2020

DESIGN AND VERIFICATION™

DVLLOIN

NNNNNNNNNNNNNNNNNNNNNNN

UVM Layering for Protocol Modeling Using
State Pattern

Tony George — Samsung Semiconductor, Inc.
Girish Gupta — Samsung Semiconductor India R&D, Bangalore
Shim Hojun - Samsung Semiconductor Co., Ltd.
Byung C. Yoo - Samsung Semiconductor Co., Ltd.

a@ SAMSUNG

EEEEEEEEEEEEEEE


~~~~~~~~~~~~~~~~~~~~~~~ Layered Protocol and verification

* Layering protocol are similar to Open System
Interconnect (OSI) models

* Each layer has its own set of functionality and
features which needs to be verified

* Control of the functional flow at each layer anc
error injection is also part of verification

IIIIIIIIIIIIIIIII



2020

DESIGN AND VERIFICATION™

=¥=== Expectations from Verification IP
L Coniro/abilty Reusability

v" Variety of Stimulus
v" Desired Error Injection
v Dynamic Modifiable

v’ Horizontal and vertical reuse
v Minimum Code and avoid

functionality I kredundancy
rvability S — il
v Data and Control flow tracking v’ Scalable to accommodate new
v Easy debugging features or new protocol layers

sl J L .

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

RVELEN Existing Approach — Layered Sequencer

Sequences
Sequencer Driver Monitor
v
Pass-thru
Sequences
()
N
Sequencer BEee /) Monitor
g n 9

Physical Interface

accellera DUT (Design Under Test)

SYSTEMS INITIATIVE

Top Virtual Sequencer <mmmmmmmmmm tTes/tsm

Higher Protocol
Layer Agent

Lower Protocol
Layer Agent

L] TLM port
O L™ export/ imp



2020

DESIGN AND VERIFICATION™

RvEEi What is state pattern ?

* The state pattern is a behavioral software design pattern that allows an
object to alter its behavior when its internal state changes.

VendingMachineState

0
V

AI'}.

VendingDeposite State VendingStockState

N
L\ )
.__:HH 1 dﬂ;__.

Eﬂﬂejfera ) Image Source : sourcemaking.com
5

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DVLLOIN

CONFERENCE AND EXHIBITION

Proposed Approach using State Pattern
Top Virtual Sequencer PO m

SYSTEMS INITIATIVE

—
TX Sequencer RX Sequencer

,  —
@DD
3 . Higher Protocol
g < ) . Layer Dri‘f?f’//
B @ Dynamically
% o o modifiable

T FSM'’s for
o Layer functionality
§ O (State Pattern
SO Lower Protocol - Design Concept)
§ Layer Driver
g @ """"""" >(: 3 .l TLM port
S ﬁ E :

Physical Interface © TLM export/ imp

DUT (Design Under Test)




2020

=Y==-State Pattern @ State Behavior modification

Scrambler State
State Controller mmmm - + P Abstract Class
(R | +Handle()
change state() .
/ T Functional States
State Controller | a4 & Z—
Scrambler Idle Scrambler Initizlization Scrambler Operation
+Handle() +Handle() +Handle() scrambler_
operation functional
state is modified to
T scrambler_operatio
S : e : n_m state
Scrambler ldle Scrambler Initialization Scrambler Operation Scrambler Operation_m /
+Handle() +Handle() +Handle() +Handle()

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DVLLOIN

CONFERENCE AND EXHIBITION

State Controller

change state()

/

Scrambler State

State Pattern : New State insertion

P Abstract Class

+Handle()

Functional States

State Controller

SYSTEMS INITIATIVE

New state is inserted
after
scrambler_operation
state

“T ... g e :
Scrambler Idle Scrambler Initizlization Scrambler Operation
+Handle() +Handle() +Handle()
Scrambler ldle Scrambler Initialization Scrambler Operation Scrambler Operation_n
+Handle() +Handle() +Handle() +Handle() /

N




2020

DESIGN AND VERIFICATION™

pvcornl  Code Snippet : Abstract Class

// Abstract class for scrambler state
Task to perform class scrambler state extends uvm object;
the state \ ‘uvm _object utils (scrambler state)
functionality uvm_component handle;

virtual task do_action (state manager i state manager) ;
//override this task

Function to get endtask
the full name of
state, to be __»virtual function string get_full name();
, | turn handl t full name();
used for state return handle.get full name();
overriding endfunction
endclass

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

pvcorn! Code Snippet : State Controller

// State Controller
class state controller extends uvm component;
"uvm_component utils(state controller)

Building the Idle
Scrambler State \%jild _phase

scrambler state i state;
i state = idle scrambler state::type id::create();
i state.handle = this;

Casting the //run_phase
