# UWB Double-Directional Channel Sounding

- Why and how? -

#### Jun-ichi Takada

Tokyo Institute of Technology, Japan

takada@ide.titech.ac.jp

- Background and motivation
- Antennas and propagation in UWB
- UWB double directional channel sounding system
- Parametric multipath modeling for UWB
- ML-based parameter estimation
- Examples

# **UWB** Systems

- Low power
  - Short range
- Location awareness
   High resolution in time domain
- Example applications
  - IEEE 802.15.3a : high speed PAN
  - IEEE 802.15.4a : low speed and location aware
  - Ground penetrating radar



# Indoor Multipath Environment



## Transmission in Multipath Environment









## **Free Space Transfer Function**

• Friis' transmission formula



## Ideal Antenna Cases

#### • Constant aperture size

Example : Pyramidal horn



#### **Frequency Characteristics of Antenna**

#### 4.8cm Dipole (resonant at 3.1GHz)



#### **Directional Transfer Function of Antenna**





#### Drastically changed by direction

#### **Directional Impulse Response of Antenna**



0.2ns

## Conventional System vs UWB

#### Antenna and propagation issues

|           | Conventional systems     | UWB-IR      |
|-----------|--------------------------|-------------|
| Antenna   | Gain<br>(frequency flat) | Distortion  |
| Multipath | Distortion               | Distinction |

## **Conventional Channel Model**

#### IEEE 802.15.3a Model



Channel includes antennas and propagation

Valid only for test antennas (omni) !

## **Channel Modeling Approach of UWB**



#### **Antenna Model Parameters**

# Directive Polarimetric Frequency Transfer Function $\begin{aligned} \mathbf{H}_{\mathrm{Ant}}(f,\theta,\varphi) &= \hat{\mathbf{\theta}}(\theta,\varphi) H_{\theta,\mathrm{Ant}}(f,\theta,\varphi) \\ &+ \hat{\varphi}(\theta,\varphi) H_{\varphi,\mathrm{Ant}}(f,\theta,\varphi) \end{aligned}$



## How to Get Antenna Model Parameters

- Electromagnetic (EM) wave simulator
  - MoM (NEC, FEKO, …)
  - FEM (HFSS, ...)
  - FDTD (XFDTD, ...)
  - ...
- Spherical polarimetric measurement
  - Three antenna method for testing antenna calibration

# **Propagation Modeling**



Double-directional model

- Direction of departure (DoD)
- Direction of arrival (DoA)
- Delay time (DT)
- Magnitude (polarimetric, frequency dependent)

## **Double Directional Ray Model**



$$H_{\text{Multipath}}(f, \mathbf{\Omega}_{\text{Tx}}, \mathbf{\Omega}_{\text{Rx}}) =$$

$$\sum_{l=1}^{L} a_l(f) \delta(\mathbf{\Omega}_{\mathrm{Tx}} - \mathbf{\Omega}_{\mathrm{Tx},l}) \delta(\mathbf{\Omega}_{\mathrm{Rx}} - \mathbf{\Omega}_{\mathrm{Rx},l}) \exp(-j2\pi f\tau_l)$$

## **Double Directional Channel Model**

#### ... has been studied for MIMO systems



## **MIMO** Antennas

Design of array antenna is a key issue of MIMO channel capacity.



## MIMO Channel Matrix



$$\overline{H}(f) = \underset{\text{vector}}{\text{Rx antenna array}} \underbrace{\overline{H}(f)}_{\text{vector}} = \underbrace{\overline{H}_{\text{Rx}}(f, \Omega_{\text{Rx}})}_{\text{Tx Rx}} H_{\text{Multipath}}(f, \Omega_{\text{Tx}}, \Omega_{\text{Rx}}) \underbrace{\overline{H}_{\text{Tx}}^{\text{H}}(f, \Omega_{\text{Tx}})}_{\text{Tx antenna array}} \underbrace{\overline{H}_{\text{Rx}}^{\text{H}}(f, \Omega_{\text{Rx}})}_{\text{vector}}$$

 $d \boldsymbol{\Omega}_{Rx} d \boldsymbol{\Omega}_{Tx}$ 

# MIMO vs UWB

#### Antenna and propagation issues

|           | MIMO                   | UWB-IR                  |
|-----------|------------------------|-------------------------|
| Antenna   | Array<br>configuration | Frequency<br>distortion |
| Multipath | Double directional     |                         |
| Magnitude | Frequency flat         | Frequency<br>dispersive |

Propagation modeling approaches are the same.

