

The World Leader in Vacuum Sewer Technology

VACUUMSENER DESICN SEMNAR

Design Seminar

- Review of Design Fundamentals
- System schematic
- General Project Guidelines
> Explanation of flow path
> Explanation of "Q-Mean"
> Sample profile
> Summary of fundamentals

Design Seminar

- Sample Problem
> Plan and Profile Design
> Design Software
> Station Calculations
- Standard Details
- Factory Collection Stations
- Questions and Answers

Schematic of Typical Vacuum System

General Guidelines for Vacuum System Design

Determine the geographical limits of the senvice area

- The vacuum system is a mechanical system
- Component sizing based on total system flow
> This is a most critical step in the analysis

Analyze topography of site to select ideal site for central vacuum station

- Locate point that utilizes as much natural ground slope as possible
- Start with the lowest elevation in the complex
- Optimum point is the lowest point nearest the geographical center of the site
- Reviewavailable property
(other municipal works or public properties)
> Use lowest centrally located property as guide Review final sewage outfall
> Minimize forcemain length if possible

Route sewer lines along public right-of-way

- Take advantage of as much natural ground slope as possible
- Analyze approximate lift for each fiow path
> Compare ground elevation difference between the end of line and the vacuum station *Note the highest elevation this flow path must ascend

Route sewer lines along public

 right-of-way- Using 13 Ft. as maximum static loss, the following are approximate grade elevation differences for various pipe sizes using normal lifts:
$4^{3 \prime}=15 \mathrm{Ft}$. (Based on 1.0' Lifts)
$6^{\prime \prime}=17 \mathrm{Ft}$. (Based on 1.5^{\prime} Lifts)
$8^{\prime \prime}=19$ Ft. (Based on 1.5' Lifts)

Additional grade elevation differences can be overcome using slightly deeper trenches and/or lower lift heights.

Determine input flow for each vacuum main or branch

- Account for the total number of:
- Homes
> Schools
> Apartments
> Commercial Businesses
> Etc.
See Chapter 2 of 2005 Design Manual for recommended flows
- Place interface valve pits at property corners
- Indicate gravity connections to various lots
- To minimize gravity sewer depth
- Use two (2) homes per valve pit as a general guideline and a maximum of four (4) homes per valve pit
- Place single, dual or other buffer tanks at appropriate high flow locations
> Addlitional buffer tank limitations in Chapter 6 of 2005 Design Manual
- Analyze each vacuum line for future growth potential
> Add this flow to existing flow
If Ideally, total peak fiow for each main line entering the vacuum station should be as close to equal as possible

Determine peak design flow to

 vacuum collection station and calculate major station components- Use criteria found in Chapters 2 and 3 of 2005 Design Manual

After final line routing and vacuum station site selection, line routing should be field surveyed for exact length and ground contours

- Prepare plan and profile sheets on a split or combined plan
> Profile page using aerial photography or other techniques to locate homes, streets, right-of-ways, existing utilities, etc.
> A scale of $1^{\prime \prime}=50^{\prime}$ horizontal and $1^{\prime \prime}=5^{\prime}$ vertical is typical
- Select the vacuum collection tank connection point as main line station 0+00
> Continue outward toward main line extremities
- Where branch lines connect to main lines or each other, their connection point becomes $0+00$ for that line
- Preferred direction of profile design in in the flow direction
> It is recommended that profile design start at the end of each main line
- Starting elevation should include
> Frost cover (as dictated by local conditions)
> Plus the diameter of a 3" cross-over
> Plus the invert to invert dimension of a 3" cross-over to mainline wye fitting as shown on Figure F4-8 (normally 1'-0" minimum).

