Vacuum Circuit Breakers 3.6 to 36kV Classes

Vacuum circuit breakers are compact designed for safe operatio high reliability and easy maintenance, and are widely used for教
ujii HS series vacuum circuit breakers (VCB) have been developed through the use of our many years of successful experience and advanced technology. They are compact and light-mass (weight), and are available in a number of current ratings.

Features

Compact, light-mass design
Vacuum circuit breakers have a small switching stroke as compared with other types of circuit breakers, so their breaking unit is small in size. To take full advantage of this feature, the perating mechanism has been designed to reduce the size and mass of the circuit breakers.

Spring closing system

The vacuum circuit breakers use a motor-spring stored-energy electrical and mechanical characteristics and to reduce the closing operating current.

Safe operation and simplified maintenance

The operating mechanism is mounted on the front of the frame and the live parts are mounted on the rear. Thus, the operating mechanism is completely isolated from the live parts (dead front

The draw-out type (Y) con be fitted with a misoperation-protection-interlock complying with the IEC and JEM standards (available by designation).

Stable breaking performance
The excellent insulation recovery characteristics of the vacuum interrupter allow it to react quickly from small current to shortcircuit currents, and also to exhibit a stable interrupting performance in double earth fault and out-of-phase currents.

Scope of VCB basic type

Internal view

Internal view

Internal view

Ratings and Specifications

Notes : *1 Contact Fuif for the information concerning to the 3 stime rating of IEC. ${ }^{2}$ If capacitor tripoing mechanism is required
${ }^{2} 3$ Contact Fuif for dimensions of the types not listed here

Type designations

The Fuji VCB features a dead front structure; the operating mechanism and control circuit are mounted on the front of the erminals are on the rear to avoid accidental touching with the parts. These parts are enclosed in a metal cover to prevent them from making contact with the live parts during operation.

Closing mechanism

The closing mechanism is simple in design and provides high reliability. The circuit breakers use a motor-spring stored-energy closing mechanism of the rapid auto-reclosing type.

Motor-spring operation
The motor-spring operating mechanism of Fuii VCB is designed to carry out the closing sequence using the stored-energy in the closing spring supplied by the motor.
The operating mechanism incorporates springs capable of storing the energy required for an OFF-ON-OFF sequence when the breaker has been closed. The closing spring is recharged automatically after closing. This breaker model is suitable for rapid auto-reclosing duty. It can be used for reclosing since the charging time for the motor mechanism is 15 s or less.

Operating mechanism

(spring charged

spring free)

pen position
spring charged

Tripping system

The VCB normally employs a shunt trip utilizing 100 V DC or 200 V DC. If it is desired to use the capacitor tripping ype, cos unit, al accessory, to the shunt trip unit.

Shunt trip (f)

${ }^{1}$ Closing spring
(2) Trosing spring
(3)
(lising spring
(3) (3) Closing cam (4) Closing ratch (8) Tripping ratch

Capacitor trip unit (separate mount, option)

Specifications

| Specifications | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Name | Type | Rated input
 voltage AC [V] | Effective time for tripping | VCB shunt
 trip coil DC [V] |
| Capacitor
 trip unit | VCB-T1PB, T1A | $100 / 110$ | Within 30s after AC | $100 / 110$ |
| | VCB-T2PB, T2A | $200 / 220$ | power disappeared | $200 / 220$ |

Vacuum Interrupter

Accessories

In the vacuum interrupter, there is a pair of cup contacts, each having oblique slots.
This contact structure allows a current to flow along a winding path as shown by "1" in the ustration below.
When the contacts open, the arc deflects in the direction shown by "2" and rotates in the direction shown by " 3 ".
The arc is driven round the contact surface without arc stagnation, and is extinguished in a hort time. This prevents local overheating of the contact surface and uneven wear of the ontacts, thereby providing a longer service life.
e the contacts are made of a special material, chopping current flowing into the contacts is reduced to 3.5 A .

Function of contact structure

The current path bends as
shown by both arrows.

The arc receives the force
in the arrow direction.

The arc is driven in the
arrow direction, and arrow direction, and
trotates without arc stagnation.

Service life

Judgement of vacuum condition The vacuum condition in the vacuum interrupter is an important factor for operation of the VCB.
The interrupter of Fuji VCB is designed
o maintain a high vacuum for a long
period of time. It is factory tested to insure reliable performance.
When checking the vacuum condition, use the following procedure.
With VCB in the "open" condition, apply a commercial frequency voltage (ex.22kV effective value for VCB rated at 7.2 kV) for min time across the poles of the same phase. When the vacuum interrupter ndition is normal

Mechanical life

The VCB has a simple and excellent operating mechanism, so the mechanical stress developed at the time of operation remains the constant and hence the mechanical characteristic is kept stabilized for many years of use. For the mechanica life, refer to the table on pages 3 to 6 . Fuji VCB is equipped with an operating counter for check of the mechanical life.

Electrical life

The electrical life of the vacuum interrupter is determined by the switching of load as shown in the table on pages 3 to 6 . It can be checked by observing the amount of wear of the contacts which is indicated by
the wear indication mark (for "-N" and "" - NA" types) The indication mark can be visually checked from the front of the VCB except for "-E" and "-EA" types) without removing it from the switchgear.

