
UVM Layering for Protocol Modeling Using
State Pattern

1

Tony George – Samsung Semiconductor, Inc.
Girish Gupta – Samsung Semiconductor India R&D, Bangalore

Shim Hojun - Samsung Semiconductor Co., Ltd.
Byung C. Yoo - Samsung Semiconductor Co., Ltd.

Layered Protocol and verification

2

• Layering protocol are similar to Open System
Interconnect (OSI) models

• Each layer has its own set of functionality and
features which needs to be verified

• Control of the functional flow at each layer and
error injection is also part of verification

Expectations from Verification IP

3

 Variety of Stimulus
 Desired Error Injection
 Dynamic Modifiable

functionality

Controllability

 Horizontal and vertical reuse
Minimum Code and avoid

redundancy

Reusability

 Scalable to accommodate new
features or new protocol layers

Scalability

 Data and Control flow tracking
 Easy debugging

observability

Existing Approach – Layered Sequencer

4

Tests

Sequencer

Top Virtual Sequencer

Driver Monitor

Sequences

Sequencer Driver Monitor

Pass-thru
Sequences

Physical Interface

DUT (Design Under Test)

Higher Protocol
Layer Agent

Lower Protocol
Layer Agent

TLM port

TLM export/ imp

What is state pattern ?
• The state pattern is a behavioral software design pattern that allows an

object to alter its behavior when its internal state changes.

5

Image Source : sourcemaking.com

Proposed Approach using State Pattern

6

La
te

ra
l S

eq
ue

nc
er

 1

Lower Protocol
Layer Driver

Higher Protocol
Layer Driver

Tests

TX Sequencer RX Sequencer

Top Virtual Sequencer

Dynamically
modifiable
FSM’s for
Layer functionality
(State Pattern
Design Concept)

DUT (Design Under Test)

Physical Interface

La
te

ra
l S

eq
ue

nc
er

 2

TLM port

TLM export/ imp

State Pattern : State Behavior modification

7

Abstract Class

State Controller

Functional States

scrambler_
operation functional
state is modified to
scrambler_operatio

n_m state

State Pattern : New State insertion

8

Abstract Class

State Controller

Functional States

New state is inserted
after

scrambler_operation
state

Code Snippet : Abstract Class

9

// Abstract class for scrambler state
class scrambler_state extends uvm_object;
`uvm_object_utils(scrambler_state)
uvm_component handle;

virtual task do_action (state_manager i_state_manager);
//override this task

endtask

virtual function string get_full_name();
return handle.get_full_name();

endfunction

endclass

Task to perform
the state

functionality

Function to get
the full name of

state, to be
used for state

overriding

Code Snippet : State Controller

10

// State Controller
class state_controller extends uvm_component;
`uvm_component_utils(state_controller)

//Build_phase
scrambler_state i_state;
i_state = idle_scrambler_state::type_id::create();
i_state.handle = this;

//run_phase
i_state.do_action(this);

virtual task change_state (string state_name);
//Casting state handle into new state handle

$cast(i_state,factory.create_object_by_name(state_name,
get_full_name()))

i_state_handle = this;
endtask

endclass

Building the Idle
Scrambler State

Casting the
state handle

into new state
handle

Code Snippet : State Behavior modification

11

// scrambler LFSR Initialization state
class lfsr_init_state extends scrambler_state;
`uvm_object_utils(lfsr_init_state)

virtual task do_action (state_manager i_state_manager);
//Perform Scrambler LFSR Init state functionality
…
// Move to next state -> MODIFIED LFSR Operation
i_state_manager.change_state(“mod_lfsr_operation_state);

endtask
endclass

Instead of moving to
lfsr_operation_state,
moving to modified
lsfr_operation_state

(Modified state)

Code Snippet : New State Insertion

12

// scrambler LFSR Operation state
class lfsr_operation_state extends scrambler_state;
`uvm_object_utils(lfsr_operation_state)

virtual task do_action (state_manager i_state_manager);
//Perform Scrambler LFSR Operation state functionality
…
// Move to next state -> NEW LFSR Operation State
i_state_manager.change_state(“new_lfsr_operation_state);

endtask

endclass

Instead of moving to
lfsr_idle_state, moving
to new functional state
new_lsfr_operation_st

ate (new state)

Error Injection using Lateral Sequencer

13

La
te

ra
l S

eq
ue

nc
er

 1

Lower Protocol
Layer Driver

Higher Protocol
Layer Driver

Tests

TX Sequencer RX Sequencer

Top Virtual Sequencer

DUT (Design Under Test)

Physical Interface

Tr

Transaction
to be inserted
in the normal
flow

Wait for a
synchronizing
event to
trigger

14

Error Injection using Callback

La
te

ra
l S

eq
ue

nc
er

 1

Lower Protocol
Layer Driver

Higher Protocol
Layer Driver

Tests

TX Sequencer RX Sequencer

Top Virtual Sequencer

DUT (Design Under Test)

Physical Interface

Tr
Callback

Hook

Just like a
base class

Extend the
base class and
write logic for
modification of
‘Tr’

State Pattern Vs Finite State Machine
• The State Pattern abstract the states and decouple them from each

other
- Example : you can easily replace one particular state with another. Yet

you will not be happy rewriting all the states when it is time to add a new
one and/or a new transition

• The state machine abstracts the state diagram itself and decouples it
from the transition payloads.
- Example : To change a particular state, you have to fix the whole

diagram

15

Observation & Results

16

Parameters Traditional (Existing
approach) VIP

Proposed VIP (Layered
State pattern)

Bugs found
35, before design went into

silicon

Additional 10 Major bugs
and 5 minor bugs found in

the design
Test Scenarios

250
Additional 40 (targeting error

scenarios and exception
handling)

Conclusion
• The motivation for this paper is to analyze and conclude on a Verification

IP Architecture which provides full-fledged control without
compromising on the simplicity of model development.

• Dynamically modifiable functionality of all layers along with complex test
scenario generation is achieved using this methodology.

• The proposed architecture has been deployed for live verification
project on UniPro and PCIe protocols.

17

Thank You !.

18

	UVM Layering for Protocol Modeling Using State Pattern
	Layered Protocol and verification
	Expectations from Verification IP
	Existing Approach – Layered Sequencer
	What is state pattern ?
	Proposed Approach using State Pattern
	State Pattern : State Behavior modification
	State Pattern : New State insertion
	Code Snippet : Abstract Class
	Code Snippet : State Controller
	Code Snippet : State Behavior modification
	Code Snippet : New State Insertion
	Error Injection using Lateral Sequencer
	Slide Number 14
	State Pattern Vs Finite State Machine
	Observation & Results
	Conclusion
	Thank You !.