- Lifts are placed as required

To minimize trench depth
To ascend uphill grades

- Generally speaking if ground is flat, a 1.0 foot lift at 500^{\prime} centers or a 1.5 foot lift at 750' centers will result in an elevation equal to elevation at starting point ($500 \mathrm{Ft} . \times 0.2 \%=1.0$ Ft. or $750 \mathrm{Ft} . \times 0.2 \%=1.5 \mathrm{Ft}$.)
- All lifts will result in a designed vacuum loss equal to the lift height minus the pipe diameter
> The sum of all vacuum losses from the end of a 'flow path" to the vacuum collection station should not exceed 13.0 Ft. without consulting AIRVAC

- Vacuum process begins at the vacuum valve

 and collection sump assembly- When the volume of sewage in sump reaches approximately 10 gallons
- The AIRVAC valve opens
- Differential pressure between the vacuum sewer and the atmosphere forces the 10 gallons of sewage into the vacuum main
- While accelerating, sewage is rapidly transformed into foam
- Soon occupies only part of the sewer pipe cross section;
- momentum transfer from air to water takes place largely through the action of shear stresses
- The magnitude of the propulsive forces start to decline noticeably when the AIRVAC valve closes
- It remains important as the admitted air continues to expand
- Eventually friction and gravity bring the sewage to rest below several lifts

As the process continues

- Liquid will be transported downstream by in-rushing air
- Sewage admitted to a sewer through an AIRVAC valve initially moves in two directions.
- 80\% flows toward the collection station
- 20% flows in the opposite direction
- When the backsurge slows, flow moves toward the collection station (schematics follow)
- Sewage scouring velocities of 15 to 18 feet per second are attained using the standard airlliquid ratio

Interface Valve in Standlby Position

Interface Valve in Open Position

Vacuum Line Thrust

Example of Aow Path

Explanation of Q (MEAN)

To determine the friction loss for this section of vacuum main:
Determine the value of Q (Mean):
This is the sum of all homes along this section $\times 0.64 \mathrm{gpm}$
Plus the Total flow from all previous sections. 2
Using friction loss tables, find head loss per hundred feet
Multiply by the length of pipe in this section (hundreds)

Vacuum Main Profile Design Example

Summary of Vacuum Piping Design Fundamentals

- SLOPES
> Use natural ground slope if greater than 0.2\%
> Use 0.2\% slope for flat terrain
> Use saw tooth profile for uphill transport
> Use 0.2\% slope at 50' minimum prior to first lift in any series

Summary of Vacuum Piping Design

Fundamentals

- FALL BYMNEEN LIFIS

> Use larger of two values
> $0.2 \% \times$ Length
> 0.20 Ft. fall for 3" senvice laterals if lifts are closer than 100 Ft. apart
> 0.25 Ft. minimum fall for $A L L$ vacuum mains and branches 4" and larger if lifts are closer than 125 Ft. apart

Summary of Vacuum Piping Design

Fundamentals

- IFIS
> Use 1'-0" for 3"' or 4" pipe
> Use 1'-6" for 6" or larger pipe
> Static loss $=$ Lift height - Pipe diameter
> Maximum vacuum loss due to lifts from any AIRVAC valve to the collection station $=(13$ Ft. Static Loss + 5 Ft. Friction Loss)
> Maximum series of lifts $=5$ at 20 Ft. centers
> First lift on a branch minimum 20 Ft. from connection to main

Summary of Vacuum Piping Design

Fundamentals

- CONNECIIONS
> Use wye connectors for all branch and lateral connectors
- Wye may be vertical or at 45° angle
* Use long sweep 90° ell for $3^{\prime \prime}$ senvice connectors ONLY
> Use 45° ells for $4^{\prime \prime}$ and larger connectors and any directional change
> Recommended minimum Invert to Invert elevation difference for connections:

$4 \times 3=.73 \mathrm{Ft}$.	$6 \times 3=.80 \mathrm{Ft}$.	$8 \times 3=.99 \mathrm{Ft}$.	$10 \times 3=1.08 \mathrm{Ft}$.
$4 \times 4=.71 \mathrm{Ft}$.	$6 \times 4=.78 \mathrm{Ft}$.	$8 \times 4=1.05 \mathrm{Ft}$.	$10 \times 4=1.18 \mathrm{Ft}$.

