Vaccine Adjuvants

Leonard Friedland, MD, FAAP

Vice President and Director, Scientific Affairs and Public Health, GSK Vaccines

Industry Representative Member, National Vaccine Advisory Committee

National Vaccine Advisory Committee meeting February 7, 2018

Biotechnology Innovation Organization

Disclosure

Employed by GSK where I am a vaccine research physician scientist

Industry Representative Member, National Vaccine Advisory Committee

Presentation at the invitation of National Vaccine Program Office

Presentation is for educational purposes only; this is not a sales, marketing or promotional presentation

Vaccine Science: Two Centuries of Continuous Research, Improvements, and Achievements

R. Thom, 'Jenner: Smallpox is Stemmed, from "The History of Medicine," Collection of the University of Michigan Health System, Gift of Pfizer. Bonanni P, et al. Chapter 1 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Current Challenges for Vaccines¹

Challenging populations due to impaired immune system (eg, elderly, children, immunocompromised)	Need for booster vaccinations	Recombinant antigens generally less immunogenic than live or attenuated organism vaccine ²	Pathogens that require broad and complex immune response	Need for antigen sparing potential supply problems (eg, pandemic flu)
Increase the level of the immune response	Prolong the duration of the immune response, improve immune memory, and protection	Overcome a weakened immunogenicity	Induce the generation of a high and broad immune response	Reduce the amount of antigen needed (dose-sparing)

1. Garçon N, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011; Chapter 4: 89-113.

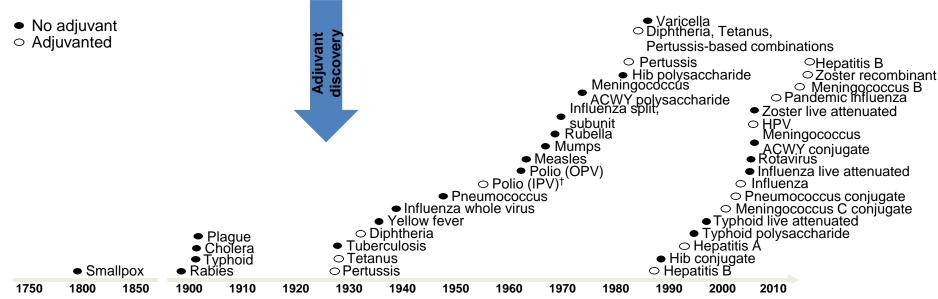
2. Petrovsky N, Aguilar JC. Immunol Cell Biol. 2004;82:488-496.

Examples of Novel Approaches to Vaccine

DNA ¹	Live vectors ¹	Reverse vaccinology ¹	Self-amplifying RNA ²	Novel adjuvants and adjuvant combinations ³
 Pathogen-derived genetic material coding for the antigens contained in a non-replicating DNA plasmid Antigen is expressed by the cells of the vaccine recipient 	 Targeted antigens encoded by gene(s) incorporated into the vector's genetic material Antigens expressed by a vector (like virus or bacterium) that is non-pathogenic 	 Computer analysis of the pathogen's entire genome is conducted to find genes that may be antigenic Vaccine candidate identified based on prediction of protein sequences similar to pathogen's genome sequences 	 Synthetic virus particles include antigen proteins Once inside host cell cytoplasm, these self-amplify in large amounts, express antigen proteins and interact with the host immune system 	• Substances included in a vaccine formulation to enhance the quality and strength of the immune response induced by the vaccine antigen(s)

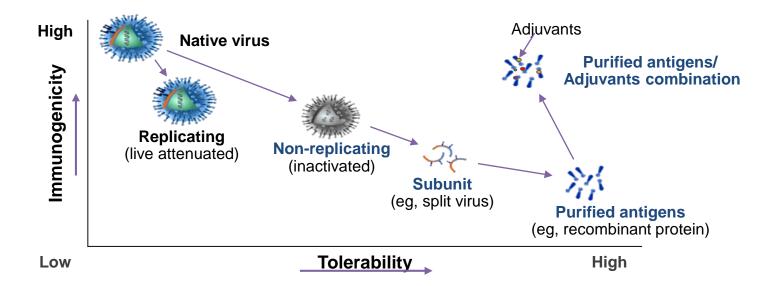
- 1. Stanberry L, Strugnell R. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011; Chapter 6: 155-199.
- 2. Geall A, et al. Semin Immunol. 2013;25:152-159.
- 3. Garçon N, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011; Chapter 3: 61-88.

