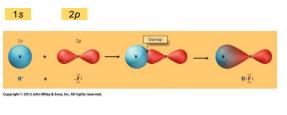

Valence Bond Theory – H₂

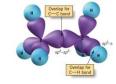
 H₂ bonds form because **1***s* atomic valence orbital from each H atom overlaps



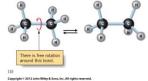
 F₂ bonds form because **2***p* valence orbitals overlap

Valence Bond Theory – HF

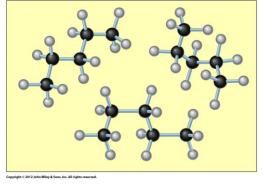
 HF involves overlaps between 1s orbital on H and 2p orbital of F



25


27

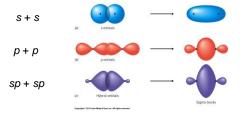
Conformations


- C—C single bond has free rotation around the C—C bond
- Conformations
 - Different relative orientations on molecule upon rotation

24

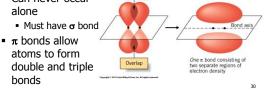
Multiple Conformations of Pentane

Double and Triple Bonds

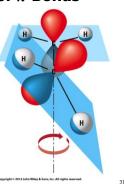

- So where do extra electron pairs in multiple bonds go?
 - Not in hybrid orbitals
 - Remember VSEPR, multiple bonds have no effect on geometry

Two types of bond result from orbital overlap

- Sigma (σ) bond
 - Accounts for first bond
- Pi (π) bond
 - Accounts for second and third bonds


Sigma (σ) Bonds

- Head on overlap of orbitals
- Electron density concentrated most heavily between nuclei of two atoms
- Lie along imaginary line joining their nuclei


Pi (π) Bonds

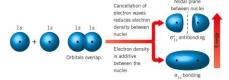
- Sideways overlap of unhybridized p orbitals
- Electron density divided into two regions
 - Lie on opposite sides of imaginary line connecting two atoms
- Electron density above and below σ bond.
- Can never occur

Properties of π -Bonds

- Can't rotate about double bond
- π bond must first be broken before rotation can occur

Your Turn!

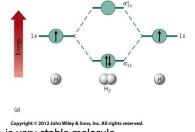
How many σ and π bonds are there in CH_2CHCHCH_2



9, 2

Molecular Orbital (MO) Theory

- 1. Molecular orbitals are associated with entire molecule as opposed to one atom
- 2. Allows us to accurately predict magnetic properties and bonds of molecules
- Energies of molecular orbitals determined by combining electron waves of atomic orbitals


Summary of MO from 1s AO

- Bonding molecular orbital σ
 - Electron density builds up between nuclei
 - Electrons in bonding MOs tend to stabilize molecule
- Antibonding molecular orbital σ^{*}
 - Cancellation of electron waves reduces electron density between nuclei
 - Electrons in antibonding MOs tend to destabilize molecule

32

MO Energy diagram for H₂

H₂ is very stable molecule

Rules for Filling MO Energy Diagrams

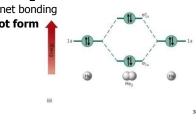
- 1. Electrons fill lowest-energy orbitals that are available
 - Aufbau principle applies
- 2. No more than two electrons, with spin paired, can occupy any orbital
- Pauli exclusion principle applies
- Electrons spread out as much as possible, with spins unpaired, over orbitals of same energy
 - Hund's rule applies

Bond Order

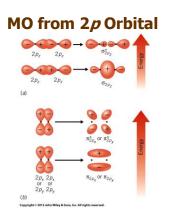
35

37

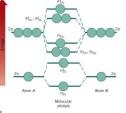
39

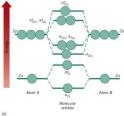

 Measure of number of electron pairs shared between two atoms

Bond order = $\frac{(\text{number of bonding } e^-) - (\text{number of antibonding } e^-)}{2 \text{ electrons/bond}}$

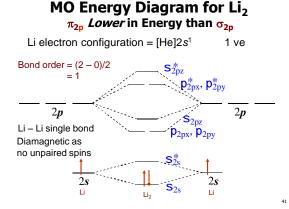

- As bond order increases, bond length decreases, and bond energy increases
- H₂ bond order = 1
- A bond order of 1 corresponds to a single bond

MO Energy Diagram for He₂

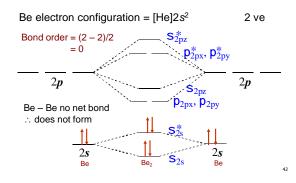

- Four electrons, so both σ and σ^* molecular orbitals are filled
- Bond order Bond order = $\frac{2-2}{2} = 0$
- There is no net bonding
- He₂ does not form 4

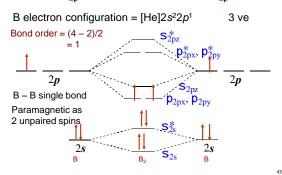


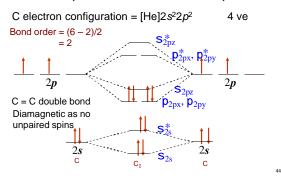
36

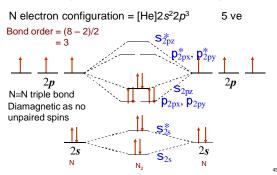


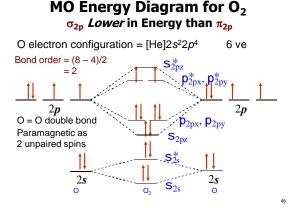
MO Energy Diagrams for 2nd Row of Periodic Table



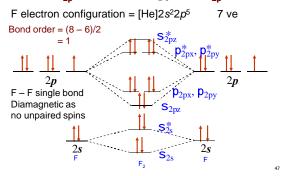

 $Li_2 \rightarrow N_2$ π_{2p} Lower in energy than σ_{2p} $O_2,\,F_2$ and Higher σ_{2p} Lower in energy than π_{2p}

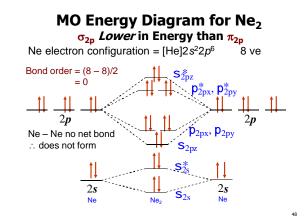

MO Energy Diagram for Be₂ π_{2p} Lower in Energy than σ_{2p}


MO Energy Diagram for B_2 π_{2p} Lower in Energy than σ_{2p}



MO Energy Diagram for C₂ π_{2p} Lower in Energy than σ_{2p}




MO Energy Diagram for N_2 π_{2p} Lower in Energy than σ_{2p}

MO Energy Diagram for F_2 σ_{2p} Lower in Energy than π_{2p}

5