Summary of Vacuum Piping Design

 Fundamentals- RLOWLIMTS
> Maximum Friction Loss not to exceed 5 feet
3" $=4$ homes or equivalent
$4^{\prime \prime}=38$ GPM
$6^{\prime \prime}=106$ GPM
$8^{\prime \prime}=210$ GPM
$10^{\prime \prime}=375$ GPM

Summary of Vacuum Piping Design

 Fundamentals- MAXIMUMLNELENGTHS
$3^{3 \prime}=300 \mathrm{Ft}$.
$4^{\prime \prime}=2,000$ Ft.
6" \& Larger determined by static limits or friction

Minimum Slopes

50’@0.2\% Rule

$$
\begin{aligned}
\text { ELEV }= & \text { NUMBER LIFTS X LIFT HT } \\
& -(\text { NUMBER LIFTS }-1)(\text { FALL } \\
& \text { BETWEEN LIFTS) }
\end{aligned}
$$

FLOW

Slope to Tolerance

SAMPLE PROFILE SHOWING TOLERANCE FRON PLANNED ELEVATION @ 0.05 FT PER 100 FT

Static Loss Diagram

Branch

Connections

FIGURE 3-2 VALVE PIT PRIOR TO HOME CONNNECTION

Gravity

Connections

3" Service Line Lifts

WITH LロNG UPHILL CRISSGVER AN INCREASED
AIR T LIQUTD RATID WILL BE REQUIRED.

VERTICAL
LIFT

SEE installatiln drawings

Design Example

- Consider vacuum sewer layout
- Locations of collection station, sewers and ARVAC valves selected in accordance with requirements of AIRVAC 2005 Design Manual
- Locate sewers to
- Minimize lift
- Minimize length
- Equalize flows on each sewer (where possible)
> Locate AIRVAC valves to serve two or more homes per valve
- See Chapter 5

Design Example

- Assumptions
- Each AIRVAC valve to serve two (2) homes
> Peak flow per home . 64 GPM or 1.28 GPM/ AIRVAC valve installation
- To efficiently serve the areas in the design example layout
> Three (3) main sewers required
> Each main connected directly to vacuum tank at collection station
> Sewers are not joined together into bus main outside the station

Design Example

- Division valves located to isolate areas of sewer network for troubleshooting purposes
- Profiles prepared for Main \#2
> Profiles for Branches, Main \#1 and Main \#3 would be similar

Design Example

- Location of AIRVAC valves and branch sewer connection points follow principles in Chapters 4 and 5
- Buffer tank valve installation on Branch C
- Represents high flow user (ex: laundromat or school)
> Ten (10) GPM used as inflow rate for this location
- Main \#3 represents sewer main laid in alley way
> Allows up to four (4) homes to be connected to each AIRVAC valve installation

Design Example

Layout

Figure F4-17 - Piping Calculation Sheet

PROJECT: Design Example DATE: $6 / 25 / 03$	4" PIPE	6" PIPE	8" PIPE	10" PIPE	PEAK	\# SVCE SATERALS	\#AIRVAC VALVES	HOMES (or EDUS)
LINE				79.4	62	62	124	
$\mathbf{1}$	2400	1400						
$\mathbf{2}$					49.9	10	32	78
$\mathbf{3}$	3700	2200						
TOTALS								

VOLUME OF PIPEWORK (BASED ON SDR-21 PVC PIPE)
Vp $=\left(.0547 \times\right.$ Length $\left.3^{\prime \prime}\right)+\left(.0904 \times\right.$ Length $\left.4^{\prime \prime}\right)+\left(.1959 \times\right.$ Length $\left.6^{\prime \prime}\right)+\left(.3321 \times\right.$ Length $\left.8^{\prime \prime}\right)=(.5095 \times$ QTY 10') FT^{3}
$\mathrm{Vp}=($ \qquad $+$ \qquad $+$ \qquad $+$ \qquad) F^{3}
$\mathrm{Vp}=7.5($ \qquad) GA■ONS
Vp = \qquad GALONS
$2 / 3 \mathrm{Vp}=$ \qquad GALIONS

Figure F4-17 - Piping Calculation Sheet

PROJECT: Design Example DATE: 6/25/03				STATION NUMBER: 1 Peak How Rate per Home $=.64$ gpm				
LINE	4"PIPE	6"PIPE	8' PIPE	10" PIPE	PEAK	\# SVCE LATERALS	\#AIRVAC VALVES	HOMES (or EDUS)
1	2400	1400			79.4	62	62	124
2	3430	3410	3015		145.9	114	114	228
3	3700	2200			49.9	10	32	78
totals	9530	7010	3015		275.2	186	208	430
				Average Service Lateral Length		20°		
				Total 3" Pipe		3720		

VOLUME OF PIPEWORK (BASED ON SDR-21 PVC PIPE)
Vp $=\left(.0547 \times\right.$ Length $\left.3^{\prime \prime}\right)+\left(.0904 \times\right.$ Length 4") $+\left(.1959 \times\right.$ Length $\left.6^{\prime \prime}\right)+\left(.3321 \times\right.$ Length $\left.8^{\prime \prime}\right)=(.5095 \times$ QTY 10') F^{3}
$\mathrm{Vp}=($ $+$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad) F^{3}
$\mathrm{Vp}=7.5($ \qquad) GAШONS
$\mathrm{Vp}=$ \qquad GA LONS
$2 / 3 \mathrm{Vp}=$ \qquad GALIONS

Figure F4-17 - Piping Calculation Sheet

PROJECT: Design Example DATE: 6/25/03										4" PIPE	6" PIPE	8' PIPE	10" PIPE	PEAK	\# SVCE LATERALS	\#AIRVAC VALVES	HOMES (or EDUS)
LINE				79.4	62	62	124										
1	2400	1400			145.9	114	114	228									
2	3430	3410	3015		49.9	10	32	78									
3	3700	2200			275.2	186	208	430									
TOTALS	9530	7010	3015		20												

VOLUME OF PIPEWORK (BASED ON SDR-21 PVC PIPE)

```
Vp = (.0547 x Length 3') + (.0904 x Length 4") + (.1959 x Length 6') + (.3321 x Length 8') = (.5095 x QTY
        10") FT }\mp@subsup{}{}{3
Vp = (203 + 861 + 1373 + 1001 + _-_ ) FT' = 3438 FT3
Vp = 7.5(3438) GA\amalgONS (7.5 gal/FT3)
Vp = 25,785 GALONS TOTAL PIPE VOLUME (Sewage & Vacuum)
2/3 Vp = 17,018 GA\PerpONS VACUUMONLY
```

PROJECT: \qquad Project No.: \qquad 951075

Station Number: \qquad Date: 6/25/03

Peak Flow (Qmax)

Average Flow (Qa)
Minimum Flow (Qmin)
Vacuum Pump Capacity Required (Qvp)

Discharge Pump Capacity (Qdp)
Collection Tank Operating Volume (Vo) (for 15 min . cycle at Qmin)

Vo $\quad=1.84$ Qmax for 3.5 Peak Factor
=1.64 Qmax for 4.0 Peak Factor
Total Volume Collection Tank (Vct)
INCLUDE 400 Gallons for Reserve Tank
Vacuum Reservoir/Moisture Removal Tank
(Vrt) (If separate vessel is desired)
(Recommended Volume Vrt-= 400 gal)

System Pump Down Time for Operating Range

$$
=\frac{(0.045 \mathrm{cfm} \mathrm{~min})}{\mathrm{gal}} \frac{(2 / 3 \mathrm{Vp}+(\mathrm{Vct-Vo})+\mathrm{Vrt}) \mathrm{gal}}{\mathrm{Qvp} \mathrm{cfm}}
$$

if over 3, increase Qvp / if under 1, increase Vrt

$$
\text { Qmax }=g p m
$$

$$
\mathrm{Qa}=\mathrm{gpm}
$$

$$
\text { Qmin }=\mathrm{gpm}
$$

$$
\text { Qvp }=\begin{aligned}
& \text { a.c.f.m } \\
& \text { (use } 300 \text { c.f.m.) }
\end{aligned}
$$

$\begin{array}{cc}= & \text { Qmax } \\ = & \frac{15 \mathrm{Qmin}}{\mathrm{Qdp}}(\mathrm{Qdp}-\mathrm{Qmin})\end{array}$

$$
=\quad \text { Qdp }
$$

$=$

$$
=
$$

\qquad Vo
$=$
3 Vo
Vct $=$ gal

Vrt $=$ gal
Vrt $=$ (include in Vct) -

$$
\begin{aligned}
& =\frac{\text { Qmax }}{\text { Peak Factor }} \quad=\quad \frac{}{3.5} \\
& =\frac{\mathrm{Qa}}{2} \quad=\quad \frac{}{2} \\
& =\frac{\mathrm{A}^{*} \times \text { Qmax c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}=\frac{\times \text { c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}
\end{aligned}
$$

$$
=\frac{(0.045(\quad)+(-)+(\quad)}{\mathrm{cfm}} \quad \mathrm{t}=\mathrm{mins}
$$

PROJECT: Example Problem
PROJECT \#: 951075
STATION \#: 1 DATE: 6/25/03

| Discharge Pump
 Capacity (Qdp) | $=$ Qmax | Qmax | $=275.2$ gpm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Collection Tank
 Operating Volume
 (Vo*)
 (for 15 min. cycle at Qmin) | $=\frac{15 \text { Qmin (Qdp-Qmin) }}{\text { Qdp }}$ | | |

[^0]STATION\#: 1 DATE: 6/25/03

System Pump Down Time for Operating
Range
of $16^{\prime \prime}$ to $20^{\prime \prime} \mathrm{Hg}$ Vacuum
(t)
-(t) should be 1 to 3 mins

- if over 3, increase Qvp
-If under 1, increase Vrt

PROJECT: \qquad Project No.: \qquad 951075

Station Number: \qquad Date: 6/25/03

Peak Flow (Qmax)

Average Flow (Qa)
Minimum Flow (Qmin)
Vacuum Pump Capacity Required (Qvp)

Discharge Pump Capacity (Qdp)
Collection Tank Operating Volume (Vo) (for 15 min . cycle at Qmin)

Vo $\quad=1.84$ Qmax for 3.5 Peak Factor
=1.64 Qmax for 4.0 Peak Factor
Total Volume Collection Tank (Vct)
INCLUDE 400 Gallons for Reserve Tank
Vacuum Reservoir/Moisture Removal Tank
(Vrt) (If separate vessel is desired)
(Recommended Volume Vrt-= 400 gal)

System Pump Down Time for Operating Range

$$
=\frac{(0.045 \mathrm{cfm} \mathrm{~min})}{\mathrm{gal}} \frac{(2 / 3 \mathrm{Vp}+(\mathrm{Vct-Vo})+\mathrm{Vrt}) \mathrm{gal}}{\mathrm{Qvp} \mathrm{cfm}}
$$

if over 3, increase Qvp / if under 1, increase Vrt

$$
\text { Qmax }=g p m
$$

$$
\mathrm{Qa}=\mathrm{gpm}
$$

$$
\text { Qmin }=\mathrm{gpm}
$$

$$
\text { Qvp }=\begin{aligned}
& \text { a.c.f.m } \\
& \text { (use } 300 \text { c.f.m.) }
\end{aligned}
$$

$\begin{array}{cc}= & \text { Qmax } \\ = & \frac{15 \mathrm{Qmin}}{\mathrm{Qdp}}(\mathrm{Qdp}-\mathrm{Qmin})\end{array}$

$$
=\quad \text { Qdp }
$$

$=$

$$
=
$$

\qquad Vo
$=$
3 Vo
Vct $=$ gal

Vrt $=$ gal
Vrt $=$ (include in Vct) -

$$
\begin{aligned}
& =\frac{\text { Qmax }}{\text { Peak Factor }} \quad=\quad \frac{}{3.5} \\
& =\frac{\mathrm{Qa}}{2} \quad=\quad \frac{}{2} \\
& =\frac{\mathrm{A}^{*} \times \text { Qmax c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}=\frac{\times \text { c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}
\end{aligned}
$$

$$
=\frac{(0.045(\quad)+(-)+(\quad)}{\mathrm{cfm}} \quad \mathrm{t}=\mathrm{mins}
$$