#### Two different aspects of propagation model

- Transmission system design
   Stochastic, site generic
- Equipment design and installation
  - More deterministic, site specific

# **UWB Channel Sounding**

#### Time domain vs Frequency domain

|                    | Time domain<br>(Pulse)                              | Frequency<br>domain (VNA)                                                            |
|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|
| Tx Power           | Large                                               | Small                                                                                |
| Calibration        | Difficult                                           | Easy                                                                                 |
| Data<br>processing | <ul> <li>Raw data</li> <li>Deconvolution</li> </ul> | <ul> <li>Fourier<br/>transform</li> <li>Superresolution<br/>(subspace/ML)</li> </ul> |
| Resolution         | Fourier                                             | High resolution                                                                      |

# **UWB Channel Sounding**

#### Directive antenna vs Array antenna

|                    | Directive<br>antenna                             | Array antenna                                                                        |
|--------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|
| Tx Power           | Small                                            | Large                                                                                |
| Sync.              | Timing                                           | Timing and phase                                                                     |
| Data<br>processing | <ul><li>Raw data</li><li>Deconvolution</li></ul> | <ul> <li>Fourier<br/>transform</li> <li>Superresolution<br/>(subspace/ML)</li> </ul> |
| Resolution         | Fourier                                          | High resolution                                                                      |

# **UWB Channel Sounding**

#### Real array vs Synthetic array

|                     | Real array              | Synthetic array |
|---------------------|-------------------------|-----------------|
| Realization         | Multiple<br>antennas    | Scanning        |
|                     | RF switch               |                 |
| Measurement<br>time | Short                   | Long            |
| Mutual coupling     | To be compensated       | None            |
| Antenna<br>spacing  | Limited by antenna size | No restriction  |

# **UWB Channel Sounding System**

- Vector network analyzer + antenna positioner
  - Measurement of spatial transfer function automatically



# **UWB Channel Sounding System**

- Architecture
  - Frequency domain
  - Synthetic array

– VNA
– XY positioner

- Pros and Cons
  - Short range ~ low power handling
    - Output power
    - Cable loss
  - Antenna scanning
    - Static environment
    - No array calibration

## **Double Directional Channel Model**

#### • Discrete path model

 Channel consists of discrete ray paths

$$\begin{array}{c} h_{l}(f) = h_{0}(f,\tau_{l}) \sum_{\beta_{r}=\psi,\phi} \sum_{\beta_{t}=\psi,\phi} \gamma_{\beta_{r}\beta_{t}l}(f) D_{r\beta_{r}}(f,\Omega_{rl}) D_{t\beta_{t}}(f,\Omega_{tl}), \end{array} (21.3) \\ Path & Free & Sum with & Excess & Rx & Tx \\ transfer & space & respect to & path & complex & complex \\ function & path loss polarizations & loss & directivity & directivity \\ \end{array}$$

• Multipath model

$$H(f) = \sum_{l=1}^{L} h_l(f)$$

## Model of Synthetic Array

• Complex gain changes due to position

$$D_{r\beta m_{r}}(f, \mathbf{\Omega}_{r}) = D_{r\beta}(f, \mathbf{\Omega}_{r}) \exp\left(j\frac{2\pi f}{c}\mathbf{r}_{rm_{r}}\cdot\hat{\mathbf{\omega}}_{r}\right). \quad (21.6)$$

$$\mathbf{r}_{rm_{r}} = \hat{\mathbf{x}}x_{rm_{r}} + \hat{\mathbf{y}}y_{rm_{r}} + \hat{\mathbf{z}}z_{rm_{r}}, \quad (21.5)$$
Position vector
$$\hat{\mathbf{\omega}}_{r} = \hat{\mathbf{x}}\cos\psi_{r}\cos\phi_{r} + \hat{\mathbf{y}}\cos\psi_{r}\sin\phi_{r} + \hat{\mathbf{z}}\sin\psi_{r}.$$
Propagation vector
$$(21.7)$$

$$\int_{V}^{T} DOA \text{ or DOD}$$

$$h_{l}(f) = h_{0}(f,\tau_{l}) \sum_{\beta_{\mathrm{r}}=\psi,\phi} \sum_{\beta_{\mathrm{t}}=\psi,\phi} \gamma_{\beta_{\mathrm{r}}\beta_{\mathrm{t}}l}(f) D_{\mathrm{r}\beta_{\mathrm{r}}}(f,\mathbf{\Omega}_{\mathrm{r}l}) D_{\mathrm{t}\beta_{\mathrm{t}}}(f,\mathbf{\Omega}_{\mathrm{t}l}), \quad (21.9)$$

- γ can not be considered as constant over UWB bandwidth.
  - Piecewise constant



## **Spherical Wave Model**

• For short range paths, plane wave approximation is not appropriate.