Adjuvant^{1,2}


- From Latin, *adiuvare*: to aid
- Substance included in a vaccine to enhance and modulate the quality and/or strength of the immune response induced by the antigen
- Old technology, made new

1. Bonanni P, et al. Chapter 5 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

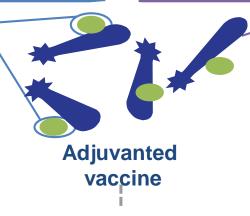
2. Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.


Vaccines With or Without Adjuvants

[†]IPV is adjuvanted when formulated in combination with diphtheria, tetanus, pertussis-based vaccines, but is not adjuvanted when formulated as a standalone vaccine. Hib= Haemophilus influenzae type b; HPV= human papilloma virus; IPV= inactivated polio vaccine; OPV= oral polio vaccine (live).

Adapted from Strugnell R, et al. Chapter 3 and Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Antigens May Need Help: The Role of Adjuvants



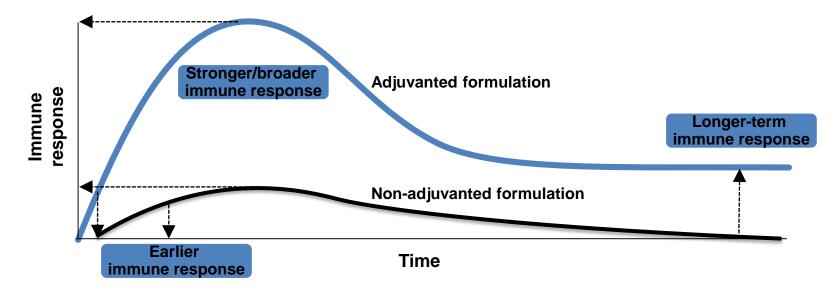
Adjuvants Work by Stimulating Innate Immunity

Innate immune system Required for the onset

Adjuvant¹

- Recognized by specific receptors (TLRs, NLRs)
- Stimulate antigen presentation to cells from adaptive immunity (specific T- and B-cells)

Adaptive immune system Specific, provide memory

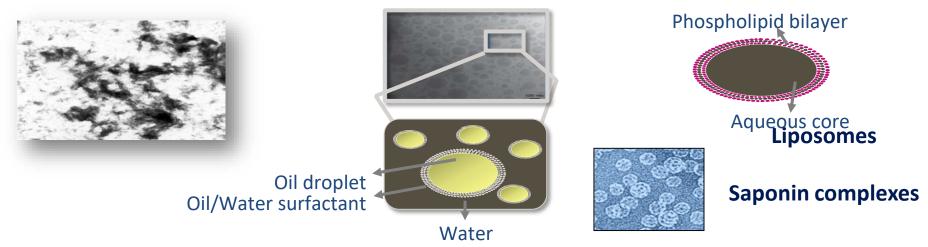

Antigens²

- Antigen-specific T- and Bcells provide the specificity to the vaccine
- Memory T- and B-cells confer long-term protection against disease

1. Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

2. Leo O, et al. Chapter 2 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Expected Impact of Adjuvants on Vaccine Immune Response



Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Different Categories of Adjuvants Have Been Developed

Emulsions

Mineral salts

Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Particulate Formulations

Adjuvants–Few Approved, Many in Development

Adjuvants in Licensed Products					
Adjuvant	Mechanism or Receptor	Licensed product			
Aluminum salts	Nalp3, ITAM, antigen delivery	Numerous (eg, pertussis, hepatitis, pneumococcal)			
AS04	TLR4	HPV			
Emulsions (MF59, AS03)	Immune cell recruitment, antigen uptake	Influenza			
AS01	TLR4, inflammasome	Zoster			
CpG ODN	TLR9	Hepatitis B			

Adjuvants in Development Adjuvant Mechanism or receptor **Clinical phase** ISCOMs (Matrix-M) Unknown 2 dsRNA analogues TLR3 1 Flagellin TI R5 1 C-type lectin ligands Mincle, Nalp3 1 CD1d ligands CD1d 1 GLA-SE TIR4 1 IC31 TLR9 1 CAF01 Mincle, antigen delivery 1