PROJECT: \qquad Example Problem

Project No.: \qquad 951075

Station Number: \qquad 1

Date: 6/25/03

Peak Flow (Qmax)

Discharge Pump Capacity (Qdp)
Collection Tank Operating Volume (Vo)
(for 15 min. cycle at Qmin)

$$
\begin{aligned}
\text { Vo } & =1.84 \text { Qmax for 3.5 Peak Factor } \\
& =1.64 \text { Qmax for 4.0 Peak Factor }
\end{aligned}
$$

Total Volume Collection Tank (Vct)
INCLUDE 400 Gallons for Reserve Tank

Vacuum Reservoir/Moisture Removal Tank

(Vrt) (If separate vessel is desired)
(Recommended Volume Vrt-= 400 gal)

System Pump Down Time for Operating Range of 16 " to 20 " Hg Vacuum (t)
"t" should be 1 to 3 mins.
if over 3, increase Qvp / if under 1, increase Vrt

$$
\begin{array}{llll}
= & \frac{\mathrm{Qmax}}{\text { Peak Factor }} & =\frac{\mathrm{Qmax}}{3.5} & \mathrm{Qa}=78.6 \mathrm{gpm} \\
= & \frac{\mathrm{Qa}}{2} & \frac{78.6}{2} \\
= & \frac{\mathrm{A}^{*} \times \text { Qmax c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}} & =\frac{7 \times 275.2 \mathrm{c.f.m}}{7.5 \mathrm{gal} / \mathrm{ft}^{3}} \quad \mathrm{Qmin} & =39.3 \mathrm{gpm} \\
& =256.8 \text { a.c.f.m }
\end{array}
$$

$=\quad$ Qmax
$=\frac{15 \mathrm{Qmin}}{\mathrm{Qdp}}(\mathrm{Qdp}-\mathrm{Qmin})$
$=$ \qquad Vo

Qmax $=275.2$ gpm
Vo $=506.3$ gal

Vct $=1519$ gal

Vrt $=0 \mathrm{gal}$
$=$ (include in Vct)
m

PROJECT: \qquad Example Problem

Project No.: 951075
Station Number: \qquad 1

Date: \qquad 6/25/03

Peak Flow (Qmax)

Discharge Pump Capacity (Qdp)
Collection Tank Operating Volume (Vo)
(for 15 min. cycle at Qmin)
$\begin{aligned} \text { Vo } \quad & =1.84 \text { Qmax for 3.5 Peak Factor } \\ & =1.64 \text { Qmax for 4.0 Peak Factor }\end{aligned}$
Total Volume Collection Tank (Vct)
INCLUDE 400 Gallons for Reserve Tank
Vacuum Reservoir/Moisture Removal Tank
(Vrt) (If separate vessel is desired)
(Recommended Volume Vrt-= 400 gal)

System Pump Down Time for Operating Range
of 16 " to 20 " Hg Vacuum (t)
"t" should be 1 to 3 mins.

$=$	Qmax	$=$	$\frac{\text { Qmax }}{3.5}$	Qa	$=$	78.6 gpm
	Peak Factor					
$=$	Qa	$=$	78.6	Qmin	$=$	39.3 gpm
-	2		2			
$=$	$\frac{A^{*} \times \text { Qmax c.f.m. }}{7.5{\mathrm{gal} / \mathrm{ft}^{3}}^{3}}$	$=$	$\frac{7 \times 275.2 \text { c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}$	Qvp	$=$	256.8 a.c.f.m (use 300 c.f.m.)

$=\quad$ Qmax
$=\frac{15 \mathrm{Qmin}}{\mathrm{Qdp}}(\mathrm{Qdp}-\mathrm{Qmin})$
$=$ \qquad Vo
if over 3, increase Qvp / if under 1, increase Vrt

$$
\begin{aligned}
& 1519+400=1919-\quad \text { use } 2000 \mathrm{gal} . \\
&= \frac{(0.045 \mathrm{cfm} \mathrm{~min})}{\mathrm{gal}} \frac{(2 / 3 \mathrm{Vp}+(\mathrm{Vct-Vo})+\mathrm{Vrt}) \mathrm{gal}}{\mathrm{Qvp} \mathrm{cfm}} \\
&= \frac{(0.045(17,018)+(2000-506)+(0)}{455 \mathrm{cfm}} \quad \mathrm{t}=1.83 \text { mins. }
\end{aligned}
$$

Qmax $=275.2$ gpm

Vo $=506.3$ gal

Vct $=1519$ gal

Vrt $=0$ gal
$=$ (include in Vct)

PROJECT: \qquad Example Problem Project No.: 951075

Station Number: \qquad 1

Date: \qquad 6/25/03

Peak Flow (Qmax)

Discharge Pump Capacity (Qdp)
Collection Tank Operating Volume (Vo)
(for 15 min. cycle at Qmin)
$\begin{aligned} \text { Vo } \quad & =1.84 \text { Qmax for 3.5 Peak Factor } \\ & =1.64 \text { Qmax for 4.0 Peak Factor }\end{aligned}$
Total Volume Collection Tank (Vct)
INCLUDE 400 Gallons for Reserve Tank
Vacuum Reservoir/Moisture Removal Tank
(Vrt) (If separate vessel is desired)
(Recommended Volume Vrt-= 400 gal)

System Pump Down Time for Operating Range of 16 " to 20 " Hg Vacuum (t)
"t" should be 1 to 3 mins.

$$
\begin{aligned}
& =\frac{\text { Qmax }}{\text { Peak Factor }} \quad=\quad \frac{\text { Qmax }}{3.5} \quad \mathrm{Qa}=78.6 \mathrm{gpm} \\
& =\frac{\mathrm{Qa}}{2} \quad=\quad \frac{78.6}{2} \quad \text { Qmin }=39.3 \mathrm{gpm} \\
& =\frac{A^{*} \times \text { Qmax c.f.m. }}{7.5 \mathrm{gal} / \mathrm{ft}^{3}}=\frac{7 \times 275.2 \mathrm{c} . \mathrm{f} . \mathrm{m}}{7.5 \mathrm{gal} / \mathrm{ft}^{3}} \quad \text { Qvp }=\begin{array}{l}
256.8 \text { a.c.f.m } \\
\text { (use } 300 \mathrm{c} . \mathrm{f} . \mathrm{m} \text {.) }
\end{array}
\end{aligned}
$$

$=\quad$ Qmax
$=\frac{15 \mathrm{Qmin}}{\mathrm{Qdp}}(\mathrm{Qdp}-\mathrm{Qmin})$
$=$ \qquad Vo
if over 3, increase Qvp / if under 1, increase Vrt

$$
\begin{aligned}
& 1519+400=1919-\quad \text { use } 2000 \mathrm{gal} . \\
= & \frac{(0.045 \mathrm{cfm} \mathrm{~min})}{\mathrm{gal}} \frac{(2 / 3 \mathrm{Vp}+(\mathrm{Vct-Vo})+\mathrm{Vrt}) \mathrm{gal}}{\text { Qvp cfm }} \\
= & \frac{(0.045(17,018)+(2000-506)+(0)}{455 \mathrm{cfm}} \quad \mathrm{t}=1.83 \text { mins. }
\end{aligned}
$$

Qmax $=275.2$ gpm

Vo $=506.3$ gal

Vct $=1519 \mathrm{gal}$

Vrt $=0 \mathrm{gal}$
$=$ (include in Vct)

Design Example: Hydloss Spreadsheet

The AIRVAC Hydloss spreadsheet shown is one example of a hydraulic analysis of Main \#2 in the Design Seminar Example.

Design Example: Hydloss Spreadsheet

Microsoft Excel
Worksheet

The AIRVAC Hydloss spreadsheet shown is one example of a hydraulic analysis of Main \#2 in the Design Seminar Example.