Capacitor trip unit

Type	Mount type	Rated input voltage
VCB-T1PB	Flush mounting	100/10V AC
VCB-T1A	Surface mounting	
VCB-T2PB	Flush mounting	200/220V AC

Vacuum condition tester

Type	Carrying VCB type	Remark
L-2HNB	HS2006-E HS2506-E HS2010-06, 12-E HS2510-06, 12-E	Other available equipment - MULTI. VCB - VMC (HN46A) - HD type truck
$\overline{\text { L-2HS40E }}$	HS3106-12, 20-E HS4006-12, 20-E HS1210-20-E HS1610-20-E HS2010-20-E HS2510-20-E HS3110-12, 20-E	
L-4HS30E	$\begin{array}{\|l\|l\|} \hline \text { HS3106-30-E } \\ \text { HS4006-30-E } \end{array}$	VCBs for L-2HS40E can also be mounted.
L-4HS43N	HS5006-12, 20-NA HS4010-12, 20-NA HS5010-12, 20-NA HS4020-12 $20-\mathrm{N}$	
L-4HS44N	HS4006-40-N HS5006-30-N HS3110-30-N HS4010-30, 40-N HS5010-30-N HS $4020-30 \mathrm{~N}$	VCBs for L-4HS43N can also be mounted.
L-4HS12K	HS1220-06, 12-EA	
L-4HS22E	HS2520-06, 12, 20-E	

Connection Diagrams

$$
\begin{aligned}
& \text {-c-: EXTERNAL TERMINAL OF VCB } \\
& 52: \text { VCB } \\
& 52 \mathrm{a}: \text { NO "a" contact of aux. switch } \\
& 52 \mathrm{~b}: \text { NC } \mathrm{b} \text { contact of fux. switch } \\
& 52 \mathrm{X}: \text { Magnetic contactor } \\
& 52 \mathrm{Z}: \text { Pumping preventive relay } \\
& 52 \mathrm{C}: \text { Closing coil } \\
& 52 \mathrm{~T}: \text { Shunt tripping coil } \\
& \mathrm{M}: \text { Operating motor }
\end{aligned}
$$

LS1: Limit switch (opens when the closing spring is in the charged condition) LS2: Interlocking contact (only daw-out type) LS3. Limit switch (NO " a " contact closes
when the closing spring is in the when the closing spin
LS4: Limit switch (opens when operation the L54: Limit switch (opens
closing push button) Protective relay: Over current relay etc.

HS2006, HS2506, HS1210-06, 12, HS1610-06, 12, HS2010-06, 12, HS2510-06, 12, HS1220, HS1620

Aux. circuit plugs
View from front of VCB
HS3106-E, HS4006-E, HS3110-E, HS1210-20, HS1610-20, HS2010-20, HS2510-20, HS2520-E

HS4006-N, HS5006, HS3110-N, HS4010, HS5010, HS4020, HS2530

A

HS2006Y..........E(600, 1200A), HS2506Y..........E(600, 1200A

B

Min. distance for safe
C $\operatorname{HS3106Y}(1200,2000 A), \operatorname{HS} 4006 Y(1200,2000 A)$

H $\operatorname{HS} 1210 \mathrm{Y}(600,1200 \mathrm{~A}), \operatorname{HS} 1610 \mathrm{Y}(600,1200 \mathrm{~A}), \operatorname{HS} 2010 \mathrm{Y}(600,1200 \mathrm{~A}), \mathrm{HS} 2510 \mathrm{Y}(600,1200 \mathrm{~A})$

. $\mathrm{HS} 1210 \mathrm{Y}(2000 \mathrm{~A}), \operatorname{HS} 1610 \mathrm{Y}(2000 \mathrm{~A}), \operatorname{HS} 2010 \mathrm{Y}(2000 \mathrm{~A}), \operatorname{HS} 2510 \mathrm{Y}(2000 \mathrm{~A}), \operatorname{HS} 3110 \mathrm{Y}(1200,2000 \mathrm{~A})$

Ordering Information

Application Guide of Surge Absorber

When your inquiring or ordering, please specify the following items.
Type designation and symbol
HS $\square \square \square-\square \square \mathbf{f}-\mathrm{E}-\square \square \square \square$
(1) (2) (3) (4) (5) (6) (1) (8) (9) (10) (11)
(12) (13) (14) (15) (16) (17)

The high surge voltage by the VCB that injures the insulation of the machines and apparatus is generated under certain specific dielectric strength of the device used as a load.
The application guide given below is a oce
switching surge tests. When the dielectric strength of the device switching surge tests. When the dielectric strength of the device is low, use of a surge absorber is recommended.

Connection of surge absorber

The surge absorber should be connected between the VCB and its load (device) as shown ; connect each phase betwwen the power line and the earth.

When using a C-R suppressor, it may be necessary to use a directional relay as a ground fault protection relay. Note that the C-R suppressor may be damaged due to higher harmonics.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan

