State Controller 
class state_controller extends uvm_component; 
`uvm_component_utils(state_controller) 

//Build_phase
scrambler_state i_state; 
i_state = idle_scrambler_state::type_id::create(); 
i_state.handle = this; 

//run_phase
i_state.do_action(this); 

virtual task change_state (string state_name); 
//Casting state handle into new state handle 

$cast(i_state,factory.create_object_by_name(state_name, 
get_full_name())) 

i_state_handle = this; 
endtask

endclass

Building the Idle
Scrambler State

Casting the 
state handle 

into new state 
handle 



Code Snippet : State Behavior modification 

11

// scrambler LFSR Initialization state 
class lfsr_init_state extends scrambler_state; 
`uvm_object_utils(lfsr_init_state) 

virtual task do_action (state_manager i_state_manager); 
//Perform Scrambler LFSR Init state functionality 
… 
// Move to next state -> MODIFIED LFSR Operation 
i_state_manager.change_state(“mod_lfsr_operation_state); 

endtask
endclass

Instead of moving to 
lfsr_operation_state, 
moving to modified 
lsfr_operation_state

(Modified state)



Code Snippet : New State Insertion
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// scrambler LFSR Operation state 
class lfsr_operation_state extends scrambler_state; 
`uvm_object_utils(lfsr_operation_state) 

virtual task do_action (state_manager i_state_manager); 
//Perform Scrambler LFSR Operation state functionality 
… 
// Move to next state -> NEW LFSR Operation State 
i_state_manager.change_state(“new_lfsr_operation_state); 

endtask

endclass

Instead of moving to 
lfsr_idle_state, moving 
to new functional state  
new_lsfr_operation_st

ate (new state)



Error Injection using Lateral Sequencer
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Error Injection using Callback
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State Pattern Vs Finite State Machine 
• The State Pattern abstract the states and decouple them from each 

other
- Example : you can easily replace one particular state with another. Yet 

you will not be happy rewriting all the states when it is time to add a new 
one and/or a new transition

• The state machine abstracts the state diagram itself and decouples it 
from the transition payloads. 
- Example : To change a particular state, you have to fix the whole 

diagram
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Observation & Results 
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Parameters Traditional (Existing 
approach) VIP 

Proposed VIP (Layered 
State pattern) 

Bugs found 
35, before design went into 

silicon

Additional 10 Major bugs 
and 5 minor bugs found in 

the design 
Test Scenarios 

250 
Additional 40 (targeting error 

scenarios and exception 
handling) 



Conclusion
• The motivation for this paper is to analyze and conclude on a Verification 

IP  Architecture which provides full-fledged control without 
compromising on the simplicity of model development. 

• Dynamically modifiable functionality of all layers along with complex test 
scenario generation is achieved using this methodology. 

• The proposed architecture has been deployed for live verification 
project on UniPro and PCIe protocols.
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Thank You !. 
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