Figure F6-3 Sample Profile

Figure F6-4 Sample Profile

Figure F6-5 Sample Profile

Design Example Procedure

- To provide adequate space for liquid level controls within the collection tank
- Estimate minimum 5.5 ft elevation between incoming vacuum sewers and building floor
. This places building floor at elevation 496.50 for this example
> See pages Chapter 4 of 2005 Design Manual for calculation of line losses in main \#2
- Friction losses for slopes greater than 0.2\% are ignored
- Calculated static losses due to profile change equal lift height minus the pipe I.D.

Design Example Procedure

- Select suitable standard size pumps and tanks
- Consult manufacturers literature
- Recalculate vacuum stations calculations using selected equipment sizes
- Size vacuum and sewage pumps
- Allow for additional house connections without overloading
- For large vacuum stations three (3) vacuum pumps may be used to prevent use of extremely large pumps
- Typically 25hp sliding vane pumps are largest model used by AIRVAC - standard models are:
- 170 CFM@10HP
- 305CFM@15HP
- 455 CFM @ 25 HP

Nomenclature

NPSHA = Net positive suction head available (feet of water)
NPSHA = havt + hs - hf - hvpa
$\mathrm{Ha} \quad=$ Head available due to atmospheric pressure (see below)

Height above sea level	ha
0 ft	33.9 ft
500 ft	33.3 ft
1000 ft	327 ft
1500 ft	321 ft

Havt = Head available due to atmospheric pressure at liquid level less vacuum in collection tank (feet of water)

Nomenclature

Havt = ha - Vmax (for maximum collection tank vacuum of 20" $\mathbf{~ H g}$ at sea level havt $=33.9 \mathrm{ft}-22.6 \mathrm{ft}=11.3 \mathrm{ft}$
Vmax = Maximum collection tank vacuum in feet of head
$20^{\prime \prime}$ mercury $=226 \mathrm{ft}$
$16^{\prime \prime}$ mercury $=18.1 \mathrm{ft}$
Hs = Depth of sewage above pump centerline - typically 1’ minimum
Hypa = Absolute vapor pressure of sewage at its pumping temperature (@68 degrees, hypa = 0.78')
Hf = Friction loss in suction pipes (approximately 2 feet for vertical pumps, 1 foot for horizontal pumps)
NPSHR = NPSH required by pump selected NPSHA must be greater than NPSHR

TDH Diagram

Total Dynamic Head on Discharge Pump (TDH)

$$
\begin{array}{rlr}
= & \text { Head Due to Vacuum + Static Head + Friction Loss } & \\
& \left(\text { at } 16^{\prime \prime}\right. \text { Hg vacuum head due to vacuum = 18.1') } & \\
= & 18.1^{\prime}+12^{\prime}+14.75^{\prime} & T D H=44.85^{\prime} \\
& \left(2 t 20^{\prime \prime} \text { Hg vacuum head due to vacuum }=22.6^{\prime}\right) & \\
= & 22.6^{\prime}+12^{\prime}+14.75^{\prime} & T D H-=49.4^{\prime} \\
= & H a t^{*}+\text { hs }-\mathrm{hf}-\text { hypa }+ \text { heq } & \\
= & 11.3+1.0-0.50-0.78+0 & \text { NPSHA }=11.02^{\prime}
\end{array}
$$

NPSH Calculation NPSHA

Tank Volume

Standard Valve Pit / Connection Details

Standard Valve Pit - Breather Details

Standard Line Details

Standard Line Connection Details

Standard Skid (2) 300 CFM Vacuum Pumps \& 1500 Gal. Collection Tank

Two-Skid Package Station - (2) 430 CFM Vacuum Pumps 2400 Gal. Tank

Typical Building for Pre-assembled Station

Typical Pre-assembled Skid for Vacuum Collection Station

[^0]: * Vo
 = 1.84 Qmax for 3.5 Peak Factor
 = 1.64 Qmax for 4.0 Peak Factor