- Spherical wave model



#### Spherical Wave Model at Rx Array

$$h_{lm_{t}m_{r}}(f) = h_{0}(f, \tau_{l})\gamma_{l}(f)D_{r}(f, \Omega_{rl})D_{t}(f, \Omega_{tl})$$

$$exp\left[j\frac{2\pi f}{c}\left(\left\|\mathbf{R}_{rl} - \mathbf{r}_{rm_{r}}\right\| - R_{rl}\right)\right]exp\left(-j\frac{2\pi f}{c}\mathbf{r}_{tm_{t}}\cdot\hat{\mathbf{\omega}}_{tl}\right). \quad (21.9)$$
Phase delay correction wrt origin
Scattering center
$$Spherical wavefront$$

$$w_{rl}$$
Coordinates origin

#### Issue on Spherical Wave Model

 Not always compatible with doubledirectional model



## Issue on Spherical Wave Model

 Not always compatible with doubledirectional model





Incompatible case

## Issue on Spherical Wave Model

- SIMO and MISO (single-directional) processing
- Matching by using ray-tracing
   Accurate time delay due to UWB


## **Channel Parameter Estimation**

- Parametric channel model
  - Free from antenna geometry
  - Resolution still influenced by measurement configuration

$$h_{lm_{t}m_{r}}(f) = h_{0}(f,\tau_{l})\gamma_{l}(f)D_{r}(f,\mathbf{\Omega}_{rl})D_{t}(f,\mathbf{\Omega}_{tl})$$
$$\exp\left[j\frac{2\pi f}{c}\left(\left\|\mathbf{R}_{rl}-\mathbf{r}_{rm_{r}}\right\|-R_{rl}\right)\right]\exp\left(-j\frac{2\pi f}{c}\mathbf{r}_{tm_{t}}\cdot\hat{\mathbf{\omega}}_{tl}\right). \quad (21.9)$$

#### Parameters to be estimated

- Two major approaches
  - Subspace based



## Parametric Channel Model

 Measured data contaminated by Gaussian noise

$$y_{m_{r}k} = H_{m_{r}k} + n_{m_{r}k}, \qquad (21.11)$$
$$var(n_{m_{r}k}) = \sigma^{2}$$

• Parameters to be estimated

$$\boldsymbol{\mu}_{l} = \left\{ \left\{ \gamma_{li} \right\}_{i=1}^{l}, \psi_{rl}, \phi_{rl}, R_{l}, \tau_{l} \right\}, \quad (21.12)$$

$$\boldsymbol{\mu} = \bigcup_{l=1}^{L} \boldsymbol{\mu}_{l}.$$
 (21.13)



DOA or DOD

- Conditional probability of the observation data assuming parameter set
  - Likelihood function

$$p(\mathbf{y} \mid \boldsymbol{\mu}) = \prod_{k=1}^{K} \prod_{m_{r}=1}^{M_{r}} \left[ \frac{1}{\pi \sigma} \exp\left(-\frac{|y_{m_{r}k} - H_{m_{r}k}(\boldsymbol{\mu})|^{2}}{\sigma^{2}}\right) \right]. \quad (21.15)$$
– Observed data

$$\mathbf{y} = \{ y_{m_r k} \mid 1 \le m_r \le M_r, 1 \le k \le K \}$$
(21.14)

- ML estimate
  - $\mu$  maximizing p for given y

#### **Maximum Likelihood Estimation**

Exhaustive joint search of μ

$$p(\mathbf{y} | \mathbf{\mu}) = \prod_{k=1}^{K} \prod_{m_{\rm r}=1}^{M_{\rm r}} \left[ \frac{1}{\pi \sigma} \exp\left(-\frac{|y_{m_{\rm r}k} - H_{m_{\rm r}k}(\mathbf{\mu})|^2}{\sigma^2}\right) \right].$$
(21.15)

#### **Expectation Maximization (EM) Algorithm**

• Estimate of "complete data" x from "incomplete data" y (E-step)

$$\mathbf{x}_{l} = \mathbf{h}_{l} + b_{l}(\mathbf{y} - \mathbf{H}).$$
 (21.17)

• ML applied to "complete data" (M-step)

$$\arg \max_{\boldsymbol{\mu}} p(\mathbf{x}_{l} | \boldsymbol{\mu}) = \arg \min_{\boldsymbol{\mu}_{l}} \left\| \mathbf{x}_{l} - \mathbf{h}_{l}(\boldsymbol{\mu}_{l}) \right\|^{2}.$$
(21.19)

