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~~~~~~~~~~~~~~~~~~~~~~~ Layered Protocol and verification

* Layering protocol are similar to Open System
Interconnect (OSI) models

* Each layer has its own set of functionality and
features which needs to be verified

* Control of the functional flow at each layer anc
error injection is also part of verification
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=¥=== Expectations from Verification IP
L Coniro/abilty Reusability
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v" Desired Error Injection
v Dynamic Modifiable

v’ Horizontal and vertical reuse
v Minimum Code and avoid

functionality I kredundancy
rvability S — il
v Data and Control flow tracking v’ Scalable to accommodate new
v Easy debugging features or new protocol layers
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RVELEN Existing Approach — Layered Sequencer

Sequences
Sequencer Driver Monitor
v
Pass-thru
Sequences
()
N
Sequencer BEee /) Monitor
g n 9

Physical Interface

accellera DUT (Design Under Test)

SYSTEMS INITIATIVE

Top Virtual Sequencer <mmmmmmmmmm tTes/tsm

Higher Protocol
Layer Agent

Lower Protocol
Layer Agent

L] TLM port
O L™ export/ imp



2020

DESIGN AND VERIFICATION™

RvEEi What is state pattern ?

* The state pattern is a behavioral software design pattern that allows an
object to alter its behavior when its internal state changes.
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Proposed Approach using State Pattern
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=Y==-State Pattern @ State Behavior modification

Scrambler State
State Controller mmmm - + P Abstract Class
(R | +Handle()
change state() .
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operation functional
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State Controller

change state()
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Scrambler State

State Pattern : New State insertion
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pvcornl  Code Snippet : Abstract Class

// Abstract class for scrambler state
Task to perform class scrambler state extends uvm object;
the state \ ‘uvm _object utils (scrambler state)
functionality uvm_component handle;

virtual task do_action (state manager i state manager) ;
//override this task

Function to get endtask
the full name of
state, to be __»virtual function string get_full name();
, | turn handl t full name();
used for state return handle.get full name();
overriding endfunction
endclass
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pvcorn! Code Snippet : State Controller

// State Controller
class state controller extends uvm component;
"uvm_component utils(state controller)

Building the Idle
Scrambler State \%jild _phase

scrambler state i state;
i state = idle scrambler state::type id::create();
i state.handle = this;

Casting the //run_phase
state handle i state.do action(this);
into new state [
handle \\\\& virtual task change state (string state name);

//Casting state handle into new state handle
$cast (i _state,factory.create object by name(state name,
get full name()))
i state handle = this;

endtask
accellera
endclass
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DV Code Snippet : State Behavior modification

// scrambler LFSR Initialization state

class 1lfsr init state extends scrambler state;

Instead of moving to | | “uvm object utils(lfsr init state)

Ifsr_operation_state,

moving to modified || virtual task do action (state manager i state manager);

Isfr_operation_state //Perform Scrambler LFSR Init state functionality
(Modified state)

// Move to next state -> MODIFIED LFSR Operation
i state manager.change state(“"mod lfsr operation_ state);

endtask
endclass
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DVEER Code Snippet : New State Insertion

Instead of moving to
Ifsr_idle_state, moving
to new functional state
new_lIsfr_operation_st

ate (new state)
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// scrambler LFSR Operation state
class 1lfsr operation state extends scrambler state;
"uvm_object utils(lfsr operation state)

virtual task do_action (state manager i state manager) ;
//Perform Scrambler LFSR Operation state functionality

// Move to next state -> NEW LFSR Operation State
i state manager.change state(“"new lfsr operation_ state);

endtask

endclass
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Dvc:ond  Error Injection using Callback
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Dveonl  State Pattern Vs Finite State Machine
e The State Pattern abstract the states and decouple them from each
other

- Example : you can easily replace one particular state with another. Yet
you will not be happy rewriting all the states when it is time to add a new
one and/or a new transition

* The state machine abstracts the state diagram itself and decouples it
from the transition payloads.

- Example : To change a particular state, you have to fix the whole
diagram
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Observation & Results

Parameters Traditional (Existing Proposed VIP (Layered
approach) VIP State pattern)

Bugs found

Test Scenarios
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DVC O Conclusion

* The motivation for this paper is to analyze and conclude on a Verification
IP Architecture which provides full-fledged control without
compromising on the simplicity of model development.

* Dynamically modifiable functionality of all layers along with complex test
scenario generation is achieved using this methodology.

e The proposed architecture has been deployed for live verification
project on UniPro and PCle protocols.
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