state handle i state.do action(this);
into new state [
handle \\\\& virtual task change state (string state name);

//Casting state handle into new state handle
$cast (i _state,factory.create object by name(state name,
get full name()))
i state handle = this;

endtask
accellera
endclass

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DV Code Snippet : State Behavior modification

// scrambler LFSR Initialization state

class 1lfsr init state extends scrambler state;

Instead of moving to | | “uvm object utils(lfsr init state)

Ifsr_operation_state,

moving to modified || virtual task do action (state manager i state manager);

Isfr_operation_state //Perform Scrambler LFSR Init state functionality
(Modified state)

// Move to next state -> MODIFIED LFSR Operation
i state manager.change state(“"mod lfsr operation_ state);

endtask
endclass

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DVEER Code Snippet : New State Insertion

Instead of moving to
Ifsr_idle_state, moving
to new functional state
new_lIsfr_operation_st

ate (new state)

SYSTEMS INITIATIVE

// scrambler LFSR Operation state
class 1lfsr operation state extends scrambler state;
"uvm_object utils(lfsr operation state)

virtual task do_action (state manager i state manager) ;
//Perform Scrambler LFSR Operation state functionality

// Move to next state -> NEW LFSR Operation State
i state manager.change state(“"new lfsr operation_ state);

endtask

endclass

12



2020

v Error Injection using Lateral Sequencer

Tr

CONFERENCE AND EXHIBITION

Transaction

: — to be inserted
TX '
equencer equencer in the normal

gﬁ @ flow
L] L]
@ =)
]

Layer Driver

% ___________________ ---> Wait for a
synchronizing

] ]
i T event to
trigger
® gg

Lower Protocol
Layer Driver

Z S

Physical Interface\ \

accellera DUT (Design Under Test)

SYSTEMS INITIATIVE

r—-—— Top Virtual Sequencer <

Lateral Sequencer1 < - ----
%




2020

DESIGN AND VERIFICATION™

Dvc:ond  Error Injection using Callback

Top Virtual Sequencer € Tests I

L Extend the
1
: TX Sequencer RX Sequencer base class and
' gﬁ @ write logic for
I - - -
5 | | modification of
| Of%=tg &
g’_ Higher Protocol v
< Layer Driver
& o . “y//—‘ Callback
©
% ] ] Hook
=
T Just like a
base class
Q
Lower Protocol
Layer Driver

Physical Interfacel (

accellera DUT (Design Under Test)

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

Dveonl  State Pattern Vs Finite State Machine
e The State Pattern abstract the states and decouple them from each
other

- Example : you can easily replace one particular state with another. Yet
you will not be happy rewriting all the states when it is time to add a new
one and/or a new transition

* The state machine abstracts the state diagram itself and decouples it
from the transition payloads.

- Example : To change a particular state, you have to fix the whole
diagram

accellera .

EEEEEEEEEEEEEEE



DESIGN AND VQ;:ION'"

DVLC N -
Observation & Results

Parameters Traditional (Existing Proposed VIP (Layered
approach) VIP State pattern)

Bugs found

Test Scenarios

16

SYSTEMS INITIATIVE



IIIIIIIIIIIIIIIIIIIIIII

DVC O Conclusion

* The motivation for this paper is to analyze and conclude on a Verification
IP Architecture which provides full-fledged control without
compromising on the simplicity of model development.

* Dynamically modifiable functionality of all layers along with complex test
scenario generation is achieved using this methodology.

e The proposed architecture has been deployed for live verification
project on UniPro and PCle protocols.

IIIIIIIIIIIIIIIIIII

17



2020

DESIGN AND VERIFICATION™

DVLLOIN

CONFERENCE AND EXHIBITION

Thank You .

accellera .

SYSTEMS INITIATIVE



	UVM Layering for Protocol Modeling Using State Pattern
	Layered Protocol and verification 
	Expectations from Verification IP 
	Existing Approach – Layered Sequencer
	What is state pattern ?
	Proposed Approach using State Pattern
	State Pattern : State Behavior modification 
	State Pattern : New State insertion 
	Code Snippet : Abstract Class
	Code Snippet : State Controller 
	Code Snippet : State Behavior modification 
	Code Snippet : New State Insertion
	Error Injection using Lateral Sequencer
	Slide Number 14
	State Pattern Vs Finite State Machine 
	Observation & Results 
	Conclusion
	Thank You !. 