Least square problem → to be solved by matched filtering

# **EM Algorithm and Matched Filtering**

• Matched filter detection

$$\boldsymbol{\mu}_{l} = \arg \max_{\boldsymbol{\mu}_{l}} \frac{|\mathbf{a}^{H}(\boldsymbol{\mu}_{l})\mathbf{x}_{l}|}{\sqrt{\mathbf{a}^{H}(\boldsymbol{\mu}_{l})\mathbf{a}(\boldsymbol{\mu}_{l})}}.$$
 (21.22)

$$\hat{\gamma}_{li} = \frac{\mathbf{a}_i^H(\mathbf{\mu}_l)\mathbf{x}_{li}}{\mathbf{a}_i^H(\mathbf{\mu}_l)\mathbf{a}_i(\mathbf{\mu}_l)},$$

(21.23)

#### Space Alternating EM (SAGE) Algorithm

• Sequential search of parameters

$$\hat{\psi}_{rl} = \arg \max_{\psi_{rl}} \frac{|\mathbf{a}^{H}(\psi_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}{\sqrt{\mathbf{a}^{H}(\psi_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\psi_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}}, \quad (21.24)$$

$$\hat{\phi}_{rl} = \arg \max_{\phi_{rl}} \frac{|\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\psi_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}{\sqrt{\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}}, \quad (21.25)$$

$$\hat{R}_{l} = \arg \max_{R_{l}} \frac{|\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}{\sqrt{\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}}, \quad (21.26)$$

$$\hat{\tau}_{l} = \arg \max_{\tau_{l}} \frac{|\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{x}_{l}|}{\sqrt{\mathbf{a}^{H}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})\mathbf{a}(\hat{\psi}_{rl}, \phi_{rl}, R_{l}, \tau_{l})}}, \quad (21.27)$$

- Good initial estimate is necessary.

### **Successive Cancellation Approach**



# Experiment in an Indoor Environment (1)

• Measurement site: an empty room



# Experiment in an Indoor Environment (2)



# Experiment in an Indoor Environment (3)

- Estimated parameters : DoA (Az, EI), DT
- Measured data :
  - Spatially 10 by 10 points at Rx
  - 801 points frequency sweeping from 3.1 to 10.6
     [GHz] (sweeping interval: 10 [MHz])
- Antennas : Biconical antennas for Tx and Rx
- Calibration : Function of VNA, back-to-back
- IF Bandwidth of VNA : 100 [Hz]
- Wave polarization : Vertical Vertical
- Bandwidth of each subband : 800 [MHz]

## Measurement Result (1)

• The result of ray path identification



There 6 waves detected and are almost specular waves.

### Measurement Result (2)



6 specular waves were observed.

## Measurement Result (3)





#### #4 is a reflection from the back of Rx

## Measurement Result (4)

• Extracted spectrum of direct wave



- Transfer functions of antennas are already deconvolved.
- The phase component is the deviation from free space phase rotation (ideally flat).

# Experiment in an Indoor Environment (4)

• Comparison of the measurement result in 9 different Rx position



The path type detected in each measurement was almost same.

## Measurement Result (5)

• Estimated source position for direct wave



Maximum deviation is 17cm from source point.



## Measurement Result (6)

• Estimated reflection points in back wall reflection



All the reflection points are above those predicted by GO.

Predicted by GO

 Estimated by measurement

# Discussion

- Some problems have been appeared.
  - 2 ~ 4 spurious waves detected during the estimation of 6 waves
  - Residual components after removing dominant paths
  - Signal model error (plane or spherical)
  - Estimation error based on inherent resolution of the algorithm implementation
  - Many distributed source points (diffuse scattering)

### Further investigation in simple environment

#### Performance Evaluation in Anechoic Chamber



# **Specifications of Experiment**

- Frequency : 3.1 ~ 10.6 GHz
   0.13 ns Fourier resolution
- Antenna scanning plane : 432 mm square in horizontal plane
  - 10 deg Fourier resolution
  - 48 mm element spacing
     (less than half wavelength @ 3.1 GHz)
- Wideband monopole antennas were used
  - Variation of group delay < 0.1 ns within the considered bandwidth
- SNR at receiver: About 25 dB

# Aim of Anechoic Chamber Test

- Evaluation of spatio-temporal resolution
  - Separation and detection of two waves that
    - Spatially 10 deg different and same DT
    - Temporally 0.67 ns ( = 20 cm ) different and same
       DoA

# Setup of Experiment



## Spatial Resolution Test (1)



# **Spatial Resolution Test (2)**

- 10 deg separated waves are accurately separated.
  - Parameters and spectra are accurately estimated.
  - The estimated phase
     denotes a deviation from
     free space phase rotation
     (~ 3 mm).
  - Antenna characteristics are already deconvolved.