Observed Benefits of Adjuvants in Candidate or Licensed Adjuvanted Vaccines

- Efficacy demonstrated for different antigens: split (influenza)¹, parasitederived (malaria)², viral glycoprotein (herpes zoster)³, viral particles (HPV)⁴
- Persistent increase in T-cell and antibody response in magnitude and quality (antibody breadth and cross-reactive T-cells)^{1,5}
- Benefits shown across the entire age spectrum (6-month-old infants to >80-year-old-adults)^{3,6} with the possibility to adapt dosage to age (eg, use of lower dose in pediatric formulation)⁶
- Being used in vaccines in special populations, such as in immunocompromised or HIV+, with acceptable safety outcomes⁷

Leroux-Roels I, et al. *PLoS One.* 2008;3:e1665. 2. RTS, S Clinical Trials Partnership. *N Engl J Med.* 2011;365:1863-1875. 3. Lal H, et al. *N Engl J Med.* 2015;372:2087-2096.
 Roteli-Martins, et al. *Hum Vaccin Immunother.* 2012;8:390-397. 5. Garçon N, et al. Chapter 4 in: Garçon, et al. *Understanding Modern Vaccines: Perspectives in Vaccinology.* Vol 1. Amsterdam: Elsevier; 2011. 6. Knuf M, et al. *Hum Vaccin Immunother.* 2015;11(2):358-76. 7. Denny L, et al. *Vaccine.* 2013;31:5745-5753.

Safety Is of Primary Importance From the Start of Development and Throughout the Entire Life of a Vaccine

	Preclinical	\rightarrow	Clinical	Post-Licensure		
	5–15 years		5–15 years	For Entire Lifecycle		
Continuous Safety Assessment and Monitoring						

- Vaccines are carefully evaluated under tight process controls and overseen by regulatory authorities
- Safety monitoring designed to rapidly identify rare and/or serious adverse events temporally linked to vaccination

Leroux-Roels G, et al. Chapter 5 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

General Reactogenicity and Safety

- Adjuvanted vaccines often have increased reactogenicity, especially at the injection site
- Local symptoms are usually mild/moderate, short-lasting and do not impact compliance

The safety profile of aluminum salt adjuvants has been well established through the use of billions of doses, in different populations, over more than 80 years

Licensed, adjuvanted vaccines have clinically acceptable benefit-risk ratios

Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

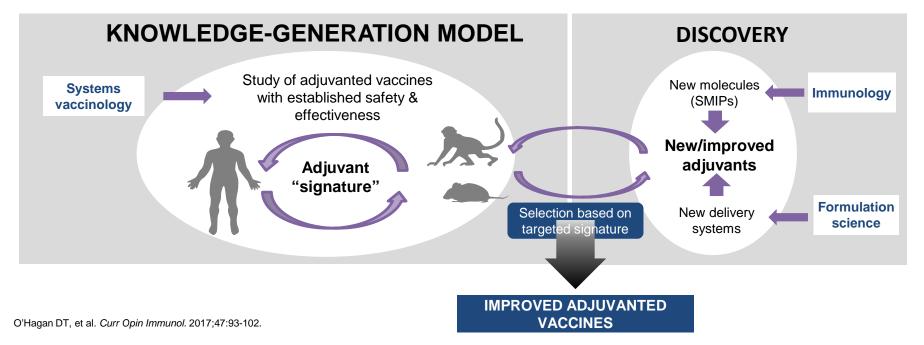
One Size Does Not Fit All

No universal adjuvant to cover all vaccine needs

Different diseases may require different immune responses to elicit protection through vaccination

Appropriate selection of adjuvant-antigen combination is key to the formulation of novel and efficacious vaccines

Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.


Among All the Possibilities, How Is An Adjuvant Selected?^{1,2}

1. Reed SG et al. Nature Med. 2014;19:1597-1608.

2. Garçon N, et al. Chapter 4 in: Garçon, et al. Understanding Modern Vaccines: Perspectives in Vaccinology. Vol 1. Amsterdam: Elsevier; 2011.

Tools to Develop the Next Generation of Adjuvants

Considerations for NVAC

- More efforts are needed to highlight the importance of novel adjuvants in ongoing vaccine research and their potential to prevent many more infectious diseases through vaccination. As industry, we often say, "the low hanging fruit has been picked." Remaining vaccine targets are exceptionally difficult.
- Advances in understanding how adjuvanted vaccines interact with the immune system should help in mitigating health risks and in better analyzing those events when they occur. Considering the increasing importance of vaccine confidence, public perceptions of adjuvants should be assessed.

Organization