## Temporal Resolution Test (1)



# **Temporal Resolution Test (2)**

- 0.67 ns separated waves are accurately resolved.
  - Subband width: 1.5 GHz
  - Spectrum estimation is impossible in the higher and lower frequency region of

$$\left(\frac{1}{\Delta\tau = 0.67\,[\text{ns}]}\right)/2$$

= 0.75 [GHz]



# Subband Processing (1)

- ... relieves a bias of parameter estimation due to amplitude and phase fluctuation within the band
- Tradeoff between the resolution and accuracy of parameter estimation: some optimization is needed !!



# Subband Processing (2)

- How to choose the optimum bandwidth of subband?
  - Suppose two waves are  $\Delta \theta$  and  $\Delta \tau$  separated



# Subband Processing (3)

- Behavior for the detection of two waves closer than the inherent resolution of the algorithm
  - Regard two waves as one wave (ex. same incident angle)
  - Two separated waves, but biased estimation of power (ex. 5 deg different incident angles)



## **Deconvolution of Antenna Patterns**

Deconvolution of antennas

 Construction of channel models independent of antenna type and antenna configuration

- Deconvolution is post-processing (from the estimated spectrum by SAGE)
  - Simple implementation rather than the deconvolution during the search

# Spherical vs Plane Wave Models (1)





Plane wave incidence (far field incidence)

Spherical wave incidence (radiation from point source)

- How these models affect for the accurate estimation?
  - Spurious (ghost path) and detection of weak paths
  - Empirical evaluation of model accuracy

# Spherical vs Plane Wave Models (2)

Detection of 20 dB different two waves
 – Is a weaker source correctly detected?



# Spherical vs Plane Wave Models (3)

 Log-likelihood spectrum in the detection of weaker path



# Summary of Evaluation Works (1)

- Evaluation of the proposed UWB channel sounding system in an anechoic chamber
  - Resolved spatially 10 deg, temporally 0.67 ns separated waves
  - Spectrum estimation is partly impossible in the highest and lowest frequency regions of  $\frac{1}{2\Delta\tau}$ .
  - The algorithm treats two waves closer than inherent resolution as one wave, or results in biased power estimation even if they are separated.

# Summary of Evaluation Works (2)

- For reliable UWB channel estimation with SAGE algorithm
  - An optimum way to choose the bandwidth of subband
  - The number of waves estimation is done by SIC- type procedure

- Deconvolution of antennas effects from the results of SAGE
  - For channel models independent of antennas
# Summary of Evaluation Works (3)

- Spherical incident wave model is more robust than plane wave incident model
  - Spurious reduction is expected
  - Effective in the detection of weaker path

### Indoor Double Directional Measurement (1)



(b) Side view

#### Indoor Double Directional Measurement (2)

#### Azimuth-Delay spectrum

Tx side





Above -80 [dB] ◇ -80 to -90 [dB] □ -90 to -100 [dB] ○ -100 to -110 [dB] × Below -110 [dB] \*

#### Indoor Double Directional Measurement (3)



#### Indoor Double Directional Measurement (4)



#### Indoor Double Directional Measurement (5)



#### Indoor Double Directional Measurement (6)



(m) Cluster M



(p) Cluster P

- Background and motivation of double directional sounding
- Antennas and propagation in UWB
- UWB double directional channel sounding system
- Parametric multipath modeling for UWB
- ML-based parameter estimation
- Examples

## References

- Jun-ichi Takada, Katsuyuki Haneda, and Hiroaki Tsuchiya, "Joint DOA/DOD/DTOA estimation system for UWB double directional channel modeling," to be published in S. Chandran (eds), "Advances in Direction of Arrival Estimation," to be published from Artech House, Norwood, MA, USA.
- Katsuyuki Haneda, Jun-ichi Takada, and Takehiko Kobayashi, "Experimental Evaluation of a SAGE Algorithm for Ultra Wideband Channel Sounding in an Anechoic Chamber," joint UWBST & IWUWBS 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies (Joint UWBST & IWUWBS 2004), May 2004 (Kyoto, Japan).
- Hiroaki Tsuchiya, Katsuyuki Haneda, and Jun-ichi Takada, "UWB Indoor Double-Directional Channel Sounding for Understanding the Microscopic Propagation Mechanisms," 7th International Symposium on Wireless Personal Multimedia Communications (WPMC 2004), pp. 95-99, Sept. 2004 (Abano Terme, Italy).